Collecting Agent–Mineral Interactions in the Reverse Flotation of Iron Ore: A Brief Review
Abstract
:1. Introduction
2. Collectors for Quartz
2.1. Anionic Collectors
2.2. Cationic Collectors
2.3. Collector Mixtures
3. Collectors for Non-Quartz Gangue Minerals
3.1. Alumina-Bearing Minerals
3.2. Phosphorus-Bearing Minerals
3.3. Iron-Bearing Carbonates
3.4. Iron-Bearing Silicates
4. Recommendation for Future Work
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Filippov, L.; Severov, V.; Filippova, I. An overview of the beneficiation of iron ores via reverse cationic flotation. Int. J. Miner. Process. 2014, 127, 62–69. [Google Scholar] [CrossRef]
- Bruckard, W.; Smith, L.; Heyes, G. Developments in the physiochemical separation of iron ore. In Iron Ore Processing and Environmental Sustainability; Elsevier Science: Burlington, ON, Canada, 2015; pp. 339–356. [Google Scholar]
- Standardization Administration of China. Iron Ore Concentrate, Chinese Standard Full-Text Database; Standardization Administration of China: Beijing, China, 2018.
- Wang, J.; Lu, S.; Rong, L.; Li, D. Effect of silicon contents on the microstructures and mechanical properties of heat affected zones for 9Cr2WVTa steels. J. Nucl. Mater. 2016, 470, 1–12. [Google Scholar] [CrossRef]
- Schrama, F.N.H.; Beunder, E.M.; Berg, B.V.D.; Yang, Y.; Boom, R. Sulphur removal in ironmaking and oxygen steelmaking. Ironmak. Steelmak. 2017, 44, 333–343. [Google Scholar] [CrossRef]
- Nunes, A.P.L.; Peres, A.E.C.; De Araujo, A.C.; Valadão, G.E.S. Electrokinetic properties of wavellite and its floatability with cationic and anionic collectors. J. Colloid Interface Sci. 2011, 361, 632–638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naoi, H.; Ohgami, M.; Liu, X.; Fujita, T. Effects of aluminum content on the mechanical properties of a 9Cr-0.5Mo-1.8W steel. Met. Mater. Trans. A 1997, 28, 1195–1203. [Google Scholar] [CrossRef]
- Suhasini, R.; Mallick, A.K.; Vasumathi, N.; Kumar, T.; Rao, S.; Prabhakar, S.; Raju, G.B.; Kumar, S. Evaluation of Flotation Collectors in Developing Zero Waste Technology for Processing Iron Ore Tailings. Int. J. Eng. Res. 2015, 4, 604–608. [Google Scholar] [CrossRef]
- Araújo, A.; Viana, P.R.; Peres, A.E.C. Reagents in iron ores flotation. Miner. Eng. 2005, 18, 219–224. [Google Scholar] [CrossRef]
- Rao, K.H.; Forssberg, K. Mixed collector systems in flotation. Int. J. Miner. Process. 1997, 51, 67–79. [Google Scholar] [CrossRef]
- Vidyadhar, A.; Rao, K.H.; Ari, V. Adsorption mechanism of mixed cationic/anionic collectors in feldspar-quartz flotation system. J. Colloid Interface Sci. 2007, 306, 195–204. [Google Scholar] [CrossRef]
- Wang, L.; Sun, W.; Hu, Y.H.; Xu, L.H. Adsorption mechanism of mixed anionic/cationic collectors in Muscovite-Quartz flotation system. Miner. Eng. 2014, 64, 44–50. [Google Scholar] [CrossRef]
- Filippov, L.; Filippova, I.; Severov, V. The use of collectors mixture in the reverse cationic flotation of magnetite ore: The role of Fe-bearing silicates. Miner. Eng. 2010, 23, 91–98. [Google Scholar] [CrossRef]
- Quast, K. Literature review on the use of natural products in the flotation of iron oxide ores. Miner. Eng. 2017, 108, 12–24. [Google Scholar] [CrossRef]
- Liu, X.H.; Yu, Y.F.; Chen, W.; Yan, X.H. Effect of selective flocculation desliming on flotation of fine grained yuanjiacun iron ore. In Proceedings of the XXVI International Mineral Processing Congress, Delhi, India, 24–28 September 2012; pp. 2980–2992. [Google Scholar]
- Luo, X.; Wang, Y.; Wen, S.; Ma, M.; Sun, C.; Yin, W.; Ma, Y. Effect of carbonate minerals on quartz flotation behavior under conditions of reverse anionic flotation of iron ores. Int. J. Miner. Process. 2016, 152, 1–6. [Google Scholar] [CrossRef]
- Ma, X.; Marques, M.; Gontijo, C. Comparative studies of reverse cationic/anionic flotation of Vale iron ore. Int. J. Miner. Process. 2011, 100, 179–183. [Google Scholar] [CrossRef]
- Nakhaei, F.; Irannajad, M. Reagents types in flotation of iron oxide minerals: A review. Miner. Process. Extr. Met. Rev. 2017, 39, 89–124. [Google Scholar] [CrossRef]
- Hu, Y.; Wei, S.; Hao, J.; Miller, J.D.; Fa, K. The anomalous behavior of kaolinite flotation with dodecyl amine collector as explained from crystal structure considerations. Int. J. Miner. Process. 2005, 76, 163–172. [Google Scholar] [CrossRef]
- Filippov, L.; Severov, V.; Filippova, I. Mechanism of starch adsorption on Fe-Mg-Al-bearing amphiboles. Int. J. Miner. Process. 2013, 123, 120–128. [Google Scholar] [CrossRef]
- Ma, X.; Bruckard, W.; Holmes, R. Effect of collector, pH and ionic strength on the cationic flotation of kaolinite. Int. J. Miner. Process. 2009, 93, 54–58. [Google Scholar] [CrossRef]
- Moudgil, B.M.; Ince, D.E. Flotation separation of apatite from dolomite using dodecylamine and sodium chloride. In Particle Technology and Surface Phenomena in Minerals and Petroleum; Sharma, M.K., Sharma, G.D., Eds.; Springer: Boston, MA, USA, 1991; pp. 191–197. [Google Scholar]
- Severov, V.; Filippov, L.; Filippova, I. Relationship between cation distribution with electrochemical and flotation properties of calcic amphiboles. Int. J. Miner. Process. 2016, 147, 18–27. [Google Scholar] [CrossRef]
- Ma, M. Froth Flotation of Iron Ores. Int. J. Min. Eng. Miner. Process. 2012, 1, 56–61. [Google Scholar] [CrossRef]
- Rao, K.H.; Forssberg, K.S.E. Chemistry of Iron Oxide Flotation. In Froth Flotation—A Century of Innovation; Fuerstenau, M.C., Jameson, G.J., Yoon, R.H., Eds.; Society for Mining, Metallurgy, and Exploration, Inc.: Littleton, CO, USA, 2007; pp. 498–513. [Google Scholar]
- Kou, J.; Xu, S.; Sun, T.; Sun, C.; Guo, Y.; Wang, C. A study of sodium oleate adsorption on Ca2+ activated quartz surface using quartz crystal microbalance with dissipation. Int. J. Miner. Process. 2016, 154, 24–34. [Google Scholar] [CrossRef]
- Quast, K. The use of zeta potential to investigate the interaction of oleate on hematite. Miner. Eng. 2016, 85, 130–137. [Google Scholar] [CrossRef]
- Fuerstenau, D.W.; Cummins, W.F.J. The role of basic aqueous complexes in anionic flotation of quartz. Trans. Am. Inst. Min. Metall. Pet. Eng. 1967, 238, 196–200. [Google Scholar]
- Jung, R.F.; James, R.O.; Healy, T.W. Adsorption, precipitation, and electrokinetic processes in the iron oxide (Goethite)-oleic acid-oleate system. J. Colloid Interface Sci. 1987, 118, 463–472. [Google Scholar] [CrossRef]
- Liu, A.; Fan, J.-C.; Fan, M.-Q. Quantum chemical calculations and molecular dynamics simulations of amine collector adsorption on quartz (0 0 1) surface in the aqueous solution. Int. J. Miner. Process. 2015, 134, 1–10. [Google Scholar] [CrossRef]
- Ozkan, A.; Ucbeyiay, H.; Duzyol, S. Comparison of stages in oil agglomeration process of quartz with sodium oleate in the presence of Ca(II) and Mg(II) ions. J. Colloid Interface Sci. 2009, 329, 81–88. [Google Scholar] [CrossRef]
- Liu, N.; Wang, Z.; Xiao, J.; Wang, H.; Deng, B.; Zhang, Y.; Chen, C. Novel Selective Depressant of Titanaugite and Implication for Ilmenite Flotation. Minerals 2019, 9, 703. [Google Scholar] [CrossRef] [Green Version]
- Wills, B.A.; Finch, J.A. Wills’ Mineral Processing Technology—An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery, 8th ed.; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Somasundaran, P.; Nagarai, D.R. Chemistry and applications of chelating agents in flotation and flocculation. In Reagents in the Minerals Industry; IMM: London, UK, 1984; pp. 209–219. [Google Scholar]
- Quast, K. Flotation of hematite using C6-C18 saturated fatty acids. Miner. Eng. 2006, 19, 582–597. [Google Scholar] [CrossRef]
- Fuerstenau, D.W.; Jia, R.H. The role of molecular structure of surfactants on the interfacial and flotation behavior of oxide minerals particularly quartz. In Proceedings of the XXIV International Mineral Processing Congress, Beijing, China, 24–28 September 2008. [Google Scholar]
- Ogata, Y.; Sugimoto, T.; Inaishi, M. α-Chlorination of Long-chain Aliphatic Acids. Bull. Chem. Soc. Jpn. 1979, 52, 255–256. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Luo, B.; Sun, C.; Li, Y.; Han, Y. Influence of bromine modification on collecting property of lauric acid. Miner. Eng. 2015, 79, 24–30. [Google Scholar] [CrossRef]
- Luo, B.; Zhu, Y.; Sun, C.; Li, Y.; Han, Y. Flotation and adsorption of a new collector α-Bromodecanoic acid on quartz surface. Miner. Eng. 2015, 77, 86–92. [Google Scholar] [CrossRef]
- Yang, H.; Tang, Q.; Wang, C.; Zhang, J. Flocculation and flotation response of Rhodococcus erythropolis to pure minerals in hematite ores. Miner. Eng. 2013, 45, 67–72. [Google Scholar] [CrossRef]
- Pattanaik, A.; Venugopal, R. Investigation of Adsorption Mechanism of Reagents (Surfactants) System and its Applicability in Iron Ore Flotation—An Overview. Colloid Interface Sci. Comm. 2018, 25, 41–65. [Google Scholar] [CrossRef]
- Ofor, O. Effect of Inorganic Ions on Oleate Adsorption at a Nigerian Hematite-Water Interface. J. Colloid Interface Sci. 1996, 180, 323–328. [Google Scholar] [CrossRef]
- Tang, M.; Wen, S.M. Effects of Cations/Anions in Recycled Tailing Water on Cationic Reverse Flotation of Iron Oxides. Minerals 2019, 9, 161. [Google Scholar] [CrossRef] [Green Version]
- Vidyadhar, A.; Kumari, N.; Bhagat, R.P.; Ari, V. Adsorption Mechanism of Mixed Cationic/Anionic Collectors in Quartz–Hematite Flotation System. Miner. Process. Extr. Met. Rev. 2013, 35, 117–125. [Google Scholar] [CrossRef]
- Wang, J.; Somasundaran, P. Adsorption and conformation of carboxymethyl cellulose at solid-liquid interfaces using spectroscopic, AFM and allied techniques. J. Colloid Interface Sci. 2005, 291, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Ignatow, A. Cationic Flotation of Siderite. Master’s Thesis, Department of Metallurgical Engineering, Mcgill University, Montreal, QC, Canada, November 1975. [Google Scholar]
- Shrimali, K.; Jin, J.; Hassas, B.V.; Wang, X.; Miller, J.D. The surface state of hematite and its wetting characteristics. J. Colloid Interface Sci. 2016, 477, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Suman, S.K.; Kumar, S. Reverse flotation studies on iron ore slime by the synergistic effect of cationic collectors. Sep. Sci. Technol. 2019, 55, 1–13. [Google Scholar] [CrossRef]
- Abaka-Wood, G.B.; Addai-Mensah, J.; Skinner, W. A study of flotation characteristics of monazite, hematite, and quartz using anionic collectors. Int. J. Miner. Process. 2017, 158, 55–62. [Google Scholar] [CrossRef]
- Somasundaran, P.; Wang, D.Z. Solution Chemistry: Minerals and Reagents; Elsevier Science: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Somasundaran, P.; Fuerstenau, D.W. Mechanisms of Alkyl Sulfonate Adsorption at the Alumina-Water Interface1. J. Phys. Chem. 1966, 70, 90–96. [Google Scholar] [CrossRef]
- Zhang, R.; Somasundaran, P. Advances in adsorption of surfactants and their mixtures at solid/solution interfaces. Adv. Colloid Interface Sci. 2006, 123, 213–229. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Zhong, H.; Wang, S.; Xia, L.; Zou, W.; Liu, G. Investigations on reverse cationic flotation of iron ore by using a Gemini surfactant: Ethane-1,2-bis(dimethyl-dodecyl-ammonium bromide). Chem. Eng. J. 2014, 257, 218–228. [Google Scholar] [CrossRef]
- Fuerstenau, D.W.; Jia, R. The adsorption of alkylpyridinium chlorides and their effect on the interfacial behavior of quartz. Colloids Surf. A Physicochem. Eng. Asp. 2004, 250, 223–231. [Google Scholar] [CrossRef]
- Gao, Y.; Du, J.; Gu, T. Hemimicelle formation of cationic surfactants at the silica gel-water interface. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Ph. 1987, 83, 2671. [Google Scholar] [CrossRef]
- Metzer, A.; Lin, I.J. Effect of dissolved paraffinic gases on the surface tension and critical micelle concentration (cmc) of aqueous solutions of dodecylamine hydrochloride (DACl). J. Phys. Chem. 1971, 75, 3000–3004. [Google Scholar] [CrossRef]
- Hoyer, H.W.; Greenfield, A. The critical micelle concentrations of decyl-, dodecyl- and tetradecylamine hydrochloride. J. Phys. Chem. A 1957, 61, 818–819. [Google Scholar] [CrossRef]
- Wang, Y.H.; Ren, J.W. The flotation of quartz from iron minerals with a combined quaternary ammonium salt. Int. J. Miner. Process. 2005, 77, 116–122. [Google Scholar]
- Jiang, H.; Liu, G.; Hu, Y.; Xu, L.; Yu, Y.; Xie, Z.; Chen, H. Flotation and adsorption of quaternary ammonium salts collectors on kaolinite of different particle size. Int. J. Min. Sci. Technol. 2013, 23, 249–253. [Google Scholar] [CrossRef]
- Montes, S.; Atenas, G.M. Hematite floatability mechanism utilizing tetradecylammonium chloride collector. Miner. Eng. 2005, 18, 1032–1036. [Google Scholar] [CrossRef]
- Fuerstenau, D.W.; Modi, H.J. Streaming Potentials of Corundum in Aqueous Organic Electrolyte Solutions. J. Electrochem. Soc. 1959, 106, 336. [Google Scholar] [CrossRef]
- Liu, W.; Liu, W.-G.; Zhao, Q.; Peng, X.; Wang, B.; Zhou, S. Investigating the performance of a novel polyamine derivative for separation of quartz and hematite based on theoretical prediction and experiment. Sep. Purif. Technol. 2020, 237, 116370. [Google Scholar] [CrossRef]
- Houot, R. Beneficiation of iron ore by flotation—Review of industrial and potential applications. Int. J. Miner. Process. 1983, 10, 183–204. [Google Scholar] [CrossRef]
- Papini, R.M.; Brandão, P.R.G.; Peres, A.E.C. Cationic flotation of iron ores: Amine characterization and performance. Min. Met. Explor. 2001, 18, 5–9. [Google Scholar] [CrossRef]
- Zana, R. Alkanediyl-α,ω-bis(dimethylalkylammonium bromide) Surfactants: II. Krafft Temperature and Melting Temperature. J. Colloid Interface Sci. 2002, 252, 259–261. [Google Scholar] [CrossRef] [PubMed]
- Weng, X.; Mei, G.; Zhao, T.; Zhu, Y. Utilization of novel ester-containing quaternary ammonium surfactant as cationic collector for iron ore flotation. Sep. Purif. Technol. 2013, 103, 187–194. [Google Scholar] [CrossRef]
- Sahoo, H.; Rath, S.S.; Das, B. Use of the ionic liquid-tricaprylmethyl ammonium salicylate (TOMAS) as a flotation collector of quartz. Sep. Purif. Technol. 2014, 136, 66–73. [Google Scholar] [CrossRef]
- Sahoo, H.; Rath, S.S.; Jena, S.; Mishra, B.K.; Das, D. Aliquat-336 as a novel collector for quartz flotation. Adv. Powder Technol. 2015, 26, 511–518. [Google Scholar] [CrossRef]
- Sahoo, H.; Sinha, N.; Rath, S.S.; Das, B. Ionic liquids as novel quartz collectors: Insights from experiments and theory. Chem. Eng. J. 2015, 273, 46–54. [Google Scholar] [CrossRef]
- Krishnan, S.; Iwasaki, I. Pulp dispersion in selective desliming of iron ores. Int. J. Miner. Process. 1984, 12, 1–13. [Google Scholar] [CrossRef]
- Somasundaran, P. Cationic depression of amine flotation of quartz. Trans. Metall. Soc. AIME 1974, 256, 64–68. [Google Scholar]
- Ahmed, S.M.; van Cleave, A.B. Adsorption and flotation studies with quartz: Part, I. Adsorption of calcium, hydrogen and hydroxyl ions on quartz. Can. J. Chem. Eng. 1965, 43, 23–26. [Google Scholar] [CrossRef]
- Tang, M.; Tong, X. The relationship between anion distribution in process water and flotation properties of iron oxides. Miner. Eng. 2020, 154, 106378–106387. [Google Scholar] [CrossRef]
- Rama Murthy, R.K.; Mallikajunan, R. Flotation of quartz with soaps of bombax malabarica oil and shark liver oil as collectors. J. Indian Inst. Sci. 1959, 41, 30–35. [Google Scholar]
- Lin, X.H.; Lu, P.; Chen, R.H.; Chen, J.; Ma, X.; Lin, B. Preparation and application of a new type of efficient collector—RA-315. Min. Metall. Eng. 1993, 13, 31–35. [Google Scholar]
- Wei, Y.H.; Wei, J.X.; Guo, W.D.; Zhou, G.Y. Reverse flotation of iron ore using purified cotton seed fatty acid at ambient temperature. J. Wuhan Univ. Technol. 2015, 37, 36–40. [Google Scholar]
- Huang, Z.; Yan, Z.; Gu, T. Mixed adsorption of cationic and anionic surfactants from aqueous solution on silica gel. Colloids Surf. 1989, 36, 353–358. [Google Scholar] [CrossRef]
- Filippov, L.O.; Duverger, A.; Filippova, I.V.; Kasaini, H.; Thiry, J. Selective flotation of silicates and Ca-bearing minerals: The role of non-ionic reagent on cationic flotation. Miner. Eng. 2012, 36–38, 314–323. [Google Scholar] [CrossRef]
- Vidyadhar, A.; Rao, K.; Chernyshova, I.V.; Pradip; Forssberg, K. Mechanisms of Amine-Quartz Interaction in the Absence and Presence of Alcohols Studied by Spectroscopic Methods. J. Colloid Interface Sci. 2002, 256, 59–72. [Google Scholar] [CrossRef]
- Vidyadhar, A.; Kumari, N.; Bhagat, R.; Ari, V. Adsorption mechanism of mixed collector systems on hematite flotation. Miner. Eng. 2012, 26, 102–104. [Google Scholar] [CrossRef]
- Leja, J.; Schulman, J.H. Flotation theory: Molecular interaction between frothers and collectors at solid-liquid-air interfaces. Trans. Am. Inst. Min. Metall. Pet. Eng. 1954, 199, 221–228. [Google Scholar]
- Sahoo, H.; Rath, S.S.; Rao, D.S.; Mishra, B.K.; Das, D. Role of silica and alumina content in the flotation of iron ores. Int. J. Miner. Process. 2016, 148, 83–91. [Google Scholar] [CrossRef]
- Ravishankar Pradip, S.; Khosla, N. Selective flocculation of iron oxide from its synthetic mixtures with clays: A comparison of polyacrylic acid and starch polymers. Int. J. Miner. Process. 1995, 43, 235–247. [Google Scholar] [CrossRef]
- Thella, J.S.; Mukherjee, A.K.; Srikakulapu, N.G. Processing of high alumina iron ore slimes using classification and flotation. Powder Technol. 2012, 217, 418–426. [Google Scholar] [CrossRef]
- Kumar, D.; Jain, V.; Rai, B. Can carboxymethyl cellulose be used as a selective flocculant for beneficiating alumina-rich iron ore slimes? A density functional theory and experimental study. Miner. Eng. 2018, 121, 47–54. [Google Scholar] [CrossRef]
- Ma, X.; Bruckard, W. The effect of pH and ionic strength on starch–kaolinite interactions. Int. J. Miner. Process. 2010, 94, 111–114. [Google Scholar] [CrossRef]
- Ndlovu, B.; Forbes, E.; Farrokhpay, S.; Becker, M.; Bradshaw, D.; Deglon, D. A preliminary rheological classification of phyllosilicate group minerals. Miner. Eng. 2014, 55, 190–200. [Google Scholar] [CrossRef]
- Rodrigues, O.M.S.; Peres, A.E.C.; Martins, A.H.; Pereira, C.A. Kaolinite and hematite flotation separation using etheramine and ammonium quaternary salts. Miner. Eng. 2013, 40, 12–15. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Hu, Y.; Dong, F.; Gao, Z.; Wu, H.; Wang, Z. Anisotropic adsorption of oleate on diaspore and kaolinite crystals: Implications for their flotation separation. Appl. Surf. Sci. 2014, 321, 331–338. [Google Scholar] [CrossRef]
- Li, H.; Franks, G.V. Role of Temperature-Sensitive Polymers in Hydrophobic Aggregation/Flotation of Silicate Minerals. In Proceedings of the XXIV International Mineral Processing Congress, Beijing, China, 24–28 September 2008; pp. 1261–1269. [Google Scholar]
- Pereira, A.C.; Papini, R.M. Processes for phosphorus removal from iron ore—A review. Rem Rev. Esc. Minas 2015, 68, 331–335. [Google Scholar] [CrossRef]
- Subramanian, S.; Rao, K.H.; Forssberg, K.S.E. Dispersion characteristics of apatite and magnetite fines in the presence of inorganic and organic reagents and its influence on the dephosphorization of magnetite ore. In Beneficiation of Phosphates III—Fundamentals and Technology; Zhang, P., El-Shall, H., Somasundaran, P., Stana, R., Eds.; SME: Littleton, CO, USA, 2002; pp. 21–31. [Google Scholar]
- Nunes, A.P.L.; Pinto, C.L.L.; Valadão, G.E.S.; Viana, P.R.D.M. Floatability studies of wavellite and preliminary results on phosphorus removal from a Brazilian iron ore by froth flotation. Miner. Eng. 2012, 39, 206–212. [Google Scholar] [CrossRef]
- Miller, J.D.; Wang, X.M.; Li, M.H. Selective Flotation of Phosphate Minerals with Hydroxamate Collectors. U.S. Patent 6341697 B1, 29 January 2002. [Google Scholar]
- Su, F.; Hanumantha Rao, K.; Forssberg, K.S.E.; Samskog, P.O. Dephosphorization of magnetite fines: Part 2: Influence of chemical variables on flotation kinetics. Trans. Inst. Min. Metall. Sec. C Miner. Process. Extr. Metall. 1998, 107, c103–c110. [Google Scholar]
- Kou, J.; Tao, D.; Xu, G. Fatty acid collectors for phosphate flotation and their adsorption behavior using QCM-D. Int. J. Miner. Process. 2010, 95, 1–9. [Google Scholar] [CrossRef]
- Cao, Q.; Cheng, J.; Wen, S.-M.; Li, C.; Bai, S.; Liu, D. A mixed collector system for phosphate flotation. Miner. Eng. 2015, 78, 114–121. [Google Scholar] [CrossRef] [Green Version]
- Horta, D.; de Mello Monte, M.B.; de Salles Leal Filho, E.L. The effect of dissolution kinetics on flotation response of apatite with sodium oleate. Int. J. Miner. Process. 2016, 146, 97–104. [Google Scholar] [CrossRef]
- Finkelstein, N.P. Review of interactions in flotation of sparingly soluble calcium minerals with anionic collectors. Trans. Inst. Min. Metall. Sect. C 1989, 988, 157–178. [Google Scholar]
- Sis, H.; Chander, S. Adsorption and contact angle of single and binary mixtures of surfactants on apatite. Miner. Eng. 2003, 16, 839–848. [Google Scholar] [CrossRef]
- Soto, H.; Iwasaki, I. Flotation of apatite from calcareous ores with primary amines. Mining Met. Explor. 1985, 2, 160–166. [Google Scholar] [CrossRef]
- Li, L.X.; Yin, W.Z.; Wang, Y.B.; Tao, S.J. Effect of Siderite on Flotation Separation of Martite and Quartz. J. Northeast. Univ. 2012, 33, 431–434. [Google Scholar]
- Yin, W.-Z.; Li, D.; Luo, X.-M.; Yao, J.; Sun, Q.-Y. Effect and mechanism of siderite on reverse flotation of hematite. Int. J. Miner. Met. Mater. 2016, 23, 373–379. [Google Scholar] [CrossRef]
- Gu, X.T.; Zhu, Y.M.; Li, Y.J.; Han, Y.X. Selective flotation of siderite and quartz from a carbonate-containing refractory iron ore using a novel amino-acid-based collector. Physicochem. Probl. Miner. Process. 2018, 54, 803–813. [Google Scholar]
- Chen, W.; Yu, Y.F.; Feng, Z.L.; Lu, X.S.; Zhao, Q.; Liu, X.Y. Six hundred thousand t/a refractory siderite flash magnetizing roasting complete sets technique and equipment. Met. Mine 2017, 3, 54–58. [Google Scholar]
- Laskowski, J.; Nyamekye, G. Colloid chemistry of weak electrolyte collectors: The effect of conditioning on flotation with fatty acids. Int. J. Miner. Process. 1994, 40, 245–256. [Google Scholar] [CrossRef]
- Feng, B.; Luo, X.-P. The solution chemistry of carbonate and implications for pyrite flotation. Miner. Eng. 2013, 53, 181–183. [Google Scholar] [CrossRef]
- Forssberg, K.E.; Subrahmanyam, T.; Nilsson, L.K. Influence of grinding method on complex sulphide ore flotation: A pilot plant study. Int. J. Miner. Process. 1993, 38, 157–175. [Google Scholar] [CrossRef]
- Shi, Q.; Zhang, G.; Feng, Q.; Deng, H. Effect of solution chemistry on the flotation system of smithsonite and calcite. Int. J. Miner. Process. 2013, 119, 34–39. [Google Scholar] [CrossRef]
- Pinto, C.; Peres, A.E.C.; De Araujo, A. The effect of starch, amylose and amylopectin on the depression of oxi-minerals. Miner. Eng. 1992, 5, 469–478. [Google Scholar] [CrossRef]
- Sis, H.; Chander, S. Reagents used in the flotation of phosphate ores: A critical review. Miner. Eng. 2003, 16, 577–585. [Google Scholar] [CrossRef]
- Quast, K. Use of conditioning time to investigate the mechanisms of interactions of selected fatty acids on hematite. Part 1: Literature survey. Miner. Eng. 2015, 79, 295–300. [Google Scholar] [CrossRef]
- Zhang, M. Study on the Floatation Behavior for Donganshan Carbonate-Containing Iron Ore. Ph.D. Thesis, Northeast University, Shenyang, China, May 2009. [Google Scholar]
- Abido, A.M. Contribution to concentration of Tin ores by flotation. J. Inst. Eng. India Ser. D 1973, 53, 66–70. [Google Scholar]
- Manser, R.M. Handbook of Silicate Flotation; Warren Spring Laboratory: Stevenage, UK, 1975. [Google Scholar]
- Mei, G.J.; Rao, P.; Yu, Y.F. Flotation separation of hematite and iron-containing silicate using ammonium hexafluorosilicate depressant. In Proceedings of the XXIV International Mineral Processing Congress, Beijing, China, 24–28 September 2008; pp. 1255–1260. [Google Scholar]
Elements | Magnetite Concentrate | Hematite Concentrate | Detrimental Effect on the Mechanical Properties of Iron/Steel |
---|---|---|---|
Si (%) | ≤4.2 | ≤5.6 | Decreased toughness and weldability [4] |
S (%) | ≤0.50 | ≤0.30 | Increased brittleness of steel and decreased weldability and corrosion resistance [5] |
P (%) | ≤0.10 | ≤0.10 | Increased hardness and brittleness and decreased ductility [6] |
Al (%) | ≤1.1 | ≤0.8 | Decreased creep resistance [7] |
Equilibria | Constants |
---|---|
HOl ⇌ H+ + Ol− | p = 4.95 |
HOll ⇌ H+ + Ol− | p = 12.55 |
2Ol− ⇌ | log = 4.00 |
HOl + Ol− ⇌ | log = 4.75 |
NaHOl2(l) ⇌ Na+ + H+ +2Ol− | p = 19.00 |
Equilibria | Constants |
---|---|
RNH2 ⇌ RNH2(so) | p = 4.69 |
⇌ RNH2 + H+ | p = 10.63 |
2− ⇌ | p = −2.08 |
+ RNH2− ⇌ | p = −3.12 |
Collector Type | Silicate Class | |||
---|---|---|---|---|
Ortho- | Pyroxene | Amphibole | Framework- | |
Anionic | Good | Poor | Nil | Nil |
Cationic | Mediocre (sensitive to pH) | Good | Very good | |
(not sensitive to pH) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, G.; Wang, L.; Cao, Y.; Li, C. Collecting Agent–Mineral Interactions in the Reverse Flotation of Iron Ore: A Brief Review. Minerals 2020, 10, 681. https://doi.org/10.3390/min10080681
Fan G, Wang L, Cao Y, Li C. Collecting Agent–Mineral Interactions in the Reverse Flotation of Iron Ore: A Brief Review. Minerals. 2020; 10(8):681. https://doi.org/10.3390/min10080681
Chicago/Turabian StyleFan, Guixia, Liguang Wang, Yijun Cao, and Chao Li. 2020. "Collecting Agent–Mineral Interactions in the Reverse Flotation of Iron Ore: A Brief Review" Minerals 10, no. 8: 681. https://doi.org/10.3390/min10080681
APA StyleFan, G., Wang, L., Cao, Y., & Li, C. (2020). Collecting Agent–Mineral Interactions in the Reverse Flotation of Iron Ore: A Brief Review. Minerals, 10(8), 681. https://doi.org/10.3390/min10080681