Uranium (VI) Recovery from Black Shale Leaching Solutions Using Ion Exchange: Kinetics and Equilibrium Studies
Abstract
:1. Introduction
2. Experiment
2.1. Materials
2.2. Sorption Studies
2.3. Sorption Kinetic and Equilibrium Studies
2.3.1. The Sorption Kinetic Equations
2.3.2. The Sorption Equilibrium (Isotherm) Equations
2.4. Analytical Procedure
3. Results and Discussion
3.1. Sorption of Uranium (VI) by Weak Base Anionites
3.2. Sorption of Uranium (VI) by Strong Base Anionites
3.3. Sorption Kinetics Studies
3.4. Adsorption Equilibrium Studies
4. Conclusions
- It was found that the sorption efficiency of anionites increases in the following order: Dowex Marathon WBA < Diaion WA30 < Ambersep 900 SO4 < Puromet MTA4601PF.
- The best results for the sorption of uranium were obtained on strong-base anionites Ambersep 900 SO4 and Puromet MTA4601PF. The uranium sorption on the strong-base anionite Puromet MTA4601PF increases with the increase of pH and reaches 90%, which is 13% more than on weak base anionites. The results of the investigation showed that the best results were achieved at a pH of 2.2 and a duration of 12 h.
- The kinetics study demonstrated that the kinetic mechanism for the sorption of uranium (VI) ions followed a pseudo-second-order model, which provided the best experimental data correlation.
- The Langmuir isotherm model provided the best fit for the experimental sorption data for uranium.
- From the Dubinin–Radushkevich isotherm, the values of the mean free energy of adsorption revealed that the sorption mechanism for Dowex Marathon WBA, Diaion WA30 and Ambersep 900 SO4 was predominantly, due to a physical nature (E < 8.0 KJ/mo1). However, the data obtained for free energy for Puromet MTA4601PF (E = 9.28 KJ/mo1) indicated that the sorption mechanism proceeded via chemisorption.
Author Contributions
Funding
Conflicts of Interest
References
- Doligez, X.; Bouneau, S.; David, S.; Ernoult, M.; Zakari-Issoufou, A.-A.; Thiollière, N.; Bidaud, A.; Méplan, O.; Nuttin, A.; Capellan, N. Fundamentals of reactor physics with a view to the (possible) futures of nuclear energy. Comptes Rendus Phys. 2017, 18, 372–380. [Google Scholar] [CrossRef]
- Liu, W.; Dai, X.; Bai, Z.; Wang, Y.; Yang, Z.; Zhang, L.; Xu, L.; Chen, L.; Li, Y.; Gui, D.; et al. Highly sensitive and selective uranium detection in natural water systems using a luminescent mesoporous metal-organic framework equipped with abundant lewis basic sites: A combined batch, X-ray absorption spectroscopy, and first principles simulation investigation. Environ. Sci. Technol. 2017, 51, 3911–3921. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, S.A.; Sheta, M.E.I.; Mahfouz, M.G.; Ahmed, S.H.; Aal, M.M.A. Uranium extraction from sulphuric acid solution using anion-exchange resin. Сhem. Technol. Indian J. 2015, 10, 88–94. [Google Scholar]
- Sanakulov, K.S.; Petukhov, O.F.; Sharafutdinov, U.Z. Extraction of vanadium and uranium from refractory black shale ores. Tsvetnye Met. 2019, 10, 46–49. [Google Scholar] [CrossRef]
- Zagorodnyaya, A.; Abisheva, Z.; Sharipova, A.; Sadykanova, S.S.; Akcil, A. Regularities of Rhenium and Uranium Sorption From Mixed Solutions with Weakly Basic Anion Exchange Resin. Miner. Process. Extr. Met. Rev. 2015, 36, 391–398. [Google Scholar] [CrossRef]
- Zhang, X.; Fu, C. Deeply purifying and recovery uranium from the uranium mine water by ion exchange. Chem. Ind. Eng. Progr. 2011, 30, 126–129. [Google Scholar]
- Wang, J.; Chen, C. Biosorbents for heavy metals removal and their future. Biotechnol. Adv. 2009, 27, 195–226. [Google Scholar] [CrossRef]
- Zagorodnyaya, A.; Abisheva, Z.; Sharipova, A.; Sadykanova, S.; Bochevskaya, Y.; Atanova, O. Sorption of rhenium and uranium by strong base anion exchange resin from solutions with different anion compositions. Hydrometallurgy 2013, 132, 127–132. [Google Scholar] [CrossRef]
- Tan, J.; Wang, Y.; Liu, N.; Liu, M. Adsorption of uranium (VI) from aqueous solution by tetraphenylimidodiphosphinate. J. Radioanal. Nucl. Chem. 2018, 315, 119–126. [Google Scholar] [CrossRef]
- Danko, B.; Dybczyński, R.S.; Samczyński, Z.; Gajda, D.; Herdzik-Koniecko, I.; Zakrzewska-Kołtuniewicz, G.; Chajduk, E.; Kulisa, K. Ion exchange investigation for recovery of uranium from acidic pregnant leach solutions. Nukleonika 2017, 62, 213–221. [Google Scholar] [CrossRef] [Green Version]
- Orrego, P.; Hernández, J.; Reyes, A. Uranium and molybdenum recovery from copper leaching solutions using ion exchange. Hydrometallurgy 2019, 184, 116–122. [Google Scholar] [CrossRef]
- Ali, M.M.; Taha, M.H.; Killa, H.M.; El Wanees, S.A.; El-Maadawy, M.M. Synergistic extraction of uranium from acidic sulfate leach liquor using D2EHPA mixed with TOPO. J. Radioanal. Nucl. Chem. 2014, 300, 963–967. [Google Scholar] [CrossRef]
- Mellah, A.; Chegrouche, S.; Barkat, M. The precipitation of ammonium uranyl carbonate (AUC): Thermodynamic and kinetic investigations. Hydrometallurgy 2007, 85, 163–171. [Google Scholar] [CrossRef]
- Bayyari, M.; Nazal, M.; Khalili, F. The effect of ionic strength on the extraction of Thorium(IV) from nitrate solution by didodecylphosphoric acid (HDDPA). J. Saudi Chem. Soc. 2010, 14, 311–315. [Google Scholar] [CrossRef] [Green Version]
- Tyrpekl, V.; Beliš, M.; Wangle, T.; Vleugels, J.; Verwerft, M.; Belis, M. Alterations of thorium oxalate morphology by changing elementary precipitation conditions. J. Nucl. Mater. 2017, 493, 255–263. [Google Scholar] [CrossRef]
- Ang, K.L.; Li, D.; Nikoloski, A. The effectiveness of ion exchange resins in separating uranium and thorium from rare earth elements in acidic aqueous sulfate media. Part 2. Chelating resins. Miner. Eng. 2018, 123, 8–15. [Google Scholar] [CrossRef]
- Sazonova, V.F.; Perlova, O.; Polikarpov, A.P. Sorption of uranium(VI) compounds on fibrous anion exchanger surface from aqueous solutions. Colloid J. 2017, 79, 270–277. [Google Scholar] [CrossRef]
- Pulhani, V.A.; Dafauti, S.; Hegde, A.G. Separation of uranium from iron in ground water samples using ion exchange resins. J. Radioanal. Nucl. Chem. 2011, 294, 299–302. [Google Scholar] [CrossRef]
- Xiao, J.; Chen, Y.; Zhao, W.; Xu, J. Sorption behavior of U(VI) onto Chinese bentonite: Effect of pH, ionic strength, temperature and humic acid. J. Mol. Liq. 2013, 188, 178–185. [Google Scholar] [CrossRef]
- Salameh, S.I.; Khalili, F.I.; Al-Dujaili, A.H. Removal of U(VI) and Th(IV) from aqueous solutions by organically modified diatomaceous earth: Evaluation of equilibrium, kinetic and thermodynamic data. Int. J. Miner. Process. 2017, 168, 9–18. [Google Scholar] [CrossRef]
- Sohbatzadeh, H.; Keshtkar, A.; Safdari, J.; Yousefi, T.; Fatemi, F. Insights into the biosorption mechanisms of U(VI) by chitosan bead containing bacterial cells: A supplementary approach using desorption eluents, chemical pretreatment and PIXE–RBS analyses. Chem. Eng. J. 2017, 323, 492–501. [Google Scholar] [CrossRef]
- Zhao, J.; Fasfous, I.; Murimboh, J.; Yapici, T.; Chakraborty, P.; Boca, S.; Chakrabarti, C.L. Kinetic study of uranium speciation in model solutions and in natural waters using Competitive Ligand Exchange Method. Talanta 2009, 77, 1015–1020. [Google Scholar] [CrossRef] [PubMed]
- Tournassat, C.; Tinnacher, R.; Grangeon, S.; Davis, J.A. Modeling uranium(VI) adsorption onto montmorillonite under varying carbonate concentrations: A surface complexation model accounting for the spillover effect on surface potential. Geochim. Cosmochim. Acta 2018, 220, 291–308. [Google Scholar] [CrossRef]
- Ghasemi, M.; Keshtkar, A.; Dabbagh, R.; Safdari, S.J. Biosorption of uranium(VI) from aqueous solutions by Ca-pretreated Cystoseira indica alga: Breakthrough curves studies and modeling. J. Hazard. Mater. 2011, 189, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Zheng, X.; Wang, X.; Lu, X.; Shen, Y. Different biosorption mechanisms of Uranium(VI) by live and heat-killed Saccharomyces cerevisiae under environmentally relevant conditions. J. Environ. Radioact. 2017, 167, 92–99. [Google Scholar] [CrossRef]
- Diwan, V.; Sar, S.K.; Biswas, S.; Lalwani, R. Adsorptive extraction of uranium(VI) from aqueous phase by dolomite. Groundw. Sustain. Dev. 2020, 100424. [Google Scholar] [CrossRef]
- Quinn, J.E.; Sedger, D.; Brennan, A.T.; Ring, R.; Soldenhoff, K. Recovery of uranium from carbonate solutions using Lewatit TP 107 resin. Hydrometallurgy 2020, 194, 105360. [Google Scholar] [CrossRef]
- Ma, D.; Wei, J.; Zhao, Y.; Chen, Y.; Tang, S. The removal of uranium using novel temperature sensitive urea-formaldehyde resin: Adsorption and fast regeneration. Sci. Total Environ. 2020, 139399. [Google Scholar] [CrossRef]
- Amesh, P.; Suneesh, A.; Selvan, B.R.; Venkatesan, K.; Chandra, M. Magnetic assisted separation of uranium(VI) from aqueous phase using diethylenetriamine modified high capacity iron oxide adsorbent. J. Environ. Chem. Eng. 2020, 8, 103661. [Google Scholar] [CrossRef]
- Humelnicu, D.; Drochioiu, G.; Sturza, M.; Cecal, A.; Popa, K. Kinetic and thermodynamic aspects of U(VI) and Th(IV) sorption on a zeolitic volcanic tuff. J. Radioanal. Nucl. Chem. 2006, 270, 637–640. [Google Scholar] [CrossRef]
- Mohamud, H.; Ivanov, P.I.; Russell, B.C.; Regan, P.H.; Ward, N.I. Selective sorption of uranium from aqueous solution by graphene oxide-modified materials. J. Radioanal. Nucl. Chem. 2018, 316, 839–848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKay, G.; Otterburn, M.S.; Aga, J.A. Intraparticle diffusion process occurring during adsorption of dyestuffs. Water Air Soil Pollut. 1987, 36, 381–390. [Google Scholar] [CrossRef]
- Eddaif, L.; Shaban, A.; Telegdi, J. Application of the Langmuir Technique to Study the Response of C-dec-9-en-1-ylcalix[4]resorcinarene and C-undecylcalix[4]resorcinarene Ultra-thin Films’ Interactions with Cd2+, Hg2+, Pb2+, and Cu2+ Cations Present in the Subphase. Water Air Soil Pollut. 2019, 230, 279. [Google Scholar] [CrossRef] [Green Version]
- Langmuir, I. The Constitution and Fundamental Properties of Solids and Liquids. Part I. Solids. J. Am. Chem. Soc. 1916, 38, 2221–2295. [Google Scholar] [CrossRef] [Green Version]
- Serpinski, V.; Jakubov, T. Dubinin–Radushkevich Equation as the Equation for the Excess Adsorption Isotherm. Adsorpt. Sci. Technol. 1993, 10, 85–92. [Google Scholar] [CrossRef]
- Tovbin, Y.K. The volume of micropores and the Dubinin—Radushkevich equation. Russ. Chem. Bull. 1998, 47, 637–643. [Google Scholar] [CrossRef]
- Luo, X.; Yu, L.; Wang, C.; Yin, X.; Mosa, A.; Lv, J.; Sun, H. Sorption of vanadium (V) onto natural soil colloids under various solution pH and ionic strength conditions. Chemosphere 2017, 169, 609–617. [Google Scholar] [CrossRef]
- Sultanbayeva, G.; Holze, R.; Chernyakova, R.; Jussipbekov, U. Removal of Fe2+-, Cu2+-, Al3+- and Pb2+-ions from phosphoric acid by sorption on carbonate-modified natural zeolite and its mixture with bentonite. Microporous Mesoporous Mater. 2013, 170, 173–180. [Google Scholar] [CrossRef]
- Wang, L.; Wang, A. Adsorption properties of Congo Red from aqueous solution onto surfactant-modified montmorillonite. J. Hazard. Mater. 2008, 160, 173–180. [Google Scholar] [CrossRef]
- Parab, H.; Joshi, S.; Shenoy, N.; Verma, R.; Lali, A.; Sudersanan, M. Uranium removal from aqueous solution by coir pith: equilibrium and kinetic studies. Bioresour. Technol. 2005, 96, 1241–1248. [Google Scholar] [CrossRef]
- Cheira, M.F.; Atia, B.M.; Kouraim, M.N. Uranium(VI) recovery from acidic leach liquor by Ambersep 920U SO4 resin: Kinetic, equilibrium and thermodynamic studies. J. Radiat. Res. Appl. Sci. 2017, 10, 307–319. [Google Scholar] [CrossRef] [Green Version]
- Hutson, N.D.; Yang, R.T. Theoretical basis for the Dubinin-Radushkevitch (D-R) adsorption isotherm equation. Adsorption 1997, 3, 189–195. [Google Scholar] [CrossRef]
- Dubinin, M.M.; Radushkevich, L.V. The equation of the characteristic curve of the activated charcoal. Proc. Acad. Sci. USSR Phys. Chem. Sect. 1947, 55, 331–337. [Google Scholar]
Type | Name of the Ion Exchangers | Functional Groups | Harmonic Mean Diameter | Matrix |
---|---|---|---|---|
Strong base ion exchangers | Ambersep 900 SO4 | Trimethyl ammonium | 0.50–0.70 mm | Styrene divinylbenzene copolymer |
Puromet MTA4601PF | Quaternary ammonium | 0.50–0.57 mm | Polystyrenic gel | |
Weak Base ion exchangers | Dowex Marathon WBA | Tertiary amine | 0.50–0.52 mm | Styrene-DVB |
Diaion WA30 | Tertiary amine | 0.55–0.75mm | Styrene-DVB, highly porous |
No. | Chemical Composition | Content (%) | No. | Chemical Composition | Content (%) | No. | Chemical Composition | Content (%) |
---|---|---|---|---|---|---|---|---|
1 | SiO2 | 71.1 | 6 | Na2O | 0.06 | 11 | CaO | 3.43 |
2 | Al2O3 | 4.79 | 7 | Fe | 2.07 | 12 | K2O | 1.16 |
3 | C | 12.2 | 8 | U | 0.03 | 13 | P2O5 | 0.7 |
4 | S | 0.8 | 9 | V | 0.68 | 14 | Mn | 0.2 |
5 | MgO | 0.29 | 10 | REE | 0.09 |
Kinetic Models | Parameters | Dowex Marathon WBA | Diaion WA30 | Ambersep 900 SO4 | Puromet MTA4601PF |
---|---|---|---|---|---|
Pseudo-first-order | qe (mg/g) | 43.53 | 47.17 | 52.11 | 55.17 |
k1 (1/min) | 7.16·10−2 | 7.03·10−2 | 7.25·10−2 | 7.03·10−2 | |
R2 | 0.989 | 0.986 | 0.981 | 0.984 | |
Pseudo-second-order | qe (mg/g) | 47.79 | 51.79 | 57.21 | 60.57 |
k2 (g/mg min) | 2.0·10−2 | 1.9·10−2 | 1.7·10−2 | 1.6·10−2 | |
h (g/mg min) | 0.022 | 0.020 | 0.018 | 0.017 | |
R2 | 0.995 | 0.996 | 0.996 | 0.996 | |
Intraparticle diffusion | kid (mg/g min1/2) | 7.998 | 8.546 | 9.494 | 10.07 |
C (mg/g) | 22.63 | 25.05 | 27.44 | 28.98 | |
R2 | 0.876 | 0.873 | 0.874 | 0.875 | |
Practical Capacity | qexp | 44.02 | 47.71 | 52.7 | 55.8 |
Kinetic Models | Parameters | Dowex Marathon WBA | Diaion WA30 | Ambersep 900 SO4 | Puromet MTA4601PF |
---|---|---|---|---|---|
Langmuir isotherm | Equation | y = 0.0224x + 0.0022 | y = 0.0207x + 0.0022 | y = 0.0189x + 0.0022 | y = 0.0179x + 0.0022 |
qmax (mg/g) | 44.64 | 48.31 | 52.91 | 55.86 | |
b (L/mg) | 10.18 | 9.41 | 8.59 | 8.13 | |
R2 | 0.999 | 0.999 | 0.999 | 0.999 | |
Freundlich isotherm | Equation | Y = 0.0229x + 1.5986 | Y = 0.0226x + 1.6338 | Y = 0.0249x + 1.6761 | Y = 0.0256x + 1.7014 |
Kf (mg/g) | 39.68 | 43.03 | 47.44 | 50.28 | |
1/n (mg min/g) | 0.022 | 0.022 | 0.024 | 0.025 | |
R2 | 0.988 | 0.986 | 0.977 | 0.989 | |
D–R isotherm | Equation | Y = −0.03x + 2.807 | Y = −0.02x + 2.897 | Y = −0.0106x + 3.018 | Y = −0.0058x + 3.104 |
qD (mg/g) | 16.56 | 18.13 | 20.45 | 22.30 | |
δ (Mo12/KJ2) | 0.03 | 0.02 | 0.01 | 0.005 | |
E (KJ/mo1) | 4.08 | 5.00 | 6.86 | 9.28 | |
R2 | 0.849 | 0.854 | 0.866 | 0.880 | |
Practical Capacity | qexp (mg/g) | 44.02 | 47.71 | 52.7 | 55.8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baigenzhenov, O.; Khabiyev, A.; Mishra, B.; Turan, M.D.; Akbarov, M.; Chepushtanova, T. Uranium (VI) Recovery from Black Shale Leaching Solutions Using Ion Exchange: Kinetics and Equilibrium Studies. Minerals 2020, 10, 689. https://doi.org/10.3390/min10080689
Baigenzhenov O, Khabiyev A, Mishra B, Turan MD, Akbarov M, Chepushtanova T. Uranium (VI) Recovery from Black Shale Leaching Solutions Using Ion Exchange: Kinetics and Equilibrium Studies. Minerals. 2020; 10(8):689. https://doi.org/10.3390/min10080689
Chicago/Turabian StyleBaigenzhenov, Omirserik, Alibek Khabiyev, Brajendra Mishra, M. Deniz Turan, Merey Akbarov, and Tatyana Chepushtanova. 2020. "Uranium (VI) Recovery from Black Shale Leaching Solutions Using Ion Exchange: Kinetics and Equilibrium Studies" Minerals 10, no. 8: 689. https://doi.org/10.3390/min10080689
APA StyleBaigenzhenov, O., Khabiyev, A., Mishra, B., Turan, M. D., Akbarov, M., & Chepushtanova, T. (2020). Uranium (VI) Recovery from Black Shale Leaching Solutions Using Ion Exchange: Kinetics and Equilibrium Studies. Minerals, 10(8), 689. https://doi.org/10.3390/min10080689