U-Th-He Geochronology of Pyrite from the Uzelga VMS Deposit (South Urals)—New Perspectives for Direct Dating of the Ore-Forming Processes
Abstract
:1. Introduction
2. Isotope-Geochemical Constrains
2.1. Uranium and Thorium in Sulfides
2.2. Hydrothermal Fluid-Derived 4He
2.3. Retentivity of U-Th-He System in Pyrite and Mineral Stability
3. Object of Study
3.1. Geological Setting
3.2. Ore Geochemistry and Mineralogy
3.3. Sample Location and Description
4. Analytical Methods
4.1. Measurement of Radiogenic 4He Contents
4.2. Measurement of U and Th Contents
4.3. Calculation of U-Th-He Age
5. Results
5.1. Mineralogical Features
5.2. Results of Leaching Experiments
5.3. U-Th-He Dating Results
6. Discussion
6.1. Excess 4He
6.1.1. Trapped Hydrothermal 4He
6.1.2. Inclusions-Related Excess of 4He
6.1.3. Implanted Radiogenic 4He
6.2. U-Th-He System Behavior in Pyrite
6.2.1. Uranium and Thorium in Pyrite
6.2.2. Radiogenic 4He in Pyrite
6.3. Methodological Imperfections
6.4. Comparison of Pyrite U-Th-He and Geological Ages
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Farley, K.A. (U-Th)/He Dating: Techniques, Calibrations and Applications. Rev. Mineral. Geochem. 2002, 47, 819–843. [Google Scholar] [CrossRef]
- Schmitt, A.K.; Danisik, M.; Evans, N.J.; Siebel, W.; Kiemele, E.; Aydin, F.; Harvey, J.C. Acigol Rhyolite Field, Central Anatolia (Part 1): High-Resolution Dating of Eruption Episodes and Zircon Growth Rates. Contrib. Mineral. Petrol. 2011, 162, 1215–1231. [Google Scholar] [CrossRef]
- Vasconcelos, P.M.; Heim, J.A.; Farley, K.A.; Monteiro, H.; Waltenberg, K. 40Ar/39Ar and (U-Th)/He—4He/3He Geochronology of Landscape Evolution and Channel Iron Deposit Genesis at Lynn Peak, Western Australia. Geochim. Cosmochim. Acta 2013, 117, 283–312. [Google Scholar] [CrossRef]
- Shukolyukov, Y.A.; Yakubovich, O.V.; Yakovleva, S.Z.; Sal’nikova, E.B.; Kotov, A.B.; Rytsk, E.Y. Geothermochronology Based on Noble Gases: III. Migration of Radiogenic He in the Crystal Structure of Native Metals with Applications to Their Isotopic Dating. Petrology 2012, 20, 1–20. [Google Scholar] [CrossRef]
- Shukolyukov, Y.A.; Yakubovich, O.V.; Mochalov, A.G.; Kotov, A.B.; Sal’nikova, E.B.; Yakovleva, S.Z.; Korneev, S.I.; Gorokhovskii, B.M. New Geochronometer for the Direct Isotopic Dating of Native Platinum Minerals (190Pt-4He Method). Petrology 2012, 20, 491–505. [Google Scholar] [CrossRef]
- Yakubovich, O. New 190Pt-4He Method of Isotope Geochronology for Dating Minerals of Platinum. Ph.D. Thesis, Saint Petersburg University, St Petersburg, Russia, 2013; p. 126. [Google Scholar]
- Mochalov, A.G.; Yakubovich, O.V.; Bortnikov, N.S. 190Pt–4He Age of PGE Ores in the Alkaline–Ultramafic Kondyor Massif (Khabarovsk District, Russia). Dokl. Earth Sci. 2016, 469, 846–850. [Google Scholar] [CrossRef]
- Yakubovich, O.V.; Mochalov, A.G.; Sluzhenikin, S.F. Sperrylite (PtAs2) as a 190Pt–4He Geochronometer. Dokl. Earth Sci. 2015, 462, 88–90. [Google Scholar] [CrossRef]
- Campbell, I.H.; Czamanske, G.K.; Fedorenko, V.A.; Hill, R.; Stepanov, V. Synchronism of the Siberian Traps and the Permian-Triassic Boundary. Science 1992, 258, 1760–1764. [Google Scholar] [CrossRef]
- Cabri, L.J.; Stern, R.A.; Czamanske, G.K. Osmium Isotope Measurements of Pt-Fe Alloy Placer Nuggets from the Konder Intrusion Using a SHRIMP II Ion Microprobe. In Proceedings of the 8th International Platinum Symposium, Johannesburg, South Africa, 28 June–3 July 1998; pp. 55–58. [Google Scholar]
- Yakubovich, O.V.; Gedz, A.M.; Vikentyev, I.V.; Kotov, A.B.; Gorokhovskii, B.M. Migration of Radiogenic Helium in the Crystal Structure of Sulfides and Prospects of Their Isotopic Dating. Petrology 2019, 27, 59–78. [Google Scholar] [CrossRef]
- Yakubovich, O.V.; Vikentyev, I.V.; Zarubina, O.V.; Bryanskiy, N.V.; Gorokhovskii, B.M. U-Th-He Dating of Pyrite from the Uzelga Copper-Zinc Massive Sulfide Deposit (South Urals, Russia): First Application of a New Geochronometer. Dokl. Earth Sci. 2019, 485, 368–371. [Google Scholar] [CrossRef]
- Bowles, J.; Howie, R.; Vaughan, D.J.; Zussman, J. Non-Silicates, Oxides, Hydroxides and Sulphides. In Rock-Forming Minerals; The Geological Society: London, UK, 2011; p. 920. [Google Scholar]
- Rusinov, V.L. Metasomatic Processes in Volcanic Rocks; Nauka: Moscow, Russia, 1989. [Google Scholar]
- Zharikov, V.A.; Pertsev, N.N.; Rusinov, V.L.; Callegari, E.; Fettes, D.J. Metasomatism and Metasomatic Rocks. In Recommendations by the IUGS Subcommission on the Systematics of Metamorphic Rocks: Web Version 01.02.07; British Geological Survey: Nottingham, UK, 2007. [Google Scholar]
- Craig, J.R.; Vokes, F.M.; Solberg, T.N. Pyrite: Physical and Chemical Textures. Miner. Depos. 1998, 34, 82–101. [Google Scholar] [CrossRef]
- Large, R.R.; Halpin, J.A.; Danyushevsky, L.V.; Maslennikov, V.V.; Bull, S.W.; Long, J.A.; Gregory, D.D.; Lounejeva, E.; Lyons, T.W.; Sack, P.J.; et al. Trace Element Content of Sedimentary Pyrite as a New Proxy for Deep-Time Ocean—Atmosphere Evolution. Earth Planet. Sci. Lett. 2014, 389, 209–220. [Google Scholar] [CrossRef]
- Hnatyshin, D.; Creaser, R.A.; Meffre, S.; Stern, R.A.; Wilkinson, J.J.; Turner, E.C. Understanding the Microscale Spatial Distribution and Mineralogical Residency of Re in Pyrite: Examples from Carbonate-Hosted Zn-Pb Ores and Implications for Pyrite Re-Os Geochronology. Chem. Geol. 2020, 533, 119427. [Google Scholar] [CrossRef]
- Stein, H.J.; Morgan, J.W.; Scherstén, A. Re-Os Dating of Low-Level Highly Radiogenic (LLHR) Sulfides: The Harnäs Gold Deposit, Southwest Sweden, Records Continental-Scale Tectonic Events. Econ. Geol. 2000, 95, 1657–1672. [Google Scholar] [CrossRef]
- Morelli, R.M.; Creaser, R.A.; Selby, D.; Kelley, K.D.; Leach, D.L.; King, A.R. Re-Os Sulfide Geochronology of the Red Dog Sediment-Hosted Zn-Pb-Ag Deposit, Brooks Range, Alaska. Econ. Geol. 2004, 99, 1569–1576. [Google Scholar] [CrossRef]
- Lawley, C.; Selby, D.; Imber, J. Re-Os Molybdenite, Pyrite and Chalcopyrite Geochronology, Lupa Goldfield, Southwestern Tanzania: Tracing Metallogenic Time Scales at Midcrustal Shear Zones Hosting Orogenic Au Deposits. Econ. Geol. 2013, 108, 1591–1613. [Google Scholar] [CrossRef]
- Hnatyshin, D.; Creaser, R.A.; Wilkinson, J.J.; Gleeson, S.A. Re-Os Dating of Pyrite Confirms an Early Diagenetic Onset and Extended Duration of Mineralization in the Irish Zn-Pb Ore Field. Geology 2015, 43, 143–146. [Google Scholar] [CrossRef]
- Ding, C.; Nie, F.; Bagas, L.; Dai, P.; Jiang, S.; Ding, C.; Liu, C.; Peng, Y.; Zhang, G.; Shao, G. Pyrite Re-Os and Zircon U-Pb Dating of the Tugurige Gold Deposit in the Western Part of the Xing’an-Mongolia Orogenic Belt, China and Its Geological Significance. Ore Geol. Rev. 2016, 72, 669–681. [Google Scholar] [CrossRef]
- Tessalina, S.G.; Herrington, R.J.; Taylor, R.N.; Sundblad, K.; Maslennikov, V.V.; Orgeval, J.J. Lead Isotopic Systematics of Massive Sulphide Deposits in the Urals: Applications for Geodynamic Setting and Metal Sources. Ore Geol. Rev. 2016, 72, 22–36. [Google Scholar] [CrossRef] [Green Version]
- Mathur, R.; Mutti, L.; Barra, F.; Gold, D.; Smith, R.C.; Doden, A.; Detrie, T.; Ruiz, J.; McWilliams, A. Fluid Inclusion and Re-Os Isotopic Evidence for Hot, Cenozoic Mineralization in the Central Pennsylvanian Valley and Ridge Province. Mineral. Petrol. 2008, 93, 309–324. [Google Scholar] [CrossRef]
- Jiang, S.H.; Bagas, L.; Liang, Q.L. Pyrite Re-Os Isotope Systematics at the Zijinshan Deposit of SW Fujian, China: Constraints on the Timing and Source of Cu-Au Mineralization. Ore Geol. Rev. 2017, 80, 612–622. [Google Scholar] [CrossRef]
- Christensen, J.N.; Halliday, A.N.; Leigh, K.E.; Randell, R.N.; Kesler, S.E. Direct Dating of Sulfides by RbSr: A Critical Test Using the Polaris Mississippi Valley-Type ZnPb Deposit. Geochim. Cosmochim. Acta 1995, 59, 5191–5197. [Google Scholar] [CrossRef]
- Petke, T.; Diamond, L.W. Rb-Sr Dating of Sphalerite Based on Fluid Inclusion-Host a Clarification of Why It Works Mineral. Econ. Geol. 1996, 91, 951–956. [Google Scholar] [CrossRef]
- Smith, P.E.; Evensen, N.M.; York, D.; Szatmari, P.; Oliveira, D.C. Single-Crystal Ar-39Ar Dating of Pyrite: No Fool’ s Clock. Geology 2001, 29, 403–406. [Google Scholar] [CrossRef]
- Yang, J.H.; Zhou, X.H. Rb-Sr, Sm-Nd and Pb Isotopes Systematics of Pyrite: Implications for the Age and Genesis of Lode Gold Deposits. Geology 2002, 29, 711–714. [Google Scholar] [CrossRef]
- Ivanov, A.V.; Vanin, V.A.; Demonterova, E.I.; Gladkochub, D.P.; Donskaya, T.V.; Gorovoy, V.A. Application of the ‘No Fool’ s Clock’ to Dating the Mukodek Gold Field, Siberia, Russia. Ore Geol. Rev. 2015, 69, 352–359. [Google Scholar] [CrossRef]
- Prokin, V.A.; Buslaev, F.P. Massive Copper-Zinc Sulphide Deposits in the Urals. Ore Geol. Rev. 1998, 14, 1–69. [Google Scholar] [CrossRef]
- Vikentyev, I.V.; Yudovskaya, M.A.; Mokhov, A.V.; Kerzin, A.L.; Tsepin, A.I. Gold and PGE in Massive Sulfide Ore of the Uzelginsk Deposit, Southern Urals, Russia. Can. Mineral. 2004, 42, 651–665. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, S.N.; Prokin, V.A. Copper Massive Sulfide Deposits of the Urals. Conditions of Formation; Ural branch of RAS: Ekaterinburg, Russia, 1992. [Google Scholar]
- Seravkin, I.B. Correlation between Compositions of Ore and Host Rocks in Volcanogenic Massive Sulfide Deposits of the Southern Urals. Geol. Ore Depos. 2013, 55, 207–224. [Google Scholar] [CrossRef]
- Baranov, E.N.; Schteinberg, A.D.; Karpukhina, V.S. A Genetic Model and Exploration Criteria for Buried Massive Sulphide Deposits of the Verkhneuralsky Area, Southern Urals, USSR. In Proceedings of the 7th IAGOD Symposium, Luleå, Sweden, 18–22 August 1986; pp. 449–460. [Google Scholar]
- Seravkin, I.B.; Kosarev, A.M.; Puchkov, V.N. Geodynamic Conditions of Formation of Massive Sulfide Deposits in the Magnitogorsk Megazone, Southern Urals and Prospection Criteria. Geol. Ore Depos. 2017, 59, 227–243. [Google Scholar] [CrossRef]
- Barrie, C.T.; Hannington, M. Introduction: Classification of VMS Deposits Based on Host Rock Composition. In Volcanic-Associated Massive Sulfide Deposits: Processes and Examples in Modern and Ancient Settings. Rev. Econ. Geol. 1999, 8, 2–10. [Google Scholar]
- Franklin, J.M.; Gibson, H.L.; Jonasson, I.R.; Galley, A.G. Volcanogenic Massive Sulfide Deposits. Econ. Geol. 100th Anniversary Vol. 2005, 98, 523–560. [Google Scholar]
- Maslennikov, V. Lithogenesis and Ore Formation; Ural Branch RAS: Miass, Russia, 2006. [Google Scholar]
- Herrington, R.; Maslennikov, V.; Zaykov, V.; Seravkin, I.; Kosarev, A.; Buschmann, B.; Orgeval, J.J.; Holland, N.; Tesalina, S.; Nimis, P.; et al. 6: Classification of VMS Deposits: Lessons from the South Uralides. Ore Geol. Rev. 2005, 27, 203–237. [Google Scholar] [CrossRef]
- Galley, A.G.; Hannington, M.D.; Jonasson, I.R. Volcanogenic Massive Sulphide Deposits. In Mineral Deposits of Canada: A Synthesis of Major Deposit-types, District Metallogeny, the Evolution of Geological Provinces and Exploration Methods; Special Publication No., 5; Goodfellow, W.D., Ed.; Geological Association of Canada, Mineral Deposits Division: Ottawa, Canada, 2007; pp. 141–162. [Google Scholar]
- Shanks, W.C.P.; Thurston, R. Volcanogenic Massive Sulfide Occurrence Model; Scientific Investigations Report 2010–5070–C; U.S. Geological Survey: Reston, VA, USA, 2012. [Google Scholar]
- Ayupova, N.R.; Maslennikov, V.V. Biomineralization in Ferruginous-Siliceous Sediments of Massive Sulfide Deposits of the Urals. Dokl. Earth Sci. 2012, 442, 193–195. [Google Scholar] [CrossRef]
- Maslennikov, V.V.; Ayupova, N.R.; Herrington, R.J.; Danyushevskiy, L.V.; Large, R.R. Ferruginous and Manganiferous Haloes around Massive Sulphide Deposits of the Urals. Ore Geol. Rev. 2012, 47, 5–41. [Google Scholar] [CrossRef]
- Vikentyev, I.V.; Belen’kaya, Y.A.; Ageev, B.I. The Aleksandrinsk Polymetallic Massive Sulfide Deposit (the Urals, Russia). Geol. Ore Depos. 2000, 42, 221–246. [Google Scholar]
- Zaykov, V.V. Volcanism and Sulfide Hills of Paleooceanic Margins by the Example of Pyrite Zones of the Urals and Siberia; Nauka: Moscow, Russia, 2006. [Google Scholar]
- Hannington, M.D. Volcanogenic Massive Sulfide Deposits. In Treatise on Geochemistry, Geochemistry of Mineral, Deposits; Scott, S.D., Ed.; 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 13, pp. 462–486. [Google Scholar]
- Maslennikov, V.V.; Maslennikova, S.P.; Large, R.R.; Danyushevsky, L.V.; Herrington, R.J.; Ayupova, N.R.; Zaykov, V.V.; Lein, A.Y.; Tseluyko, A.S.; Melekestseva, I.Y.; et al. Chimneys in Paleozoic Massive Sulfide Mounds of the Urals VMS Deposits: Mineral and Trace Element Comparison with Modern Black, Grey, White and Clear Smokers. Ore Geol. Rev. 2017, 85, 64–106. [Google Scholar] [CrossRef]
- Maslennikov, V.V.; Ayupova, N.R.; Safina, N.P.; Tseluyko, A.S.; Melekestseva, I.Y.; Large, R.R.; Herrington, R.J.; Kotlyarov, V.A.; Blinov, I.A.; Maslennikova, S.P.; et al. Mineralogical Features of Ore Diagenites in the Urals Massive Sulfide Deposits, Russia. Minerals 2019, 9, 150. [Google Scholar] [CrossRef] [Green Version]
- Reiners, P.W.; Carlson, R.W.; Renne, P.; Cooper, K.M.; Granger, D.E.; McLean, N.M.; Schoene, B. Geochronology and Thermochronology; Wiley & Sons: Hoboken, NJ, USA, 2017; pp. 291–363. [Google Scholar]
- Butler, I.B.; Nesbitt, R.W. Trace Element Distributions in the Chalcopyrite Wall of a Black Smoker Chimney: Insights from Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS). Earth Planet. Sci. Lett. 1999, 167, 335–345. [Google Scholar] [CrossRef]
- Melekestseva, I.Y.; Tret’yakov, G.A.; Nimis, P.; Yuminov, A.M.; Maslennikov, V.V.; Maslennikova, S.P.; Kotlyarov, V.A.; Beltenev, V.E.; Danyushevsky, L.V.; Large, R. Barite-Rich Massive Sulfides from the Semenov-1 Hydrothermal Field (Mid-Atlantic Ridge, 13°30.87′ N): Evidence for Phase Separation and Magmatic Input. Mar. Geol. 2014, 349, 37–54. [Google Scholar] [CrossRef]
- Baranov, E.N.; Vertepov, G.I. Concentration of Uranium in Sulphides as an Indicator of Possible Uranium Deposit. At. Energy 1966, 20, 170–171. [Google Scholar] [CrossRef]
- Liu, G.Q.; Zhao, K.D.; Jiang, S.Y.; Chen, W. In-Situ Sulfur Isotope and Trace Element Analysis of Pyrite from the Xiwang Uranium Ore Deposit in South China: Implication for Ore Genesis. J. Geochem. Explor. 2018, 195, 49–65. [Google Scholar] [CrossRef]
- Wang, L.; Wang, X.; Ye, J.; Ma, Z.; Yang, W.; Xiao, J. Separation of Uranium and Thorium for 230Th-U Dating of Submarine Hydrothermal Sulfides. J. Vis. Exp. 2019, 2019, 1–6. [Google Scholar] [CrossRef]
- Eglizaud, B.N.; Miserque, F.; Simoni, E.; Schlegel, M.; Descostes, M. Uranium (VI) Interaction with Pyrite (FeS2). Radiochim. Acta 2006, 94, 651–656. [Google Scholar] [CrossRef]
- Descostes, M.; Schlegel, M.L.; Eglizaud, N.; Descamps, F.; Miserque, F.; Simoni, E. Uptake of Uranium and Trace Elements in Pyrite (FeS2) Suspensions. Geochim. Cosmochim. Acta 2010, 74, 1551–1562. [Google Scholar] [CrossRef]
- Yarosh, P.Y. Diagenez i Metamorfizm Kolchedannykh Rud Na Urale (Diagenesis and Metamorphism of Sulfide Ores at the Urals); Nauka: Moscow, Russia, 1973. [Google Scholar]
- Kailachakov, P.E.; Doynikova, O.A.; Belousov, P.E.; Vikentyev, I.V. Unique Rhenium Deposit in the Carboniferous Coal-Bearing Sands of the Russian Plate: Communication 2. Ore Mineralogy. Lithol. Miner. Resour. 2020, 55, 337–370. [Google Scholar] [CrossRef]
- Garuti, G.; Zaccarini, F. Minerals of Au, Ag and U in Volcanic-Rock-Associated Massive Sulfide Deposits of the Northern Apennine Ophiolite, Italy. Can. Mineral. 2005, 43, 935–950. [Google Scholar] [CrossRef]
- Murzin, V.V.; Varlamov, D.A.; Vikentyev, I.V. Copper–Cobalt Mineralization of the Pyshmin-Klyuchevskoy Deposit, Middle Urals: Mineral Composition of Ores and Metasomatites, Staged Formation and P–T Conditions of Formation. Litosfera 2011, 6, 103–122. [Google Scholar]
- Moloshag, V.P. Radioactive Mineralization of Supergene Ores of Sulfide Deposits of the Urals by the Example of the Tan’er Deposit. Ezhegodnik 2015, 162, 169–171. [Google Scholar]
- Ayupova, N.R.; Melekestseva, I.Y.; Maslennikov, V.V.; Tseluyko, A.S.; Blinov, I.A.; Beltenev, V.E. Uranium Accumulation in Modern and Ancient Fe-Oxide Sediments: Examples from the Ashadze-2 Hydrothermal Sulfide Field (Mid-Atlantic Ridge) and Yubileynoe Massive Sulfide Deposit (South Urals, Russia). Sediment. Geol. 2018, 367, 164–174. [Google Scholar] [CrossRef]
- Farley, K.A.; Wolf, R.A.; Silver, L.T. The Effects of Long Alpha-Stopping Distances on (U-Th)/He Ages. Geochim. Cosmochim. Acta 1996, 60, 4223–4229. [Google Scholar] [CrossRef]
- Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P. SRIM—The Stopping and Range of Ions in Matter. Nucl. Inst. Methods Phys. Res. B 2010, 268, 1818–1823. [Google Scholar] [CrossRef] [Green Version]
- Stuart, F.M.; Burnard, P.G.; Taylor, R.P.; Turner, G. Resolving Mantle and Crustal Contributions to Ancient Hydrothermal Fluids: HeAr Isotopes in Fluid Inclusions from Dae Hwa WMo Mineralisation, South Korea. Geochim. Cosmochim. Acta 1995, 59, 4663–4673. [Google Scholar] [CrossRef]
- Burnard, P.G.; Hu, R.; Turner, G.; Bi, X.W. Mantle, Crustal and Atmospheric Noble Gases in Ailaoshan Gold Deposits, Yunnan Province, China. Geochim. Cosmochim. Acta 1999, 63, 1595–1604. [Google Scholar] [CrossRef]
- Burnard, P.G.; Polya, D.A. Importance of Mantle Derived Fluids during Granite Associated Hydrothermal Circulation: He and Ar Isotopes of Ore Minerals from Panasqueira. Geochim. Cosmochim. Acta 2004, 68, 1607–1615. [Google Scholar] [CrossRef]
- Kendrick, M.A.; Burgess, R.; Pattrick, R.A.D.; Turner, G. Fluid Inclusion Noble Gas and Halogen Evidence on the Origin of Cu-Porphyry Mineralising Fluids. Geochim. Cosmochim. Acta 2001, 65, 2651–2668. [Google Scholar] [CrossRef]
- Stuart, F.M.; Turner, G.; Duckworth, R.C.; Fallick, A.E. Helium Isotopes as Tracers of Trapped Hydrothermal Fluids in Ocean-Floor Sulfides. Geology 1994, 22, 823–826. [Google Scholar] [CrossRef]
- Jean-Baptiste, P.; Fouquet, Y. Abundance and Isotopic Composition of Helium in Hydrothermal Sulfides from the East Pacific Rise at 13°N. Geochim. Cosmochim. Acta 1996, 60, 87–93. [Google Scholar] [CrossRef]
- Bortnikov, N.S.; Vikentyev, I.V.; Stavrova, O.O.; Ikorskii, S.V.; Kamenskii, I.L.; Bogdanov, Y.A.; Avedisyan, A.A. Helium Isotopic Composition and Hydrocarbons in Fluid Inclusions from Serpentinites and Sulfides of the Logachev and Rainbow Hydrothermal Fields, Mid-Atlantic Ridge. Dokl. Earth Sci. 2000, 375, 1387–1390. [Google Scholar]
- Bortnikov, N.; Ikorskii, S.; Kamenskii, I.; Avetisyan, A.; Simonov, V.; Bogdanov, Y.; Lein, A.; Sagalevich, A.; Vikentyev, I.; Stavrova, O. Modem Sulfide Ores at Mid-Atlantic Ridge and Pacific Back-Arc Basins: Fluid Inclusion, Hydrocarbon and He, Ar and S Isotope Studies. In Mineral Exploration and Sustainable Development; Eliopoulous, D.G., Ed.; Millpress: Rotterdam, The Netherlands, 2003; pp. 115–118. [Google Scholar]
- Luders, V.; Niedermann, S. Helium isotope composition of fluid inclusions hosted in massive sulfides from modern submarine hydrothermal systems. Sci. Commun. 2010, 105, 443–449. [Google Scholar] [CrossRef] [Green Version]
- Bierens de Haan, S. A Review of the Rate of Pyrite Oxidation in Aqueous Systems at Low Temperature. Earth Sci. Rev. 1991, 31, 1–10. [Google Scholar] [CrossRef]
- Stein, H.J.; Sundblad, K.; Markey, R.J.; Morgan, J.W.; Motuza, G. Re-Os Ages for Archean Molybdenite and Pyrite, Kuittila-Kivisuo, Finland and Proterozoic Molybdenite, Kabeliai, Lithuania: Testing the Chronometer in a Metamorphic and Metasomatic Setting. Miner. Depos. 1998, 33, 329–345. [Google Scholar] [CrossRef]
- van Acken, D.; Su, W.; Gao, J.; Creaser, R.A. Preservation of Re-Os Isotope Signatures in Pyrite throughout Low-T, High-P Eclogite Facies Metamorphism. Terra Nov. 2014, 26, 402–407. [Google Scholar] [CrossRef]
- Vernon, R.; Holdsworth, R.E.; Selby, D.; Dempsey, E.; Finlay, A.J.; Fallick, A.E. Structural Characteristics and Re-Os Dating of Quartz-Pyrite Veins in the Lewisian Gneiss Complex, NW Scotland: Evidence of an Early Paleoproterozoic Hydrothermal Regime during Terrane Amalgamation. Precambrian Res. 2014, 246, 256–267. [Google Scholar] [CrossRef] [Green Version]
- Smirnov, V.I. Copper Massive Sulfide Deposits of the Urals. Geology; Ural Branch USSR AS: Sverdlovsk, Russia, 1988. [Google Scholar]
- Vikentyev, I.V.; Karpukhina, V.S. Uzelginsk Zn-Cu-Ag VMS Deposit, South Urals: Genetic Aspect. In Applied Mineralogy; Rammlmair, D., Ed.; Balkema: Rotterdam, The Netherlands, 2000; pp. 455–458. [Google Scholar]
- Bortnikov, N.S.; Vikentyev, I.V. Endogenous Metallogeny of the Urals. In Mineral Deposit Research for a High-Tech World; Jonsson, E., Ed.; Sverige AB: Uppsala, Sweden, 2013; pp. 1508–1511. [Google Scholar]
- Maslov, V.A.; Artyushkova, O.V. Stratigraphy of Paleozoic Formations of Uchaly District of Bashkiria; Institute of Geology Ufa Scientific Center RAS: Ufa, Russia, 2000. [Google Scholar]
- Kontar’, E.S. The Geological-Industrial Types of the Cu, Zn, Pb Deposits in the Urals (Geological Conditions of Setting, History of the Formation, the Prospects); Uralian Mining-Geol. Uni. Publ: Ekaterinburg, Russia, 2013. [Google Scholar]
- Puchkov, V.N. General Features Relating to the Occurrence of Mineral Deposits in the Urals: What, Where, When and Why. Ore Geol. Rev. 2017, 85, 4–29. [Google Scholar] [CrossRef]
- Becker, T.R.; Gradstein, F.M.; Hammer, Ø. The Devonian Period. In The Geologic Time Scale; Gradstein, F.M., Ogg, J.G., Schmitz, M., Ogg, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; Volume 1–2, pp. 559–601. [Google Scholar] [CrossRef]
- Vikentyev, I.; Chugaev, A.; Karpukhina, V.S.; Nosik, L.; Rimskaya-Korsakova, M. Origin of Uzelginsk Zn-Cu-Ag VHMS Deposit, Southern Urals. In 12th IAGOD Symp. “Understanding the Genesis of Ore Deposits to Meet the Demands of the 21st Century”; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006; pp. 1233–1236. [Google Scholar]
- Amplieva, A.A.; Vikent’Yev, I.V.; Karpukhina, V.S.; Bortnikov, N.S. The Role of Magmatogene Fluid in the Formation of the Talgan Copper–Zinc–Pyritic Deposit, Southern Urals. Dokl. Earth Sci. 2008, 423, 1427–1430. [Google Scholar] [CrossRef]
- Vikentev, I.V.; Borisova, A.Y.; Karpukhina, V.S.; Naumov, V.B.; Ryabchikov, I.D. Direct Data on the Ore Potential of Acid Magmas of the Uzel’ginskoe Ore Field (Southern Urals, Russia). Dokl. Earth Sci. 2012, 443(1), 401–405. [Google Scholar] [CrossRef]
- Pirozhok, P.I.; Chadchenko, A.V. On the Productivity of the Copper-Zinc-Pyrite XIX Parts’ezda Deposit, South Urals: To the 60th Anniversary of the Discovery. In Metallogeny of Ancient and Modern Oceans; Institute of Mining of the Ural Branch of the Russian Academy of Sciences: Miass, Russia, 2012; pp. 303–307. [Google Scholar]
- Zavaritsky, A.N. Metamorphism and Metasomatism in the Urals Pyrite Deposits. In Massive Sulphide Deposits of the Urals; Acad. Sci. Publ.: Moscow, Russia, 1950; pp. 7–18. [Google Scholar]
- Shadlun, T.N. Features of the Mineralogical Composition, Structures and Textures of Ores of Somemassive Sulphide Deposits of the Urals. In Massive Sulphide Deposits of the Urals; USSR AS: Moscow, Russia, 1950; pp. 117–147. [Google Scholar]
- Vikentyev, I.V.; Belogub, E.V.; Novoselov, K.A.; Moloshag, V.P. Metamorphism of Volcanogenic Massive Sulphide Deposits in the Urals. Ore Geology. Ore Geol. Rev. 2017, 85, 30–63. [Google Scholar] [CrossRef]
- Tessalina, S.G.; Jourdan, F.; Belogub, E.V. Significance of Late Devonian—Lower Carboniferous Ages of Hydrothermal Sulphides and Sericites from the Urals Volcanic-Hosted Massive Sulphide Deposits. Ore Geol. Rev. 2017, 85, 131–139. [Google Scholar] [CrossRef]
- Gannoun, A.; Tessalina, S.; Bourdon, B.; Orgeval, J.J.; Birck, J.L.; Allègre, C.J. Re-Os Isotopic Constraints on the Genesis and Evolution of the Dergamish and Ivanovka Cu (Co, Au) Massive Sulphide Deposits, South Urals, Russia. Chem. Geol. 2003, 196, 193–207. [Google Scholar] [CrossRef]
- Tessalina, S.G.; Bourdon, B.; Maslennikov, V.V.; Orgeval, J.J.; Birck, J.L.; Gannoun, A.; Capmas, F.; Allègre, C.J. Osmium Isotope Distribution within the Palaeozoic Alexandrinka Seafloor Hydrothermal System in the Southern Urals, Russia. Ore Geol. Rev. 2008, 33, 70–80. [Google Scholar] [CrossRef]
- Chernyshev, I.V.; Vikent’ev, I.V.; Chugaev, A.V.; Shatagin, K.N.; Moloshag, V.P. Sources of Material for Massive Sulfide Deposits in the Urals: Evidence from the High-Precision MC-ICP-MS Isotope Analysis of Pb in Galena. Dokl. Earth Sci. 2008, 418, 178–183. [Google Scholar] [CrossRef]
- Vikent’eva, O.; Prokofiev, V.; Borovikov, A.; Kryazhev, S.; Groznova, E.; Pritchin, M.; Vikentyev, I.; Bortnikov, N. Contrasting Fluids in the Svetlinsk Gold-Telluride Hydrothermal System, South Urals. Minerals 2020, 10, 37. [Google Scholar] [CrossRef] [Green Version]
- Petrov, G.V.; Kazakova, N.M. Geological Structure of the Uzelga Copper-Zinc-Pyritic Deposit. In Geology and Genesis of ore deposits in the Southern Urals; Bashkirian branch USSR AS: Ufa, Russia, 1978; pp. 54–63. [Google Scholar]
- Vikentyev, I.V. Invisible and Microscopic Gold in Pyrite: New Data for Volcanogenic Massive Sulphide Ores of the Urals. In Mineral Resources in a Sustainable World; Andre-Mayer, A.S., Cathelineau, M., Muchez, P., Pirard, E., Sindern, S., Eds.; Université de Lorraine: Nancy, France, 2015; pp. 2113–2116. [Google Scholar]
- Vikentyev, I. Selenium, Tellurium and Precious Metal Mineralogy in Uchalinsk Copper-Zinc-Pyritic District, the Urals. In Proceedings of the 3rd International Conference on Competitive Materials and Technology Processes (IC-CMTP3), Miskolc-Lillafüred, Hungary, 6–10 October 2014; Volume 123, pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Yakubovich, O.V.; Shukolyukov, Y.A.; Kotov, A.B.; Brauns, M.; Samsonov, A.V.; Komarov, A.N.; Yakovleva, S.Z.; Sal’nikova, E.B.; Gorokhovskii, B.M. U-Th-He Dating of Native Gold: First Results, Problems and Outlooks. Petrology 2014, 22, 429–437. [Google Scholar] [CrossRef]
- Dolesal, A.; Povondra, P.; Shultsek, Z. Methods of Decompostion of Rocks; MIR: Moscow, Russia, 1968. [Google Scholar]
- Vermeesch, P. Three New Ways to Calculate Average (U-Th)/He Ages. Chem. Geol. 2008, 249, 339–347. [Google Scholar] [CrossRef]
- Meesters, A.G.C.A.; Dunai, T.J. A Noniterative Solution of the (U- -Th)//He Age Equation. Geochem. Geophys. Geosyst. 2005, 6, 1–3. [Google Scholar] [CrossRef]
- Vermeesch, P. HelioPlot and the Treatment of Overdispersed (U–Th–Sm)/He Data. Chem. Geol. 2010, 271, 108–111. [Google Scholar] [CrossRef]
- Foeken, J.P.T.; Stuart, F.M.; Dobson, K.J.; Persano, C.; Vilbert, D. A Diode Laser System for Heating Minerals for (U-Th)/He Chronometry. Geochem. Geophys. Geosyst. 2006, 7. [Google Scholar] [CrossRef] [Green Version]
- Orlov, A.K. Stage-by-Stage Oxidation of Sulfides during Oxidative Roasting of Polymineral Sulfide Concentrates. Zap. Gorn. Inst. 2006, 169, 163–166. [Google Scholar]
- Chepushtanova, T.A. Physico-Chemical Properties and Technological Basis for the Production of Pyrrhotite from Pyrite; Satbayev University: Almaty, Kazakhstan, 2009; p. 124. [Google Scholar]
- Boyanov, B.; Peltekov, A.; Petkova, V. Thermal Behavior of Zinc Sulfide Concentrates with Different Iron Content at Oxidative Roasting. Thermochim. Acta 2014, 586, 9–16. [Google Scholar] [CrossRef]
- Ludwig, K.R. Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronol. Cent. Spec. Publ. 2003, 4, 70. [Google Scholar]
- Fourre, E.; Jean-Baptiste, P.; Charlou, J.L.; Donval, J.P.; Ishibashi, J.I. Helium Isotopic Composition of Hydrothermal Fluids from the Manus Back-Arc Basin, Papua New Guinea. Geochem. J. 2006, 40, 245–252. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Z.; Niedermann, S.; Chen, S.; Wang, X.; Li, Z. Noble Gases in Sulfide Deposits of Modern Deep-Sea Hydrothermal Systems: Implications for Heat Fluxes and Hydrothermal Fluid Processes. Chem. Geol. 2015, 409, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Stuart, F.M.; Duckworth, R.; Turner, G.; Schofield, P.F. Helium and Sulfur Isotopes of Sulfide Minerals from Middle Valley. Proc. Ocean Drill. Progr. Sci. Results 1994, 139, 387–392. [Google Scholar]
- Vikentyev, I. Formation Conditions and Metamorphism of VMS Ores; Nauch mir: Moscow, Russia, 2004. [Google Scholar]
- Karpukhina, V.S.; Naumov, V.B.; Vikent’ev, I.V. Genesis of Massive Sulfide Deposits in the Verkhneural’sk Ore District, the South Urals, Russia: Evidence for Magmatic Contribution of Metals and Fluids. Geol. Ore Depos. 2013, 55, 125–143. [Google Scholar] [CrossRef]
- Vikentyev, I.; Simonov, V.A.; Borisova, A.Y.; Karpukhina, V.S.; Naumov, V.B. Volcanic-Hosted Massive Sulphide Deposits of the Urals, Russia: Evidence for a Magmatic Contribution of Metals and Fluid. In Mineral Deposit Research for a High-Tech World; Jonsson, E., Ed.; Sverige AB: Uppsala, Sweden, 2013; pp. 1526–1529. [Google Scholar]
- Vikentyev, I. Composition of Native Gold in Massive Sulfide Ores of the Urals. Dokl. Earth Sci. 2003, 393, 1284–1288. [Google Scholar]
- Robinson, L.F.; Belshaw, N.S.; Henderson, G.M. U and Th Concentrations and Isotope Ratios in Modern Carbonates and Waters from the Bahamas. Geochim. Cosmochim. Acta 2004, 68, 1777–1789. [Google Scholar] [CrossRef]
- Yarosh, P.Y.; Buslaev, F.P. Ore Textures and History of Formation of Ore Aggregates of Uzelginsk Deposits; Nauka: Sverdlovsk, Russia, 1985. [Google Scholar]
- Vermeesch, P.; Seward, D.; Latkoczy, C.; Wipf, M.; Günther, D.; Baur, H. α-Emitting Mineral Inclusions in Apatite, Their Effect on (U-Th)/He Ages and How to Reduce It. Geochim. Cosmochim. Acta 2007, 71, 1737–1746. [Google Scholar] [CrossRef]
Sample ID | Weight, (mg) | 4He, cm3 STP g−1 | U, 1010 at | σ | Th, 1010 at | σ | 4He, 1010 at | σ | T, Ma | σ |
---|---|---|---|---|---|---|---|---|---|---|
Uzelga pyrite | ||||||||||
599 | 0.84 | 1.06 × 10−4 | 510 | 75 | 1.6 | 1.1 | 239 | 7 | 350 | 50 |
600 | 0.35 | 4.01 × 10−5 | 70.0 | 1.4 | 1.7 | 1.1 | 37.4 | 1.2 | 399 | 15 |
601 | 0.81 | 1.55 × 10−4 | 680 | 120 | 1.1 | 0.7 | 336 | 9 | 370 | 60 |
602 | 0.49 | 2.07 × 10−4 | 550 | 44 | 0.8 | 0.4 | 271 | 7 | 370 | 30 |
603 | 0.28 | 1.20 × 10−4 | 178 | 13 | 1.5 | 1.1 | 90.6 | 2.5 | 380 | 29 |
604 | 0.69 | 1.70 × 10−4 | 580 | 50 | 2.3 | 1.2 | 316 | 8 | 410 | 36 |
631 | – | – | 154 | 8 | 1.5 | 0.7 | 75 | 3 | 366 | 24 |
632 | – | – | 58 | 3 | 60 | 30 | 266 | 6 | 2370 | 170 |
633 | – | – | 1340 | 70 | 4 | 2 | 667 | 17 | 375 | 20 |
676 1 | – | – | 13.85 | 0.08 | 5.0 | 2.7 | 27 | 1 | 1240 | 58 |
677 1 | – | – | 10.52 | 0.03 | 3.3 | 1.7 | 26 | 1 | 1550 | 58 |
433 | – | – | 880 | 50 | 12.9 | 0.8 | 476 | 2 | 404 | 22 |
435 | – | – | 38 | 2 | 10.3 | 0.6 | 20 | 1 | 371 | 21 |
437 | – | – | 15 | 1 | 5.2 | 0.3 | 10 | 1 | 446 | 27 |
Central age 2: | 382 | 6 | ||||||||
Durango apatite | ||||||||||
660 | – | – | 1700 | 55 | 39,500 | 1200 | 412 | 8 | 29.6 | 0.6 |
661 | – | – | 2030 | 170 | 43,800 | 3400 | 434 | 9 | 27.8 | 0.6 |
662 | – | – | 850 | 60 | 17,000 | 1300 | 187 | 4 | 30.2 | 0.6 |
663 | – | – | 1240 | 60 | 29,000 | 1400 | 334 | 7 | 32.4 | 0.7 |
666 | – | – | 554 | 17 | 12,300 | 300 | 160 | 4 | 36.6 | 0.9 |
Central age: | 32.2 | 1.0 | ||||||||
Qu blank | – | – | 1.26 | 0.52 | 1.23 | |||||
Ta blank | – | – | 1.52 | 1.56 | 0.31 |
Num | Weight, mg | σ,% | Δ, mg | σ,% | Th, ng | Th, ppm | ± | U, ng | U, ppm | ± | Th/U |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1.217 | 0.2 | 0.003 | 100 | b.d.l. | 0.23 | 80 | 80 | |||
2 | 0.751 | 0.4 | 0.003 | 100 | b.d.l. | 0.03 | 10 | 10 | |||
3 | 32.247 | 0.0 | 0.057 | 5 | 0.037 | 0.65 | 0.03 | 56.96 | 1000 | 50 | 0.0006 |
4 | 1.954 | 0.2 | 0.006 | 50 | 0.001 | 0.16 | 0.08 | 11.38 | 1900 | 950 | 0.0001 |
5 | 3.307 | 0.1 | 0.023 | 13 | b.d.l. | 6.50 | 280 | 40 | |||
6 | 1.358 | 0.2 | 0.002 | 150 | b.d.l. | 0.39 | 200 | 300 | |||
bl | 0.001 | 0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yakubovich, O.; Podolskaya, M.; Vikentyev, I.; Fokina, E.; Kotov, A. U-Th-He Geochronology of Pyrite from the Uzelga VMS Deposit (South Urals)—New Perspectives for Direct Dating of the Ore-Forming Processes. Minerals 2020, 10, 629. https://doi.org/10.3390/min10070629
Yakubovich O, Podolskaya M, Vikentyev I, Fokina E, Kotov A. U-Th-He Geochronology of Pyrite from the Uzelga VMS Deposit (South Urals)—New Perspectives for Direct Dating of the Ore-Forming Processes. Minerals. 2020; 10(7):629. https://doi.org/10.3390/min10070629
Chicago/Turabian StyleYakubovich, Olga, Mary Podolskaya, Ilya Vikentyev, Elena Fokina, and Alexander Kotov. 2020. "U-Th-He Geochronology of Pyrite from the Uzelga VMS Deposit (South Urals)—New Perspectives for Direct Dating of the Ore-Forming Processes" Minerals 10, no. 7: 629. https://doi.org/10.3390/min10070629
APA StyleYakubovich, O., Podolskaya, M., Vikentyev, I., Fokina, E., & Kotov, A. (2020). U-Th-He Geochronology of Pyrite from the Uzelga VMS Deposit (South Urals)—New Perspectives for Direct Dating of the Ore-Forming Processes. Minerals, 10(7), 629. https://doi.org/10.3390/min10070629