Removal of Pollutants from an AMD from a Coal Mine by Neutralization/Precipitation Followed by “In Vivo” Biosorption Step with the Microalgae Scenedesmus sp.
Abstract
:1. Introduction
2. Materials and Methods
2.1. AMD Sample
2.2. AMD Treatments
2.3. Physical-Chemical and Toxicological Analysis
2.4. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kontopoulos, A. Acid mine drainage control. In Effluent Treatment in the Mining Industry; Castro, S.H., Vergara, F.S.M.A., Eds.; University of Concepciòn: Concepción, Chile, 1998; pp. 57–118. ISBN 956-227-156-0. [Google Scholar]
- Skousen, J.; Rose, A.; Geidel, G.; Foreman, J.; Evans, R.; Hellier, W. Handbook of Technologies for Avoidance and Remediation of Acid Mine Drainage. Available online: https://wvwri.wvu.edu/files/d/c2e42b2b-e40d-4ada-8bad-3c264d867e76/99-handbook-avoidance-remediation.pdf (accessed on 24 June 2020).
- Kefeni, K.K.; Msagati, T.A.M.; Mamba, B.B. Acid mine drainage: Prevention, treatment options, and resource recovery: A review. J. Clean. Prod. 2017, 151, 475–493. [Google Scholar] [CrossRef]
- Skousen, J.G.; Ziemkiewicz, P.F.; McDonald, L.M. Acid mine drainage formation, control and treatment: Approaches and strategies. Extr. Ind. Soc. 2019, 6, 241–249. [Google Scholar] [CrossRef]
- Silveira, A.N.; Silva, R.; Rubio, J. Treatment of acid mine drainage (AMD) in South Brazil: Comparative active processes and water reuse. Int. J. Miner. Process. 2009, 93, 103–109. [Google Scholar] [CrossRef]
- Santos, K.B.; Almeida, V.O.; Weiler, J.; Menezes, J.C.S.S.; Schneider, I.A.H. Ecotoxicity with Allium cepa to determine the efficiency of conventional ARD treatment by neutralization/precipitation from a brazilian coal mine. Proc. IMWA 2019, 269–274. [Google Scholar]
- Pereira, T.C.B.; dos Santos, K.B.; Lautert-Dutra, W.; de Souza Teodoro, L.; de Almeida, V.O.; Weiler, J.; Schneider, I.A.H.; Bogo, M.R. Acid mine drainage (AMD) treatment by neutralization: Evaluation of physical-chemical performance and ecotoxicological effects on zebrafish (Danio rerio) development. Chemosphere 2020, 253, 126665. [Google Scholar] [CrossRef]
- Freitas, A.P.P.; Schneider, I.A.H.; Schwartzbold, A. Biosorption of heavy metals by algal communities in water streams affected by the acid mine drainage in the coal-mining region of Santa Catarina state, Brazil. Miner. Eng. 2011, 24, 1215–1218. [Google Scholar] [CrossRef]
- Bwapwa, J.K.; Jaiyeola, A.T.; Chetty, R. Bioremediation of acid mine drainage using algae strains: A review. South Afr. J. Chem. Eng. 2017, 24, 62–70. [Google Scholar] [CrossRef]
- Edmundson, S.J.; Wilkie, A.C. Landfill leachate—A water and nutrient resource for algae-based biofuels. Environ. Technol. 2013, 34, 1849–1857. [Google Scholar] [CrossRef] [PubMed]
- Leite, G.B.; Abdelaziz, A.E.M.; Hallenbeck, P.C. Algal biofuels: Challenges and opportunities. Bioresour. Technol. 2013, 145, 134–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghorbani, A.; Rahimpour, M.R.; Ghasemi, Y.; Raeissi, S. The biodiesel of microalgae as a solution for diesel. Energies 2018, 11, 950. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.; Viadero, R.C.; Buzby, K.M. Recovery of iron and aluminum from acid mine drainage by selective precipitation. Environ. Eng. Sci. 2005, 22, 745–755. [Google Scholar] [CrossRef]
- Chen, T.; Yan, B.; Lei, C.; Xiao, X. Pollution control and metal resource recovery for acid mine drainage. Hydrometallurgy 2014, 12, 147–148. [Google Scholar] [CrossRef]
- Hedrich, S.; Johnson, D.B. Remediation and selective recovery of metals from acidic mine waters using novel modular bioreactors. Environ. Sci. Technol. 2014, 48, 12206–12212. [Google Scholar] [CrossRef]
- Menezes, J.C.S.S.; Silva, R.A.; Arce, I.S.; Schneider, I.A.H. Production of a poly-ferric sulphate chemical coagulant by selective precipitation of iron from acidic coal mine drainage. Mine Water Environ. 2009, 28, 311–314. [Google Scholar] [CrossRef]
- Menezes, J.C.S.S.; Silva, R.A.; Arce, I.S.; Schneider, I.A.H. Production of a poly-alumino-iron sulphate coagulant by chemical precipitation of a coal mining acid drainage. Miner. Eng. 2010, 23, 249–251. [Google Scholar] [CrossRef]
- Silva, R.D.A.; Castro, C.D.; Vigânico, E.M.; Petter, C.O.; Schneider, I.A.H. Selective precipitation/UV production of magnetite particles obtained from the iron recovered from acid mine drainage. Miner. Eng. 2012, 29, 22–27. [Google Scholar] [CrossRef]
- Silva, R.D.A.; dos Santos Menezes, J.C.S.; Lopes, F.A.; Kirchheim, A.P.; Schneider, I.A.H. Synthesis of a goethite pigment by selective precipitation of iron from acidic coal mine drainage. Mine Water Environ. 2017, 36, 386–392. [Google Scholar] [CrossRef]
- Macías, F.; Pérez-López, R.; Caraballo, M.A.; Cánovas, C.R.; Nieto, J.M. Management strategies and valorization for waste sludge from active treatment of extremely metal-polluted acid mine drainage: A contribution for sustainable mining. J. Clean. Prod. 2017. [Google Scholar] [CrossRef]
- De AlmeidaSilva, R.; Secco, M.P.; Lermen, R.T.; Schneider, I.A.H.; Hidalgo, G.E.N.; Sampaio, C.H. Optimizing the selective precipitation of iron to produce yellow pigment from acid mine drainage. Miner. Eng. 2019, 141, 1057–1066. [Google Scholar] [CrossRef]
- Akinwekomi, V.; Maree, J.P.; Masindi, V.; Zvinowanda, C.; Osman, M.S.; Foteinis, S.; Mpenyana-Monyatsi, L.; Chatzisymeon, E. Beneficiation of acid mine drainage (AMD): A viable option for the synthesis of goethite, hematite, magnetite, and gypsum—Gearing towards a circular economy concept. Miner. Eng. 2020, 148, 106204. [Google Scholar] [CrossRef]
- Bonnélye, V. Acid Mine Drainage: Case Study of One of the Largest Copper Mine Sites in the World, Ozwater15. Available online: https://pdfs.semanticscholar.org/4909/b6b7814b58c391ea9c54306bb9b7c4c834c4.pdf (accessed on 6 August 2020).
- Chesters, S.P.; Morton, P.; Fazel, M. Membranes and minewater-waste or revenue stream. In Proceedings of the IMWA 2016 - Mining Meets Water - Conflicts and Solutions, Leipzig, Germany; 11–15 2016; pp. 1310–1322. [Google Scholar]
- Cheng, S.; Dempsey, B.A.; Logan, B.E. Electricity generation from synthetic acid-mine drainage (AMD) water using fuel cell technologies. Environ. Sci. Technol. 2007, 41, 8149–8153. [Google Scholar] [CrossRef] [PubMed]
- Palma, H.; Killoran, E.; Sheehan, M.; Berner, F.; Heimann, K. Assessment of microalga biofilms for simultaneous remediation and biofuel generation in mine tailings water. Bioresour. Technol. 2017, 234, 327–335. [Google Scholar] [CrossRef]
- Urrutia, C.; Yañez-Mansilla, E.; Jeison, D. Bioremoval of heavy metals from metal mine tailings water using microalgae biomass. Algal Res. 2019, 43, 101659. [Google Scholar] [CrossRef]
- Abinandan, S.; Subashchandrabose, S.R.; Venkateswarlu, K.; Megharaj, M. Sustainable iron recovery and biodiesel yield by acid-adapted microalgae, Desmodesmus sp. MAS1 and Heterochlorella sp. MAS3, grown in synthetic acid mine drainage. ACS Omega 2020, 5, 6888–6894. [Google Scholar] [CrossRef] [Green Version]
- Levandowski, J.; Kalkreuth, W. Chemical and petrographical characterization of feed coal, fly ash and bottom ash from the Figueira Power Plant, Paraná, Brazil. Int. J. Coal Geol. 2009, 77, 269–281. [Google Scholar] [CrossRef]
- Campaner, V.P.; Luiz-Silva, W.; Machado, W. Geochemistry of acid mine drainage from a coal mining area and processes controlling metal attenuation in stream waters, southern Brazil. An. Acad. Bras. Cienc. 2014, 86, 539–544. [Google Scholar] [CrossRef]
- Mehta, S.K.; Gaur, J.P. Use of algae for removing heavy metal ions from wastewater: Progress and prospects. Crit. Rev. Biotechnol. 2005, 25, 113–152. [Google Scholar] [CrossRef]
- Guillard, R.R.L. Culture of phytoplankton for feeding marine invertebrates. In Culture of Marine Invertebrate Animals; Smith, W.L., Chanley, H.H., Eds.; Plenum Press: New York, NY, USA, 1975; pp. 29–60. [Google Scholar]
- Eaton, A.D.; Clesceri, L.S.; Rice, E.; Greenbaerg, A.E.; Franson, M.A.H. Standard Methods for Examination of Water and Wastewater, 21th ed.; American Public Health Association: Washington DC, USA, 15 October 2005. [Google Scholar]
- Fiskesjö, G. The Allium test—An alternative in environmental studies: The relative toxicity of metal ions. Mutat. Res. Fundam. Mol. Mech. Mutagen. 1988, 197, 243–260. [Google Scholar] [CrossRef]
- OECD. Test No. 202: Daphnia sp. Acute Immobilisation Test, OECD Guidelines for the Testing of Chemicals, Section 2; OECD Publishing: Paris, France, 2004. [Google Scholar] [CrossRef]
- Edition, F. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, 5th ed.; US Environmental Protection Agency US EPA: Washington, DC, USA, 2002; Volume 232, p. 266. [Google Scholar]
- Ministério do Meio Ambiente, Conselho Nacional do Meio Ambiente, Brasil. Resolução CONAMA nº 430/2011; Conselho Nacional do Meio Ambiente, Ministério do Meio Ambiente, Brasil: PBrasília, Brazil, 2011.
- Santos, K. Tratamento de drenagem ácida de minas por neutralização/precipitação-efeito do pH, agente neutralizante e tratamento complementar por biossorção com microalgas. Master’s Thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, 2020. [Google Scholar]
- Kumar, K.S.; Dahms, H.U.; Won, E.J.; Lee, J.S.; Shin, K.H. Microalgae—A promising tool for heavy metal remediation. Ecotoxicol. Environ. Saf. 2015, 113, 329–352. [Google Scholar] [CrossRef] [PubMed]
- Dönmez, G.Ç.; Aksu, Z.; Öztürk, A.; Kutsal, T. A comparative study on heavy metal biosorption characteristics of some algae. Process Biochem. 1999, 34, 885–892. [Google Scholar] [CrossRef]
- Priyadarshani, I.; Rath, B. Commercial and industrial applications of micro algae—A review. J. Algal Biomass Utln. 2012, 3, 89–100. [Google Scholar]
- Mehrabadi, A.; Craggs, R.; Farid, M.M. Wastewater treatment high rate algal ponds (WWT HRAP) for low-cost biofuel production. Bioresour. Technol. 2015, 184, 202–214. [Google Scholar] [CrossRef]
- Chamorro, S.; Barata, C.; Piña, B.; Casado, M.; Schwarz, A.; Sáez, K.; Vidal, G. Toxicological analysis of acid mine drainage by water quality and land use bioassays. Mine Water Environ. 2018, 37, 88–97. [Google Scholar] [CrossRef]
- Yim, J.H.; Kim, K.W.; Kim, S.D. Effect of hardness on acute toxicity of metal mixtures using Daphnia magna: Prediction of acid mine drainage toxicity. J. Hazard. Mater. 2006, 138, 16–21. [Google Scholar] [CrossRef]
- Geremias, R.; Bortolotto, T.; Wilhelm-Filho, D.; Pedrosa, R.C.; de Fávere, V.T. Efficacy assessment of acid mine drainage treatment with coal mining waste using Allium cepa L. as a bioindicator. Ecotoxicol. Environ. Saf. 2012, 79, 116–121. [Google Scholar] [CrossRef]
- Zucconi, F.; Forte, M.; Monaco, A.; De Bertoldi, M. Biological evaluation of compost maturity. Biocycle 1981, 22, 27–29. [Google Scholar]
- Kang, S.W.; Seo, J.; Han, J.; Lee, J.S.; Jung, J. A comparative study of toxicity identification using Daphnia magna and Tigriopus japonicus: Implications of establishing effluent discharge limits in Korea. Mar. Pollut. Bull. 2011, 63, 370–375. [Google Scholar] [CrossRef]
- Arambašić, M.B.; Bjelić, S.; Subakov, G. Acute toxicity of heavy metals (copper, lead, zinc), phenol and sodium on Allium cepa L., Lepidium sativum L. and Daphnia magna St.: Comparative investigations and the practical applications. Water Res. 1995, 29, 497–503. [Google Scholar] [CrossRef]
- Seco, J.I.; Fernández-Pereira, C.; Vale, J. A study of the leachate toxicity of metal-containing solid wastes using Daphnia magna. Ecotoxicol. Environ. Saf. 2003, 56, 339–350. [Google Scholar] [CrossRef]
- Soucek, D.J.; Cherry, D.S.; Trent, G.C. Relative acute toxicity of acid mine drainage water column and sediments to Daphnia magna in the Puckett’s Creek watershed, Virginia, USA. Arch. Environ. Contam. Toxicol. 2000, 38, 305–310. [Google Scholar] [CrossRef] [PubMed]
- De Bisthoven, L.J.; Gerhardt, A.; Soares, A.M.V.M. Chironomidae larvae as bioindicators of an acid mine drainage in Portugal. Hydrobiologia 2005, 532, 181–191. [Google Scholar] [CrossRef]
- Benzie, J.A.H. Cladocera: The Genus DAPHNIA (including DAPHNIOPSIS) (Anomopoda: Daphniidae). Guides to the Identification of the Microinvertebrates of the Continental Waters of the World. Q. Rev. Biol. 2005, 21. [Google Scholar] [CrossRef]
- Thomashausen, S.; Maennling, N.; Mebratu-Tsegaye, T. A comparative overview of legal frameworks governing water use and waste water discharge in the mining sector. Resour. Policy 2018, 55, 143–151. [Google Scholar] [CrossRef]
- Rezaie, B.; Anderson, A. Sustainable resolutions for environmental threat of the acid mine drainage. Sci. Total Environ. 2020, 717, 137211. [Google Scholar] [CrossRef]
- Ellen MacArthur Foundation. Towards the Circular Economy—Economic and Business Rationale for an Accelerated Transition; Available online: https://www.ellenmacarthurfoundation.org/publications/towards-the-circular-economy-vol-1-an-economic-and-business-rationale-for-an-accelerated-transition (accessed on 6 August 2020).
- Singh, S.; Sukla, L.B.; Goyal, S.K. Mine waste & circular economy. Mater. Today Proc. 2020, 1–8. [Google Scholar] [CrossRef]
Raw AMD | Conventional Treatment Ca(OH)2 pH 8.7 | Additional Treatment | CONAMA 430/2011 | ||||||
---|---|---|---|---|---|---|---|---|---|
Algae | Algae + Macronutrients | ||||||||
Mean | sd | Mean | sd | Mean | sd | Mean | sd | ||
pH | 2.33 | 0.15 | 8.7 | 0.0 | 5.55 | 0.21 | 5.75 | 0.7 | |
Conductivity (mS cm−1) | 7.79 | 0.02 | 5.28 | 0.07 | 4.84 | 0.08 | 4.34 | 0.10 | – |
SO42− (mg L−1) | 7410.40 | 36.94 | 2727.60 | 19.49 | 1325.75 | 5.59 | 1250.40 | 3.82 | – |
Fe (mg L−1) | 611.38 | 5.11 | 0.90 | 0.02 | 0.08 | 0.11 | 0.05 | 0.07 | 15 |
Al (mg L−1) | 269.37 | 11.67 | 0.08 | 0.08 | 0.24 | 0.33 | 0.30 | 0.43 | – |
Zn (mg L−1) | 62.65 | 0.55 | 0.10 | 0.10 | 0.06 | 0.06 | 0.08 | 0.04 | 5 |
Mn (mg L−1) | 37.98 | 0.36 | 1.54 | 0.40 | 0.46 | 0.27 | 0.45 | 0.11 | 1 |
Pb (mg L−1) | 0.41 | 0.02 | 0.15 | 0.05 | 0.06 | 0.08 | 0.02 | 0.03 | 0.5 |
As (mg L−1) | 0.85 | 0.05 | 0.30 | 0.31 | 0.14 | 0.18 | 0.12 | 0.14 | 0.1 |
Cu (mg L−1) | nd | – | nd | – | nd | – | nd | – | 1 |
Metal content * (mg L−1) | 982.64 | 15.16 | 3.07 | 0.75 | 1.03 | 0.28 | 1.02 | 0.73 | – |
RGI | II (%) | Toxicity | G (%) | GI (%) | Toxicity | |
---|---|---|---|---|---|---|
Raw AMD | 0 | 100 | Inhibition | 0 | 0 | High |
Conventional treatment | 1.37 | −37 | Stimulation | 71 | 97 | Absent or low |
Additional treatment | ||||||
Algae | 1.16 | −17 | No significant effect | 74 | 86 | Absent or low |
Algae + nutrients | 1.32 | −32 | Stimulation | 90 | 119 | Absent or low |
TF | CE-50 48 h (%) | Toxicity | |
---|---|---|---|
Raw AMD | 400 | 6.25 | Extremely toxic |
Conventional treatment | 4 | >100 | Slightly toxic |
Additional treatment | |||
Algae | 2 | >100 | Slightly toxic |
Algae + nutrients | 2 | >100 | Slightly toxic |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, K.B.d.; Almeida, V.O.d.; Weiler, J.; Schneider, I.A.H. Removal of Pollutants from an AMD from a Coal Mine by Neutralization/Precipitation Followed by “In Vivo” Biosorption Step with the Microalgae Scenedesmus sp. Minerals 2020, 10, 711. https://doi.org/10.3390/min10080711
Santos KBd, Almeida VOd, Weiler J, Schneider IAH. Removal of Pollutants from an AMD from a Coal Mine by Neutralization/Precipitation Followed by “In Vivo” Biosorption Step with the Microalgae Scenedesmus sp. Minerals. 2020; 10(8):711. https://doi.org/10.3390/min10080711
Chicago/Turabian StyleSantos, Karine Batista dos, Vítor Otacílio de Almeida, Jéssica Weiler, and Ivo André Homrich Schneider. 2020. "Removal of Pollutants from an AMD from a Coal Mine by Neutralization/Precipitation Followed by “In Vivo” Biosorption Step with the Microalgae Scenedesmus sp." Minerals 10, no. 8: 711. https://doi.org/10.3390/min10080711
APA StyleSantos, K. B. d., Almeida, V. O. d., Weiler, J., & Schneider, I. A. H. (2020). Removal of Pollutants from an AMD from a Coal Mine by Neutralization/Precipitation Followed by “In Vivo” Biosorption Step with the Microalgae Scenedesmus sp. Minerals, 10(8), 711. https://doi.org/10.3390/min10080711