Characterization of Weathering Processes of the Giant Copper Deposit of Tizert (Igherm Inlier, Anti-Atlas, Morocco)
Abstract
:1. Introduction
1.1. Geodynamic Context
1.2. Local Geologic Context
2. Materials and Methods
3. Results
3.1. Host Rocks
3.1.1. Tamjout Dolomite
3.1.2. Basal Series
3.2. Primary Mineralization
3.3. Secondary (Weathered) Mineralization
3.3.1. Tamjout Dolomite
3.3.2. Basal Series
4. Discussion
4.1. Weathering Profile
4.2. Paragenesis
4.3. Weathering Processes
4.4. Chemical Migration during Weathering
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Reich, M.; Vasconcelos, P.M. Geological and economic significance of supergene metal deposits. Elements 2015, 11, 305–310. [Google Scholar] [CrossRef]
- Boni, M.; Mondillo, M. The “Calamines” and the “Others”: The great family of supergene nonsulfide zinc ore. Ore Geol. Rev. 2015, 67, 208–233. [Google Scholar] [CrossRef]
- Choulet, F.; Charles, N.; Barbanson, L.; Branquet, Y.; Sizaret, S.; Aomar, E.; Badra, L.; Chen, Y. Non-sulfide zinc deposits of the Moroccan High Atlas: Multi-scale characterization. Ore Geol. Rev. 2014, 56, 115–140. [Google Scholar] [CrossRef] [Green Version]
- Oummouch, A.; Essaifi, A.; Zayane, R.; Maddi, O.; Zouhair, M.; Maacha, L. Geology and Metallogenesis of the Sediment-Hosted Cu-Ag Deposit of Tizert (Igherm Inlier, Anti-Atlas Copperbelt, Morocco). Geofluids 2017, 2017, 7508484. [Google Scholar] [CrossRef]
- Asladay, A.; Barodi, E.B.; Maacha, L.; Zinbi, Y. Les minéralisations cuprifères du Maroc. Chron. Rech. Min. 1998, 531–532, 29–44. [Google Scholar]
- Verhaert, M.; Madi, A.; El Basbas, A.; Elharkaty, M.; Oummouch, A.; Oumohou, L.; Malfliet, A.; Maacha, L.; Yans, J. Genesis of an As-Pb-rich supergene mineralization: The Tazalaght and Agoujgal Cu deposits (Moroccan Anti-Atlas Copperbelt). Econ. Geol. in press.
- Annich, M. Gisement de Ouansimi. In Méthode et Technique d’exploration Minière et Principaux Gisements au Maroc; El Barodi, E., Wat Anab, A., Mouttaqi, A., Annich, M., Eds.; Projet JICA/BRPM, BRPM, 2002; pp. 219–223. [Google Scholar]
- El Basbas, A.; Aissa, M.; Ouguir, H.; My Lahsen, M.; Madi, A.; Zouhair, M. Ouansimi copper mineralization (Western Anti-Atlas, Morocco): Paragenetic sequence and circulation of gangue hosted paleofluids. J. Afr. Earth Sci. 2020, 162, 103692. [Google Scholar] [CrossRef]
- Maddi, O.; Baoutoul, H.; Maacha, L.; Ennaciri, O.; Soulaimani, A. La mine d’Agjgal au sud du Kerdou; considérations sur les gîtes stratoïdes de cuivre et argent de l’Anti-Atlas occidental et central. In Nouveaux Guides Géologiques et Miniers du Maroc, Principales mines du Maroc; Mouttaqi, A., Rjimati, E.C., Maacha, L., Michard, A., Soulaimani, A., Ibouh, H., Eds.; Notes et Mémoires du Service Géologique du Maroc; Ministère de l’Energie, des Mines, de l’Eau et l’Environnement: Rabat, Morocco, 2011; Volume 9, pp. 151–156. [Google Scholar]
- Gasquet, D.; Ennih, N.; Liégeois, J.P.; Soulaimani, A.; Michard, A. The Pan-African Belt. In Continental Evolution: The Geology of Morocco; Michard, A., Saddiqi, O., Chalouan, A., Frizon de Lamotte, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 33–64. [Google Scholar]
- Michard, A.; Saddiqi, O.; Missenard, Y.; Oukassou, M.; Barbarand, J. Les grandes régions géologiques du Maroc; diversité et soulèvement d’ensemble. Géologues 2017, 197, 4–12. [Google Scholar]
- Youbi, N.; Kouyaté, D.; Söderlund, U.; Ernst, R.E.; Soulaimani, A.; Hafid, A.; Ikenne, M.; El Bahat, A.; Bertrand, H.; Rkha Chaham, K.; et al. The 1750Ma Magmatic Event of the West African Craton (Anti-Atlas, Morocco). Precambrian Res. 2017, 236, 106–123. [Google Scholar] [CrossRef]
- Gasquet, D.; Levresse, G.; Cheilletz, A.; Azizi-Samir, M.R.; Mouttaqi, A. Contribution to a geodynamic reconstruction of the Anti-Atlas (Morocco) during Pan-African times with the emphasis on inversion tectonics and metallogenic activity at the Precambrian-Cambrian transition. Precambrian Res. 2005, 140, 157–182. [Google Scholar] [CrossRef]
- Sehrt, M.; Glasmacher, U.A.; Stockli, D.F.; Jabour, H.; Kluth, O. The southern Moroccan passive continental margin: An example of differentiated long-term landscape evolution in Gondwana. Gondwana Res. 2018, 53, 129–144. [Google Scholar] [CrossRef]
- Benssaou, M.; Hamoumi, N. Le graben de l’Anti-Atlas occidental (Maroc): Contrôle tectonique de la paléogéographie et des séquences au Cambrien inférieur. Comptes Rendus Geosci. 2003, 335, 297–305. [Google Scholar] [CrossRef]
- Soulaimani, A.; Michard, A.; Ouanaimi, H.; Baidder, L.; Raddi, Y.; Saddiqi, O.; Rjimati, E.C. Late Ediacaran-Cambrian structures and their reactivation during the Variscan and Alpine cycles in the Anti-Atlas (Morocco). J. Afr. Earth Sci. 2014, 98, 94–112. [Google Scholar] [CrossRef]
- Burkhard, M.; Caritg, S.; Helg, U.; Robert-Charrue, C.; Soulaimani, A. Tectonics of the Anti-Atlas of Morocco. Comptes Rendus Geosci. 2006, 338, 11–24. [Google Scholar] [CrossRef] [Green Version]
- Helg, U.; Burkhard, M.; Caritg, S.; Robert-Charrue, C. Folding and inversion tectonics in the Anti-Atlas of Morocco. Tectonics 2004, 23, 1–17. [Google Scholar] [CrossRef]
- Michard, A.; Hoepffner, C.; Soulaimani, A.; Baidder, L. The Variscan belt. In Continental Evolution: The Geology of Morocco; Michard, A., Saddiqi, O., Chalouan, A., Frizon de Lamotte, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 65–132. [Google Scholar]
- Michard, A.; Soulaimani, A.; Hoepffner, C.; Ouanaimi, H.; Baidder, L.; Rjimati, E.C.; Saddiqi, O. The South-Western Branch of the Variscan Belt: Evidence from Morocco. Tectonophysics 2010, 492, 1–24. [Google Scholar] [CrossRef]
- El Arabi, E.H.; Diez, J.B.; Broutin, J.; Essamoud, R. First palynological characterization of the Middle Triassic; implications for the first Tethysian rifting phase in Morocco. Comptes Rendus Geosci. 2006, 338, 641–649. [Google Scholar] [CrossRef]
- Knight, K.B.; Nomade, S.; Renne, P.R.; Marzoli, A.; Bertrand, H.; Youbi, N. The Central Atlantic Magmatic Province at the Triassic-Jurassic boundary: Paleomagnetic and 40Ar/39Ar evidence from Morocco for brief, episodic volcanism. Earth Planet. Sc. Lett. 2004, 228, 143–160. [Google Scholar] [CrossRef]
- Gouiza, M.; Charton, R.; Bertotti, G.; Andriessen, P.; Storms, J.E.A. Post-Variscan evolution of the Anti-Atlas belt of Morocco constrained from low-temperature geochronology. Int. J. Earth Sci. 2017, 106, 593–616. [Google Scholar] [CrossRef] [Green Version]
- Oukassou, M.; Saddiqi, O.; Barbarand, J.; Sebti, S.; Baidder, L.; Michard, A. Post-Variscan exhumation of the central Anti-Altas (Morocco) constrained by zircon and apatite fission-track thermochronology. Terra Nova 2013, 25, 151–159. [Google Scholar] [CrossRef]
- Frizon de Lamotte, D.; Zizi, M.; Missenard, Y.; Hafid, M.; El Azzouzi, M.; Maury, R.C.; Charrière, A.; Taki, Z.; Benammi, M.; Michard, A. The Atlas system. In Continental Evolution: The Geology of Morocco; Michard, A., Saddiqi, O., Chalouan, A., Frizon de Lamotte, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 133–202. [Google Scholar]
- Leprêtre, R.; Missenard, Y.; Barbarand, J.; Gautheron, C.; Saddiqi, O.; Pinna-Jamme, R. Postrift history of the eastern central Atlantic passive margin: Insights from the Saharan region of South Morocco: Postrift Evolution Moroccan Margin. J. Geophys. Res. Solid Earth 2015, 120, 4645–4666. [Google Scholar] [CrossRef]
- Frizon de Lamotte, D.; Leturmy, P.; Missenard, Y.; Khomsi, S.; Ruiz, G.; Saddiqi, O.; Guillocheau, F.; Michard, A. Mesozoic and Cenozoic vertical movements in the Atlas system (Algeria, Morocco, Tunisia): An overview. Tectonophysics 2009, 475, 9–28. [Google Scholar] [CrossRef]
- Missenard, Y.; Zeyen, H.; Frizon de Lamotte, D.; Leturmy, P.; Petit, C.; Sébrier, M.; Saddiqi, O. Crustal versus asthenospheric origin of relief of the Atlas Mountains of Morocco. J. Geophys. Res. Solid Earth 2006, 111, B03401. [Google Scholar] [CrossRef]
- Frizon de Lamotte, D.; Saint Bezar, B.; Bracène, R.; Mercier, E. The two main steps of the Atlas building and geodynamics of the western Mediterranean. Tectonics 2000, 19, 740–761. [Google Scholar] [CrossRef]
- Ruiz, G.M.H.; Sebti, S.; Negro, F.; Saddiqi, O.; Frizon De Lamotte, D.; Stockli, D.; Foeken, J.; Stuart, F.; Barbarand, J.; Schaer, J.P. From central Atlantic continental rift to Neogene uplift-western Anti-Atlas (Morocco). Terra Nova 2011, 23, 35–41. [Google Scholar] [CrossRef]
- Soulaimani, A.; Hefferan, K. Le Précambrien à la bordure nord du craton ouest-africain (Anti-Atlas et Haut Atlas, Maroc) Données générales. Géologues 2017, 194, 33–36. [Google Scholar]
- Hefferan, K.; Soulaimani, A.; Samson, S.D.; Admou, H.; Inglis, J.; Saquaque, A.; Latifa, C.; Heywood, N. A reconsideration of Pan African orogenic cycle in the Anti-Atlas Mountains, Morocco. J. Afr. Earth Sci. 2014, 98, 34–46. [Google Scholar] [CrossRef]
- Boudzoumou, F.; Vandamme, D.; Affaton, P.; Gattacceca, J.; Ouazzani, H.; Badra, L.; Mahjoubi, E. Evidence of a Permian remagnetization in the Neoproterozoic-Cambrian Adoudounian Formation (Anti-Atlas, Morocco). Bull. l’Institut Sci. Sect. Sci. Terre 2012, 34, 15–28. [Google Scholar]
- Aït Malek, H.; Gasquet, D.; Bertrand, J.M.; Leterrier, J. Géochronologie U-Pb sur zircon de granitoïdes éburnéens et panafricains dans les boutonnières protérozoïques d’Igherm, du Kerdous et du Bas Draa (Anti-Atlas occidental, Maroc). Earth Planet. Sci. Lett. 1998, 327, 819–826. [Google Scholar]
- Hefferan, K.P.; Karson, J.A.; Saquaque, A. Proterozoic collisional basins in a Pan-African suture zone, Anti-Atlas Mountains, Morocco. Precambrian Res. 1992, 54, 295–319. [Google Scholar] [CrossRef]
- Thomas, R.J.; Fekkak, A.; Ennih, N.; Errami, E.; Loughlin, S.C.; Gresse, P.G.; Chevallier, L.P.; Liégeois, J.P. A new lithostratigraphic framework for the Anti-Atlas Orogen, Morocco. J. Afr. Earth Sci. 2004, 39, 217–226. [Google Scholar] [CrossRef] [Green Version]
- Thomas, R.J.; Chevallier, L.P.; Gresse, P.G.; Harmer, R.E.; Eglington, B.M.; Armstrong, R.A.; de Beer, C.H.; Martini, J.E.J.; de Kock, J.S.; Macey, P.H.; et al. Precambrian evolution of the Sirwa Window, Anti-Atlas Orogen, Morocco. Precambrian Res. 2002, 118, 1–57. [Google Scholar] [CrossRef]
- Walsh, G.J.; Aleinikoff, J.N.; Benziane, F.; Yazidi, A.; Armstrong, T.R. U-Pb zircon geochronology of the Paleoproterozoic Tagragra de Tata inlier and its Neoproterozoic cover, western Anti-Atlas, Morocco. Precambrian Res. 2002, 117, 1–20. [Google Scholar] [CrossRef]
- Maloof, A.C.; Ramezani, J.; Bowring, S.A.; Fike, D.A.; Porter, S.M.; Mazouad, M. Constraints on early Cambrian carbon cycling from the duration of the Nemakit-Daldynian-Tommotian boundary δ13C shift, Morocco. Geology 2010, 38, 623–626. [Google Scholar] [CrossRef]
- Maloof, A.C.; Schrag, D.P.; Crowley, J.L.; Bowring, S.A. An expanded record of Early Cambrian carbon cycling from the Anti-Atlas Margin, Morocco. Can. J. Earth Sci. 2005, 42, 2195–2216. [Google Scholar] [CrossRef]
- Benssaou, M.; Hamoumi, N. L’Anti-Atlas occidental du Maroc: Étude sédimentologique et reconstitutions paléogéographiques au Cambrien inférieur. J. Afr. Earth Sci. 2001, 32, 351–372. [Google Scholar] [CrossRef]
- Soulaimani, A.; Bouabdelli, M.; Piqué, A. The Upper Neoproterozoic-Lower Cambrian continental extension in the Anti-Atlas (Morocco). Bull. Soc. Geol. Fr. 2003, 174, 83–92. [Google Scholar] [CrossRef]
- Holtzapffel, T. Les minéraux argileux. Préparation. Analyse diffractométrique et détermination. Soc. Géol. Nord 1985, 1, 113–117. (In French) [Google Scholar]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell Scientific Publications: Oxford, UK, 1985; p. 327. [Google Scholar]
- Verhaert, M.; Bernard, A.; Dekoninck, A.; Lafforgue, L.; Saddiqi, O.; Yans, J. Mineralogical and geochemical characterization of supergene Cu–Pb–Zn–V ores in the Oriental High Atlas, Morocco. Miner. Deposita 2017, 52, 1049–1068. [Google Scholar] [CrossRef]
- Sillitoe, R.H. Supergene oxidation of epithermal gold-silver mineralization in the Deseado massif, Patagonia, Argentina: Response to subduction of the Chile Ridge. Miner. Deposita 2019, 54, 381–394. [Google Scholar] [CrossRef]
- Borg, G. The role of fault structures and deep oxidation in supergene base metal deposits Society of Economic Geologists: Littleton, CO, USA. In Supergene Environments, Processes and Products; Titley, S.R., Ed.; Society of Economic Geologists, Inc.7811 Shaffer ParkwayLittleton, CO 80127, Special Publication; Society of Economic Geologists, Inc: Littleton, CO, USA, 2009; Volume 14, pp. 121–132. [Google Scholar]
- Ciantia, M.O.; Castellanza, R. Modelling weathering effects on the mechanical behaviour of rocks. Eur. J. Environ. Civ. Eng. 2016, 20, 1054–1082. [Google Scholar] [CrossRef]
- Widdowson, M. Laterite and Ferricrete. In Geochemical Sediments and Landscapes; Nash, D.J., McLaren, S.J., Eds.; Blackwell Publishing Ltd.: Oxford, UK, 2008; pp. 45–94. [Google Scholar]
- De Putter, T.; Mees, F.; Decrée, S.; Dewaele, S. Malachite, an indicator of major Pliocene Cu remobilization in a karstic environment (Katanga, Democratic Republic of Congo). Ore Geol. Rev. 2010, 38, 90–100. [Google Scholar] [CrossRef]
- Robb, L.J. Introduction to Ore-Forming Processes; Blackwell Science Ltd.: Oxford, UK, 2005; p. 373. [Google Scholar]
- Van Langendonck, S.; Muchez, P.; Dewaele, S.; Kaputo Kalubi, A.; Cailteux, J. Petrographic and mineralogical study of the sediment-hosted Cu-Co ore deposit at Kambove West in the central part of the Katanga Copperbelt (DRC). Geol. Belg. 2013, 16, 91–104. [Google Scholar]
- Guilbert, J.M.; Park, C.F., Jr. The Geology of Ore Deposits; W.H. Freeman & Co.: New York, NY, USA, 1986; p. 983. [Google Scholar]
- Brookins, D.G. Eh-pH Diagrams for Geochemistry; Springer: Berlin/Heidelberg, Germany, 1988; p. 176. [Google Scholar]
- Chávez, W.X. Supergene Oxidation of Copper Deposits: Zoning and Distribution of Copper Oxide Minerals. Soc. Econ. Geol. 2000, 41, 11–21. [Google Scholar]
- Hanor, J.S. Barite-celestine geochemistry and environments of formation. Rev. Mineral. Geochem. 2000, 40, 193–275. [Google Scholar] [CrossRef]
- Domènech, C.; De Pablo, J.; Ayora, C. Oxidative dissolution of pyritic sludge from the Aznalcóllar mine (SW Spain). Chem. Geol. 2002, 190, 339–353. [Google Scholar] [CrossRef]
- Arrobas, D.L.P.; Hund, K.L.; Mccormick, M.S.; Ningthoujam, J.; Drexhage, J.R. The Growing Role of Minerals and Metals for a Low Carbon Future (English); World Bank Group: Washington, DC, USA, 2017. [Google Scholar]
- Descostes, M.; Beaucaire, C.; Mercier, F.; Savoye, S.; Sow, J.; Zuddas, P. Effect of carbonate ions on pyrite (FeS2) dissolution. Bull. Soc. Geol. Fr. 2002, 173, 265–270. [Google Scholar] [CrossRef] [Green Version]
- Brown, E.H. The greenschist facies in part of Eastern Otago, New Zealand. Contrib. Mineral. Petrol. 1967, 14, 259–292. [Google Scholar] [CrossRef]
- Vink, B.W. Stability relations of malachite and azurite. Mineral. Mag. 1986, 50, 41–47. [Google Scholar] [CrossRef]
- Clavel, M.; Leblanc, M. Liaison entre tectonique et mineralisation cuprifere dans les dolomies infracambriennes de la region du Jbel N’Zourk (Anti-Atlas central, Maroc). Notes Serv. Geol. Maroc 1971, 237, 229–232. [Google Scholar]
- Maacha, L.; Ennaciri, O.; Saquaque, A.; Soulaimani, A. Un gîte prometteur: Le cuivre du Jbel N’Zourk (Anti-Atlas central). In Nouveaux Guides Géologiques et Miniers du Maroc, Volume 9, Les Principales Mines du Maroc; Mouttaqi, A., Rjimati, E.C., Maacha, L., Michard, A., Soulaimani, A., Ibouh, H., Eds.; Notes et Mémoires du Service Géologique du Maroc, Rabat, Ministère de l’Energie, des Mines, de l’Eau et l’Environnement: Rabat, Morocco, 2011; Volume 564, pp. 123–127. [Google Scholar]
- Maacha, L.; Ennaciri, O.; El Ghorfi, M.; Baoutoul, H.; Saquaque, A.; Soulaimani, A. Le cuivre oxydé du J. La’sal (boutonnière d’El Graara, Anti-Atlas central). In Nouveaux Guides Géologiques et Miniers du Maroc, Volume 9, Les Principales Mines du Maroc; Mouttaqi, A., Rjimati, E.C., Maacha, L., Michard, A., Soulaimani, A., Ibouh, H., Eds.; Notes et Mémoires du Service Géologique du Maroc, Ministère de l’Energie, des Mines, de l’Eau et l’Environnement: Rabat, Morocco, 2011; Volume 564, pp. 117–121. [Google Scholar]
- Bourque, H.; Barbanson, L.; Sizaret, S.; Branquet, Y.; Ramboz, C.; Ennaciri, O.; El Ghorfi, M.; Badra, L. A contribution to the synsedimentary versus epigenetic origin of the Cu mineralizations hosted by terminal Neoproterozoic to Cambrian formations of the Bou Azzer—El Gaara inlier: New insights from the Jbel Laassel deposit (Anti-Atlas, Morocco). J. Afr. Earth Sci. 2015, 32, 723–739. [Google Scholar] [CrossRef] [Green Version]
- Fontaine, L.; De Putter, T.; Bernard, A.; Decrée, S.; Cailteux, J.; Wouters, J.; Yans, J. Complex mineralogical-geochemical sequences and weathering events in the supergene ore of the Cu–Co Luiswishi deposit (Katanga, D.R. Congo). J. Afr. Earth Sci. 2020, 161, 103674. [Google Scholar] [CrossRef]
- El Basbas, A.; Aissa, M.; Ouguir, H.; Mahdoudi, M.L.; Madi, O.; Baoutoul, H.; Zouhair, M. La mine de cuivre de Tazalarht (Anti-Atlas occidental). In Nouveaux Guides Géologiques et Miniers du Maroc, Volume 9, Les Principales Mines du Maroc; Mouttaqi, A., Rjimati, E.C., Maacha, L., Michard, A., Soulaimani, A., Ibouh, H., Eds.; Notes et Mémoires du Service Géologique du Maroc, Ministère de l’Energie, des Mines, de l’Eau et l’Environnement: Rabat, Morocco, 2011; Volume 564, pp. 145–149. [Google Scholar]
- Du, L.-J.; Li, B.; Huang, Z.-L.; Chen, J.; Zhou, J.-X.; Zou, G.-F.; Yan, Z.-F. Mineralogy, Fluid Inclusion, and Hydrogen and Oxygen Isotope Studies of the Intrusion-Related Yangla Cu Deposit in the Sanjiang Region, SW China: Implications for Metallogenesis and Deposit Type. Resour. Geol. 2020, 70, 28–49. [Google Scholar] [CrossRef]
- Miller, R.M. The Geology of Namibia, 3 Volumes; Geological Survey of Namibia, Ministry of Mines and Energy: Windhoek, Namibia, 2008. [Google Scholar]
- Vasconcelos, P.M. K-Ar and 40Ar/39Ar geochronology of weathering processes. Annu. Rev. Earth Planet. Sci. 1999, 27, 183–229. [Google Scholar] [CrossRef]
- Lippolt, H.J.; Brander, T.; Mankopf, N.R. An attempt to determine formation ages of goethites and limonites by (U + Th)-4He dating. Neues Jahrb. Mineral. Monatshefte 1998, 11, 505–528. [Google Scholar]
- Sellet, D.; Broughton, D.; Scott, R.; Hitzman, M.; Bull, S.; Large, R.; McGoldrick, P.; Croaker, M.; Pollington, N.; Barra, F. A New Look at the Geology of the Zambian Copperbelt. Econ. Geol. 2005, 100, 965–1000. [Google Scholar]
- Pasava, J. Geochemistry and the role of anoxic sediments in the origin of the Imiter silver deposit in Morocco. Vestn. Ceskeho Geol. Ust. 1994, 69, 1–11. [Google Scholar]
- Borisenko, A.S.; Borovikov, A.A.; Pavlova, G.G.; Kalinin, Y.A.; Nevolko, P.A.; Gushchina, L.V.; Lebedev, V.I.; Maacha, L.; Kostin, A.V. Formation conditions of Hg-silver deposition at the Imiter deposit (Anti-Atlas, Morocco). In Proceedings of the 12th Biennial SGA Meeting, Uppsala, Sweden, 12–15 August 2013; Volume 3. [Google Scholar]
- Marcoux, E.; Nerci, K.; Branquet, Y.; Ramboz, C.; Ruffet, G.; Peucat, J.-J.; Stevenson, R.; Jébrak, M. Late-Hercynian intrusion-related gold deposits: An integrated model on the Tighza polymetallic district, central Morocco. J. Afr. Earth Sci. 2015, 107, 65–88. [Google Scholar]
- Walter, S.G. Broken Hill-type deposits. J. Austr. Geol. Geophy. 1998, 17, 229–237. [Google Scholar]
- Dill, H.G. Supergene Alteration of Ore Deposits: From Nature to Humans. Elements 2015, 11, 311–316. [Google Scholar] [CrossRef]
- Dill, H.G.; Weber, B.; Botz, R. Metalliferous duricrusts. Neues Jahrb. Miner. Abh. 2013, 190, 123–195. [Google Scholar] [CrossRef]
- Boyle, D.R. Iodargyrite as an indicator of arid climatic conditions and its association with gold-bearing glacial tills of the Chibougamau-Chapais Area Quebec. Can. Mineral. 1997, 35, 23–34. [Google Scholar]
- Alfieris, D.; Voudouris, P.; Spry, P.G. Shallow submarine epithermal Pb-Zn-Cu-Au-Ag-Te mineralization on western Milos Island, Aegean Volcaninc Arc, Greece: Mineralogical, geological and geochemical constraints. Ore Geol. Rev. 2013, 53, 159–180. [Google Scholar] [CrossRef]
- Golebiowska, B.; Pieczka, A.; Rzepa, G.; Matyszkiewicz, J.; Krajewski, M. Iodargyrite from Zalas (Cracow area, Poland) as an indicator of Oligocene-Miocene aridity in Central Europe. Palaeogeogr. Palaeoclimatol. Palaeocol. 2010, 296, 130–137. [Google Scholar] [CrossRef]
- Keim, M.F.; Vaudrin, R.; Markl, G. Redistribution in silver during supergene oxidation of argentiferous galena: A case study from the Schwarzwald, SW Germany. Neues Jahrb. Mineral. Abh. J. Min. Geochem. 2016, 193, 295–309. [Google Scholar] [CrossRef] [PubMed]
- De Putter, T.; Charlet, J.-M.; Quinif, Y. REE, Y and U concentration at the fluid–iron oxide interface in late Cenozoic cryptodolines from Southern Belgium. Chem. Geol. 1999, 153, 139–150. [Google Scholar] [CrossRef]
- Verhaert, M.; Bernard, A.; Saddiqi, O.; Dekoninck, A.; Essalhi, M.; Yans, J. Mineralogy and Genesis of the Polymetallic and Polyphased Low Grade Fe-Mn-Cu Ore of Jbel Rhals Deposit (Eastern High Atlas, Morocco). Minerals 2018, 8, 23. [Google Scholar] [CrossRef] [Green Version]
- Braun, J.J.; Pagel, M.; Muller, J.P.; Bilong, P.; Michard, A.; Guillet, B. Cerium anomalies in lateritic profile. Geochim. Cosmochim. Acta 1990, 54, 781–795. [Google Scholar] [CrossRef]
Oxides/Elements | Host Rocks | Mineralization | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tamjout Dolomite TIZ45 | Grey sandstone TIZ44 | Purplish siltstone TIZ43 | Greenish siltstone TIZ42 | Red sandstone TIZ41 | Red sandstone TIZ40 | Conglomerate C1 11 | Tamjout Dolomite C75C1 | Red sandstone C75C3 | Purplish siltstone C75C8 | Greenish siltstone C75C12 | Iron oxides (Dolomite) TIZ33 | Iron oxides (Dolomite) TIZ24 | Malachite (Dolomite) TIZ 18 | Malachite (Conglomerate) TIZ14 | Malachite/Cerussite TIZ13 | Barite in quartz TIZ11 | Greenish siltstone TIZ5 | Grey-reddish sandstone C1 12 | Conglomerate C1 16 | Greenish siltstone C15C4 | Conglomerate C15C5 | Greenish siltstone C15C8 | Greenish siltstone C15C11 | Greenish siltstone C75C5 | ||
LOD | ||||||||||||||||||||||||||
SiO2 (%) | 0.01 | 0.91 | 75.55 | 62.86 | 62.86 | 61.15 | 78.87 | 61.52 | 0.61 | 45.04 | 65.05 | 65.05 | 5.81 | 7.98 | 1.00 | 59.24 | 6.40 | 37.69 | 66.58 | 47.56 | 65.14 | 41.06 | 55.94 | 59.49 | 56.15 | 56.98 |
Al2O3 (%) | 0.01 | 0.31 | 11.25 | 16.79 | 16.79 | 12.01 | 10.73 | 13.91 | 0.14 | 9.57 | 15.31 | 15.31 | 0.62 | 1.29 | 0.08 | 13.16 | 0.02 | 1.06 | 14.40 | 11.10 | 12.11 | 4.82 | 9.16 | 13.00 | 10.09 | 18.04 |
Fe2O3 (%) | 0.01 | 0.21 | 0.61 | 1.91 | 1.91 | 3.22 | 0.97 | 2.76 | 0.11 | 1.19 | 3.90 | 3.90 | 30.93 | 60.18 | 0.11 | 3.09 | < 0.01 | 0.83 | 1.21 | 1.52 | 1.05 | 0.01 | 1.18 | 1.10 | 1.22 | 2.57 |
MnO (%) | 0.01 | 0.27 | 0.01 | 0.01 | 0.01 | 0.12 | 0.01 | 0.08 | 0.46 | 0.27 | 0.02 | 0.02 | 0.06 | 0.09 | 0.04 | 0.06 | 0.01 | 0.17 | 0.03 | 0.27 | 0.15 | 0.04 | 0.20 | 0.18 | 0.31 | 0.02 |
MgO (%) | 0.01 | 20.48 | 1.35 | 2.50 | 2.50 | 3.81 | 0.66 | 5.26 | 21.31 | 7.83 | 2.86 | 2.86 | 11.61 | 1.28 | 1.26 | 5.39 | 0.18 | 8.75 | 2.82 | 5.60 | 3.60 | 0.53 | 4.22 | 3.86 | 5.87 | 3.10 |
CaO (%) | 0.01 | 29.58 | 0.40 | 0.37 | 0.37 | 4.81 | 0.21 | 1.51 | 29.77 | 12.3 | 1.00 | 1.00 | 19.42 | 14.45 | 7.96 | 0.39 | 0.29 | 13.78 | 0.76 | 7.16 | 4.63 | 6.10 | 8.63 | 5.98 | 7.56 | 0.48 |
Na2O (%) | 0.01 | 0.03 | 1.83 | 0.61 | 0.61 | 0.08 | 0.11 | 1.92 | 0.02 | 0.04 | 0.28 | 0.28 | 0.02 | 0.03 | 0.01 | 1.09 | <0.01 | 0.02 | 1.12 | 0.08 | 1.22 | 0.03 | 0.05 | 0.64 | 0.29 | 0.06 |
K2O (%) | 0.01 | 0.09 | 4.92 | 6.39 | 6.39 | 4.68 | 5.72 | 2.26 | 0.04 | 2.89 | 5.79 | 5.79 | 0.10 | 0.29 | 0.01 | 1.91 | <0.01 | 0.32 | 4.60 | 3.19 | 2.81 | 1.34 | 2.75 | 3.82 | 3.00 | 6.73 |
TiO2 (%) | 0.001 | 0.013 | 0.243 | 0.622 | 0.622 | 0.400 | 0.233 | 1.007 | 0.007 | 0.403 | 0.513 | 0.513 | 0.014 | 0.070 | 0.003 | 1.332 | 0.001 | 0.053 | 0.414 | 0.354 | 0.707 | 0.270 | 0.528 | 0.645 | 0.246 | 0.64 |
P2O5 (%) | 0.01 | 0.09 | 0.10 | 0.15 | 0.15 | 0.12 | 0.11 | 0.17 | 0.07 | 1.11 | 0.11 | 0.11 | 0.04 | 0.32 | 0.03 | 0.12 | 0.12 | 0.29 | 0.16 | 1.29 | 0.21 | 0.53 | 1.13 | 0.10 | 0.12 | 0.25 |
LOI (%) | 46.14 | 1.44 | 3.72 | 3.72 | 8.70 | 1.96 | 4.84 | 46.26 | 18.07 | 3.92 | 3.92 | 29.54 | 14.63 | 30.01 | 6.16 | 21.65 | 19.30 | 4.67 | 13.87 | 5.78 | 11.04 | 12.02 | 5.61 | 11.98 | 6.07 | |
Total (%) | 0.01 | 98.36 | 99.37 | 99.04 | 99.04 | 100.10 | 100.00 | 99.35 | 99.02 | 98.82 | 100.10 | 100.10 | 98.19 | 100.60 | 40.60 | 96.84 | 28.79 | 82.29 | 97.75 | 92.67 | 98.84 | 65.98 | 95.86 | 95.75 | 97.40 | 95.17 |
FeO (%) | 0.1 | 0.2 | 1.5 | 1.5 | 2.8 | 0.9 | 0.4 | 3.7 | 0.2 | 0.1 | 1.2 | 0.3 | <0.1 | <0.1 | <0.1 | 4.4 | 0.2 | <0.1 | 0.9 | 0.6 | 1.3 | 0.2 | <0.1 | 1.2 | 0.5 | 0.2 |
S (%) | 0.001 | 0.050 | - | - | - | - | - | - | - | - | 0.005 | - | - | - | 0.021 | 0.041 | 1.160 | - | - | - | - | - | - | - | - | - |
SO4 (%) | 0.05 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 7.80 | - | - | - | - | - | 2.60 | - | - |
Sc (ppm) | 1 | <1 | 3 | 16 | 14 | 6 | 4 | 24 | <1 | 4 | 11 | 3 | 1 | 1 | 3 | 18 | 3 | 1 | 10 | 6 | 10 | 6 | 12 | 10 | 4 | 15 |
Be (ppm) | 1 | <1 | <1 | 4 | 4 | 3 | <1 | 1 | <1 | 1 | 3 | <1 | 1 | 3 | <1 | 1 | <1 | <1 | 3 | 2 | 2 | <1 | 1 | 2 | 2 | 4 |
V (ppm) | 5 | 15 | 32 | 107 | 96 | 64 | 25 | 177 | 5 | 33 | 76 | 20 | 209 | 313 | 10 | 140 | <5 | 24 | 85 | 54 | 64 | 56 | 94 | 59 | 26 | 210 |
Cr (ppm) | 20 | <20 | 30 | 100 | 80 | 50 | 20 | 90 | < 20 | 50 | 60 | <20 | <20 | 30 | <20 | 100 | <20 | <20 | 40 | 80 | 70 | 50 | 50 | 40 | 20 | 90 |
Co (ppm) | 1 | 1 | 4 | 3 | 6 | 9 | 5 | 25 | <1 | 7 | 12 | 3 | 15 | 35 | 6 | 45 | 20 | 5 | 8 | 12 | 12 | 9 | 7 | 9 | 10 | 37 |
Ni (ppm) | 20 | <20 | <20 | 30 | 50 | 30 | <20 | 50 | <20 | <20 | 40 | <20 | 40 | 40 | <20 | 70 | <20 | <20 | <20 | <20 | <20 | <20 | <20 | <20 | <20 | 50 |
Cu (ppm/% *) | 10/0.005 | 70 | 20 | <10 | 10 | 90 | 40 | 40 | 30 | 180 | 20 | <10 | 280 | 1070 | 46.4 * | 2.28 * | 31.9 * | 170 | 1.51 * | 4 * | 40 | 30.7 * | 2.24 * | 3.86 * | 9290 | 4.23 * |
Zn (ppm) | 30 | 40 | <30 | 30 | 40 | 120 | 110 | 240 | <30 | 70 | 70 | <30 | 150 | 370 | 530 | 140 | 5990 | 310 | 40 | 90 | 100 | 30 | 30 | 60 | <30 | 100 |
Ga (ppm) | 1 | 1 | 11 | 29 | 26 | 14 | 10 | 17 | 1 | 11 | 20 | 9 | 2 | 5 | <1 | 16 | 11 | 2 | 17 | 14 | 15 | 6 | 11 | 15 | 12 | 28 |
Ge (ppm) | 1 | <1 | 1 | 2 | 2 | 1 | 1 | 1 | <1 | <1 | 2 | <1 | 2 | 14 | <1 | 2 | <1 | <1 | 1 | <1 | 1 | <1 | <1 | 1 | < 1 | 2 |
As (ppm) | 5 | 16 | <5 | <5 | <5 | 68 | 17 | 5 | <5 | 28 | <5 | <5 | 419 | 1000 | 32 | <5 | 930 | 13 | <5 | 9 | 11 | 164 | 166 | 5 | <5 | 30 |
Rb (ppm) | 2 | 2 | 74 | 253 | 198 | 94 | 91 | 65 | <2 | 68 | 156 | 64 | 2 | 8 | <2 | 55 | <2 | 7 | 114 | 81 | 86 | 30 | 72 | 87 | 80 | 178 |
Sr (ppm) | 2 | 85 | 80 | 38 | 53 | 51 | 47 | 56 | 57 | 52 | 38 | 122 | 41 | 45 | 7 | 28 | 307 | 731 | 44 | 94 | 88 | 17 | 62 | 98 | 85 | 24 |
Y (ppm) | 1 | 2 | 10 | 32 | 26 | 20 | 16 | 13 | 1 | 25 | 17 | 13 | 2 | 7 | 2 | 16 | 1 | 5 | 14 | 31 | 23 | 12 | 40 | 20 | 24 | 18 |
Zr (ppm) | 2 | 6 | 70 | 171 | 155 | 171 | 120 | 148 | 4 | 230 | 126 | 104 | 20 | 36 | 6 | 128 | 3 | 26 | 164 | 171 | 419 | 60 | 120 | 141 | 120 | 188 |
Mo (ppm) | 2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | 73 | 72 | <2 | <2 | 9 | <2 | <2 | <2 | <2 | <2 | 3 | <2 | <2 | 2 |
Ag (ppm) | 0.5 | 1.6 | 1.1 | 1.5 | 1.3 | 1.3 | 0.8 | 4 | 0.6 | 1.8 | 4.2 | 1.6 | <0.5 | 3.7 | 1 | 36.4 | 34.5 | 6.5 | 36.3 | 12.9 | 4.1 | 12.6 | 4.2 | 2.3 | 4.7 | 62.5 |
In (ppm) | 0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 |
Sn (ppm) | 1 | <1 | 1 | 4 | 3 | 1 | 1 | 1 | 1 | 1 | 3 | 1 | <1 | 1 | <1 | 1 | 2 | <1 | 2 | 1 | 2 | 1 | 1 | 1 | 1 | 3 |
Sb (ppm) | 0.5 | 0.6 | <0.5 | 2.5 | 1.5 | 3 | 0.5 | <0.5 | <0.5 | 1.2 | 1.4 | <0.5 | 11.3 | 151 | 1.5 | 0.7 | 5.4 | 1.9 | 1 | 0.6 | 0.6 | 15.5 | 1.5 | 0.7 | 0.5 | 2.8 |
Cs (ppm) | 0.5 | <0.5 | 1.5 | 12.6 | 8.9 | 3.5 | 3 | 3 | <0.5 | 3.5 | 9.4 | 2.4 | <0.5 | <0.5 | <0.5 | 3 | <0.5 | <0.5 | 5.5 | 3.6 | 3.7 | 2.1 | 3.3 | 4.4 | 4.5 | 11.9 |
Ba (ppm/% *) | 2 | 13 | 524 | 614 | 621 | 526 | 633 | 651 | 11 | 334 | 707 | 827 | 67 | 143 | 80 | 1844 | 60 | 10.6 * | 573 | 8298 | 638 | 188 | 5449 | 841 | 1723 | 737 |
Hf (ppm) | 0.2 | <0.2 | 1.5 | 4.4 | 3.8 | 3.8 | 2.7 | 3.2 | <0.2 | 11.5 | 4 | 2.5 | 0.2 | 1 | <0.2 | 3 | <0.2 | 0.6 | 3.5 | 3.3 | 8.8 | 1.5 | 2.6 | 3.9 | 2.9 | 5.4 |
Ta (ppm) | 0.1 | <0.1 | 0.3 | 1.1 | 1 | 0.6 | 0.4 | 0.4 | <0.1 | 0.6 | 0.7 | 0.4 | <0.1 | <0.1 | <0.1 | 0.4 | <0.1 | 0.2 | 0.7 | 0.5 | 0.6 | 0.2 | 0.3 | 0.5 | 0.4 | 1 |
W (ppm) | 1 | <1 | <1 | 2 | 2 | 2 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | 2 | <1 | <1 | <1 | 2 | 1 | <1 | 2 | 1 | <1 | 4 | <1 | <1 |
Tl (ppm) | 0.1 | <0.1 | 0.3 | 0.9 | 0.7 | 0.4 | 0.4 | 0.4 | <0.1 | 0.3 | 0.8 | 0.4 | 0.1 | 0.1 | <0.1 | 0.3 | <0.1 | <0.1 | 0.6 | 0.5 | 0.6 | 0.1 | 0.4 | 0.6 | 0.5 | 0.9 |
Pb (ppm/% *) | 5/0.01 | 316 | 6 | 9 | <5 | 10 | 7 | <5 | <5 | 15 | 6 | 5 | 287 | 551 | 316 | 21 | 29.6 * | 213 | <5 | 10 | <5 | 13 | <5 | 107 | <5 | 622 |
Bi (ppm) | 0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | 37.8 | <0.4 | <0.4 | 0.4 | <0.4 | 14 | 6.2 | <0.4 | 0.5 | 1.4 | 0.7 | 0.4 | < 0.4 |
Th (ppm) | 0.1 | 0.2 | 5.1 | 11.7 | 12.6 | 7.5 | 7.3 | 2.8 | <0.1 | 8 | 9.9 | 5.6 | 0.2 | 0.8 | <0.1 | 2.1 | < 0.1 | 0.7 | 8.8 | 6.8 | 8.4 | 2.3 | 2.7 | 4.2 | 6 | 12.5 |
U (ppm) | 0.1 | 1.3 | 1 | 3.2 | 2.5 | 2.2 | 1.3 | 1.1 | 0.7 | 2 | 2.2 | 1.2 | 4.5 | 13.8 | 0.3 | 0.7 | 0.6 | 2.4 | 1.7 | 2.5 | 2.2 | 2 | 1.7 | 3.2 | 1.8 | 3.8 |
La (ppm) | 0.1 | 1.9 | 26 | 58.1 | 56.2 | 31.8 | 24.5 | 8.3 | 1.1 | 26.5 | 32.3 | 28.3 | 3.4 | 6.9 | 1.2 | 11.5 | 1 | 5.7 | 28.8 | 27 | 46.5 | 8.1 | 18.3 | 10.4 | 33.6 | 35.6 |
Ce (ppm) | 0.1 | 2.5 | 65.7 | 114 | 109 | 61.4 | 52 | 19.3 | 1.5 | 58.6 | 59.5 | 58.7 | 12.4 | 11.1 | 1.5 | 26.1 | 0.9 | 9.9 | 56.9 | 63.9 | 94.1 | 17.8 | 42.7 | 22.7 | 72.4 | 64.9 |
Pr (ppm) | 0.05 | 0.39 | 7.25 | 12.7 | 11.6 | 6.91 | 5.81 | 2.37 | 0.2 | 6.87 | 6.25 | 6.21 | 1 | 2.02 | 0.21 | 3.33 | 0.17 | 1.1 | 6.03 | 7.63 | 10.3 | 2.58 | 5.81 | 2.49 | 6.71 | 6.75 |
Nd (ppm) | 0.1 | 1.5 | 26.1 | 45.6 | 40.1 | 24.5 | 20.6 | 9.5 | 0.9 | 26.2 | 22.4 | 22.8 | 3.8 | 8.4 | 0.8 | 13.3 | 0.8 | 4.7 | 20.6 | 28.5 | 35.8 | 11.6 | 27 | 10.1 | 23.3 | 23.4 |
Sm (ppm) | 0.1 | 0.3 | 4.3 | 8.3 | 6.9 | 4.8 | 3.5 | 2.1 | 0.2 | 5.3 | 4.1 | 3.8 | 0.9 | 1.9 | 0.1 | 3.1 | 0.2 | 1.2 | 3.6 | 4.8 | 6.8 | 2.9 | 8.3 | 2.2 | 4.5 | 4.2 |
Eu (ppm) | 0.05 | 0.08 | 0.96 | 1.7 | 1.45 | 1.23 | 0.8 | 0.56 | <0.05 | 1.19 | 0.86 | 0.86 | 0.26 | 0.43 | <0.05 | 0.93 | 0.06 | 0.99 | 0.68 | 1.02 | 1.59 | 0.77 | 2.3 | 0.61 | 1.22 | 0.85 |
Gd (ppm) | 0.1 | 0.4 | 2.8 | 6.8 | 5.6 | 4.4 | 3.2 | 2.1 | 0.2 | 4.7 | 3.2 | 2.9 | 0.9 | 1.9 | 0.2 | 3.3 | 0.1 | 1.3 | 2.7 | 4.9 | 5.2 | 2.9 | 10.6 | 2.9 | 4.7 | 3.4 |
Tb (ppm) | 0.1 | <0.1 | 0.4 | 1.1 | 0.9 | 0.7 | 0.5 | 0.4 | <0.1 | 0.7 | 0.5 | 0.4 | 0.1 | 0.3 | <0.1 | 0.6 | <0.1 | 0.2 | 0.4 | 0.7 | 0.8 | 0.4 | 1.7 | 0.6 | 0.8 | 0.5 |
Dy (ppm) | 0.1 | 0.3 | 1.8 | 6.1 | 5 | 4 | 3 | 2.4 | 0.1 | 4 | 3.2 | 2.5 | 0.8 | 1.4 | 0.2 | 3.5 | <0.1 | 0.7 | 2.6 | 4 | 4.7 | 2.4 | 8.5 | 4 | 5 | 3.3 |
Ho (ppm) | 0.1 | <0.1 | 0.4 | 1.2 | 1 | 0.8 | 0.6 | 0.5 | <0.1 | 0.8 | 0.7 | 0.5 | 0.1 | 0.2 | <0.1 | 0.7 | <0.1 | 0.2 | 0.6 | 0.9 | 0.9 | 0.5 | 1.4 | 0.8 | 1 | 0.7 |
Er (ppm) | 0.1 | 0.2 | 1 | 3.5 | 3 | 2.1 | 1.7 | 1.6 | <0.1 | 2.2 | 2 | 1.4 | 0.4 | 0.6 | 0.1 | 1.9 | <0.1 | 0.4 | 1.6 | 2.4 | 2.7 | 1.3 | 3.3 | 2.3 | 2.6 | 2.2 |
Tm (ppm) | 0.05 | <0.05 | 0.16 | 0.5 | 0.44 | 0.3 | 0.24 | 0.26 | <0.05 | 0.32 | 0.3 | 0.21 | 0.05 | 0.09 | <0.05 | 0.28 | <0.05 | 0.05 | 0.25 | 0.32 | 0.37 | 0.17 | 0.36 | 0.32 | 0.38 | 0.35 |
Yb (ppm) | 0.1 | 0.2 | 1 | 3.4 | 2.9 | 1.9 | 1.6 | 1.9 | <0.1 | 2 | 2.1 | 1.5 | 0.3 | 0.4 | 0.1 | 1.8 | <0.1 | 0.3 | 1.6 | 2 | 2.5 | 1.1 | 2 | 2.1 | 2.3 | 2.5 |
Lu (ppm) | 0.01 | 0.03 | 0.14 | 0.51 | 0.45 | 0.31 | 0.25 | 0.29 | 0.01 | 0.33 | 0.33 | 0.22 | 0.04 | 0.05 | 0.02 | 0.27 | <0.01 | 0.05 | 0.24 | 0.3 | 0.37 | 0.17 | 0.28 | 0.3 | 0.33 | 0.41 |
Issedrin Section (H) | Boreholes (H) | Tamjout Dolomite (W) | Basal Series (W) | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Weathering Profile | Mineral Phases | Tamjout Dolomite TIZ 45 | Greyish sandstone TIZ 44 | Purplish siltstone TIZ 43 | Greenish siltstone TIZ 42 | Red sandstone TIZ 41 | Red sandstone TIZ 40 | “Petit Calcaire” TIZ 39 | Tamjout Dolomite C75 C1 | Red sandstone C75 C3 | Purplish siltstone C75 C8 | Greenish siltstone C75 C12 | Malachite-cerussite TIZ 13 | MalachiteTIZ 18 | Iron oxides TIZ 24 | Iron oxides TIZ 33 | Malachite (LW) C15 C1 | Greenish siltstone TIZ 5 | Conglomerate TIZ 14 | Grey-red sandstone C1 12 | Conglomerate C1 16 | Greenish siltstone C15 C4 | Conglomerate C15 C5 | Greenish siltstone C15 C8 | Grey-greenish sandstone C15 C9 | Greenish siltstone C15 C11 | Grey-greenish sandstone C75 C5 | Grey-greenish sandstone C75 C7 |
Protolith/Primary mineralization | Bornite | XX | ||||||||||||||||||||||||||
Barite | XX | XX | X | |||||||||||||||||||||||||
Chalcopyrite | X | |||||||||||||||||||||||||||
Galena | X | |||||||||||||||||||||||||||
Quartz | XX | XXX | XXX | XXX | XXX | XXX | XX | XX | XXX | XXX | XXX | X | XX | XX | XX | XXX | XXX | XXX | XXX | XXX | XXX | XXX | XXX | XXX | XXX | XXX | ||
Dolomite | XXX | X | X | X | XX | XX | XXX | XXX | XX | X | X | XX | XXX | X | XX | XXX | XXX | XX | XX | XX | ||||||||
Muscovite | X | XX | XX | X | X | X | X | X | X | X | X | X | X | X | XX | XX | XX | X | X | X | X | |||||||
Chlorite | XX | X | XX | X | X | X | X | XX | XX | XXX | XX | XX | XX | XX | XX | XX | XX | XX | ||||||||||
Feldspars | XX | XX | XX | XX | XX | XX | XX | XX | XX | XX | XX | XX | XX | XX | X | X | X | X | ||||||||||
Calcite | X | XX | X | XX | X | X | X | XX | X | |||||||||||||||||||
Apatite | X | X | X | XX | X | X | X | X | ||||||||||||||||||||
Saprolite | Cerussite | XXX | ||||||||||||||||||||||||||
Malachite | XXX | XXX | XXX | XX | XX | XX | XX | XX | X | XX | ||||||||||||||||||
Y-Phosphate | X | |||||||||||||||||||||||||||
Rutile | X | X | X | X | ||||||||||||||||||||||||
Stromeyerite | X | |||||||||||||||||||||||||||
Chalcocite | XX | XX | X | XX | XX | |||||||||||||||||||||||
Covellite | XX | |||||||||||||||||||||||||||
Laterite | Goethite | XX | X | |||||||||||||||||||||||||
Hematite | XXX | XXX | XXX | XXX | X | X | X | |||||||||||||||||||||
Kaolinite | X | X | X | |||||||||||||||||||||||||
Smectites | X | X | X | X | X | |||||||||||||||||||||||
Illite | X | X | ||||||||||||||||||||||||||
I-S clays | X | X |
Deposits | Localisation | Host Rocks | Mineralization | References |
---|---|---|---|---|
Jbel N’Zourk | Bou Azzer–El Graara and Zenaga inliers (Morocco) | Basal Series–Tamjout Dolomite | Cu-oxides, malachite and rare traces of azurite. Primary sulfides rarely observed, similar as Tizert | Clavel & Leblanc (1971); Maacha et al. (2011) [62,63] |
Tazalaght | Aït Abdallah inlier (Morocco) | Quartzite “XII” to Lower Limestone | Cu-sulfides, malachite and azurite | Asladay et al. (1998); El Basbas et al. (2011) [5,67] |
Jbel La’Sal | Bou Azzer–El Graara inliers (Morocco) | Lower part of Cambrian cover | Malachite, chalcocite, native Cu, chrysocole and cuprite | Maacha et al. (2011) [64] |
Ouansimi | Ouansimi–Kerdous inliers (Morocco) | Basal Series–Lower Limestone | Pyrite, chalcopyrite, bornite, covellite, cuprite, chalcocite, malachite, azurite and native Cu | Annich (2002); El Basbas et al. (2020) [7,8] |
Agoujgal | Kerdous inlier (Morocco) | Basal Series–Tamjout Dolomite–Agoujgal Limestone | Chalcopyrite, pyrite bornite, chalcocite, covellite, malachite, azurite, galena, sphalerite, Fe-oxides | Asladay et al. (1998); Maddi et al. (2011) [5,9] |
Luiswishi | High-Katanga (DRC) | Neoproterozoic siliciclastic and carbonate sedimentary rock | Chalcopyrite, carrollite, pyrite, malachite, heterogenite, bornite, chalcocite and goethite | Fontaine et al. (2020) [66] |
Yangla | Saniang Region (China) | Metamorphic rocks | Pyrite, chalcopyrite, pyrrhotite, molybdenite, galena, sphalerite, azurite, malachite | Du et al. (2020) [68] |
Tsumeb | Northern Namibia | Otavi Group: limestone and dolomite | Malachite, azurite, wulfenite, dioptase, galena, tennantite, pyrite, chalcopyrite, digenite, djurleite,... | Miller (2008) [69] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poot, J.; Verhaert, M.; Dekoninck, A.; Oummouch, A.; El Basbas, A.; Maacha, L.; Yans, J. Characterization of Weathering Processes of the Giant Copper Deposit of Tizert (Igherm Inlier, Anti-Atlas, Morocco). Minerals 2020, 10, 620. https://doi.org/10.3390/min10070620
Poot J, Verhaert M, Dekoninck A, Oummouch A, El Basbas A, Maacha L, Yans J. Characterization of Weathering Processes of the Giant Copper Deposit of Tizert (Igherm Inlier, Anti-Atlas, Morocco). Minerals. 2020; 10(7):620. https://doi.org/10.3390/min10070620
Chicago/Turabian StylePoot, Julien, Michèle Verhaert, Augustin Dekoninck, Abdellah Oummouch, Abdelaziz El Basbas, Lhou Maacha, and Johan Yans. 2020. "Characterization of Weathering Processes of the Giant Copper Deposit of Tizert (Igherm Inlier, Anti-Atlas, Morocco)" Minerals 10, no. 7: 620. https://doi.org/10.3390/min10070620
APA StylePoot, J., Verhaert, M., Dekoninck, A., Oummouch, A., El Basbas, A., Maacha, L., & Yans, J. (2020). Characterization of Weathering Processes of the Giant Copper Deposit of Tizert (Igherm Inlier, Anti-Atlas, Morocco). Minerals, 10(7), 620. https://doi.org/10.3390/min10070620