Potential of Natural and Recycled Concrete Aggregate Mixtures for Use in Pavement Structures
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Mineralogical and Petrographic Properties
3.2. Technical Properties of Aggregates
3.3. Properties of Aggregate Mixtures
4. Discussion
5. Conclusions
- Compared with natural dolerite (DI-1) aggregate, RCA has a lower percentage of crushed and broken surfaces, lower resistance to fragmentation, lower density, and higher water absorption. These characteristics of aggregate mixtures can be improved by using higher quantities of dolerite, in order to meet European technical requirements for aggregates to be applied in cement concrete and bituminous mixtures;
- Shape indices of the aggregates and their mixtures (between SI 20 and SI 13 for RCA and DI-1, respectively) are acceptable for their intended use.
- According to the content of crushed and rounded particles, all aggregate mixtures with RCA are classified as category C 95/1. Based on this, it can be said that a relatively large amount of RCA can be added to natural aggregates for use in pavement layers and for the production of rigid pavement structures in which the content of rounded gravel particles is rigorously limited.
- Testing of aggregate mixtures with 15–60% of RCA showed that the increase of RCA quantity leads to the reduction of totally crushed particles (from 94% to 76%), lower resistance to fragmentation (LA coefficient from 22% to 27%), lower resistance to wear (MDE from 14% to 15%), and higher water absorption values (from 1.1% to 2.5%); at the same time, PSV of all aggregate mixtures was in a relatively narrow range (55–57).
- All of the tested aggregate mixtures can also be used for rigid pavement structures, as well as for subbase layers.
- Regarding all the results from the study, it can be concluded that RCA can be a useful resource for producing cement and asphalt concretes.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dolan, B. Hot Mix Asphalt Pavement Design Guide. In Requirements for Successful Asphalt Pavement Construction; The Maryland Asphalt Association, Inc.: Glen Burnie, MD, USA, 2008. [Google Scholar]
- Singh, H.; Chopra, T.; Jain, S.; Kaur, A.; Kamotra, S. Effect of aggregate type and polymer modification on the performance of bituminous concrete mixes. Int. J. Appl. Sci. Eng. 2019, 16, 1–13. [Google Scholar] [CrossRef]
- Přikryl, R. Constructional geomaterials: Versatile earth resources in the service of humankind—Introduction to the thematic set of papers on: Challenges to supply and quality of geomaterials used in construction. Bull. Eng. Geol. Environ. 2017, 76, 1–9. [Google Scholar] [CrossRef]
- Ertas, B.; Topal, T. Quality and durability assessments of the armourstones for two rubble mound breakwaters (Mersin, Turkey). Environ. Geol. 2008, 53, 1235–1247. [Google Scholar] [CrossRef]
- Czinder, B.; Török, Á. Effects of long-term magnesium sulfate crystallisation tests on abrasion and durability of andesite aggregates. Bull. Eng. Geol. Environ. 2019. [Google Scholar] [CrossRef] [Green Version]
- Capik, M.; Yilmaz, A.O. Modeling of Micro Deval abrasion loss based on some rock properties. J. Afr. Earth Sci. 2017, 134, 549–556. [Google Scholar] [CrossRef]
- Rigopoulos, I.; Tsikouras, B.; Pomonis, P.; Hatzipanagiotou, K. The influence of alteration on the engineering properties of dolerites: The examples from the Pindos and Vourinos ophiolites (northern Greece). Int. J. Rock Mech. Min. Sci. 2010, 47, 69–80. [Google Scholar] [CrossRef]
- Rigopoulos, I.; Tsikouras, B.; Pomonis, P.; Hatzipanagiotou, K. Determination of the interrelations between the engineering parameters of construction aggregates from ophiolite complexes of Greece using factor analysis. Constr. Build. Mater. 2013, 49, 747–757. [Google Scholar] [CrossRef]
- Tugrul Tunc, E.; Esat Alyamac, K. A preliminary estimation method of Los Angeles abrasion value of concrete aggregates. Constr. Build. Mater. 2019, 222, 437–446. [Google Scholar] [CrossRef]
- Wang, D.; Wang, H.; Bu, Y.; Schulze, C.; Oeser, M. Evaluation of aggregate resistance to wear with Micro-Deval test in combination with aggregate imaging techniques. Wear 2015, 338–339, 288–296. [Google Scholar] [CrossRef]
- Gökalp, İ.; Uz, V.E.; Saltan, M. Testing the abrasion resistance of aggregates including by-products by using Micro Deval apparatus with different standard test methods. Constr. Build. Mater. 2016, 123, 1–7. [Google Scholar] [CrossRef]
- Erichsen, E. Relationship between PSV and in situ friction: A Norwegian case study. Bull. Eng. Geol. Environ. 2009, 68, 339–343. [Google Scholar] [CrossRef]
- Krutilová, K.; Přikryl, R. Relationship between polished stone value (PSV) and Nordic abrasion value (A N) of volcanic rocks. Bull. Eng. Geol. Environ. 2017, 76, 85–99. [Google Scholar] [CrossRef]
- Přikryl, R.; Török, A.; Theodoridou, M.; Gomez-Heras, M.; Miskovsky, K. Geomaterials in construction and their sustainability: Understanding their role in modern society. Geol. Soc. Spec. Publ. 2016, 416, 1–22. [Google Scholar] [CrossRef]
- UEPG Annual Review 2018–2019; 15340821653-49; EU Transparency Register: Bruxelles, Belgium, 2019; p. 32.
- Sáez, P.V.; del Merino, M.R.; Porras-Amores, C. Managing construction and demolition (C&D) waste—A European perspective. In Proceedings of the 2011 International Conference on Petroleum and Sustainable Development, Dubai, United Arab Emirates, 28–30 December 2011; IACSIT Press: Singapore, 2011; pp. 27–31. [Google Scholar]
- Ecorys. EU Construction & Demolition Waste Management Protocol and Guidelines; European Commission: Bruxelles, Belgium, 2016; ISBN 1866505041. [Google Scholar]
- Brundtland, G.H. Our Common Future: The World Commission on Environment and Development; Oxford University Press: Oxford, UK, 1987; ISBN 019282080X. [Google Scholar]
- Reid, J.M.; Evans, R.D.; Holnsteiner, R.; Wimmer, B.; Gaggl, W.; Berg, F.; Pihl, K.A.; Milvang-Jensen, O.; Hjelmar, O.; Rathmeyer, H.; et al. ALT-MAT Final Report. Contract No.: RO-97-SC.2238. Alt-Mat Altern. Mater. Road Constr. 2001, 1–190. [Google Scholar]
- Cooper, T.; Pezold, T.; Keenleyside, C.; Đorđević-Milošević, S.; Hart, K.; Ivanov, S.; Redman, M.; Vidojević, D. Developing a National Agri—Environment Programme for Serbia; IUCN Programme Office for South-Eastern Europe: Gland, Switzerland; Belgrade, Serbia, 2010; ISBN 978-2-8317-1325-0. [Google Scholar]
- Tam, V.W.Y. Economic comparison of concrete recycling: A case study approach. Resour. Conserv. Recycl. 2008, 52, 821–828. [Google Scholar] [CrossRef] [Green Version]
- Kim, G.-D.; Kim, T.-B. Development of recycling technology from waste aggregate and dust from waste concrete. J. Ceram. Process. Res. 2007, 8, 82–86. [Google Scholar]
- Wilburn, D.; Goonan, T. Aggregates from Natural and Recycled Sources; Economic Assessments for Construction Applications; A Materials Flow Study in USA; Geological Survey Circular 1176: Washington, UK, 1998; p. 40. [Google Scholar]
- Oikonomou, N.D. Recycled concrete aggregates. Cem. Concr. Compos. 2005, 27, 315–318. [Google Scholar] [CrossRef]
- Cho, Y.H.; Yun, T.; Kim, I.T.; Choi, N.R. The application of recycled concrete aggregate (RCA) for hot mix asphalt (HMA) base layer aggregate. KSCE J. Civ. Eng. 2011, 15, 473–478. [Google Scholar] [CrossRef]
- Pérez, I.; Pasandín, A.R.; Medina, L. Hot mix asphalt using C&D waste as coarse aggregates. Mater. Des. 2012, 36, 840–846. [Google Scholar] [CrossRef] [Green Version]
- Pourtahmasb, M.S.; Karim, M.R. Utilisation of recycled concrete aggregates in stone mastic asphalt mixtures. Adv. Mater. Sci. Eng. 2014, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Hou, Y.; Ji, X.; Su, X.; Zhang, W.; Liu, L. Laboratory investigations of activated recycled concrete aggregate for asphalt treated base. Constr. Build. Mater. 2014, 65, 535–542. [Google Scholar] [CrossRef]
- Gómez-Meijide, B.; Pérez, I.; Airey, G.; Thom, N. Stiffness of cold asphalt mixtures with recycled aggregates from construction and demolition waste. Constr. Build. Mater. 2015, 77, 168–178. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Wang, K.; Liu, H.; Deng, Z. Key performance properties of asphalt mixtures with recycled concrete aggregate from low strength concrete. Constr. Build. Mater. 2016, 126, 711–719. [Google Scholar] [CrossRef]
- Wu, S.; Muhunthan, B.; Wen, H. Investigation of effectiveness of prediction of fatigue life for hot mix asphalt blended with recycled concrete aggregate using monotonic fracture testing. Constr. Build. Mater. 2017, 131, 50–56. [Google Scholar] [CrossRef]
- Radević, A.; Đureković, A.; Zakić, D.; Mladenović, G. Effects of recycled concrete aggregate on stiffness and rutting resistance of asphalt concrete. Constr. Build. Mater. 2017, 136, 386–393. [Google Scholar] [CrossRef]
- Radević, A. Properties of Asphalt Concrete Mixtures with Recycled PCC Aggregate. Ph.D. Thesis, The University of Belgrade, Belgrade, Serbia, 2017. [Google Scholar]
- EN 1992-1-1 Eurocode 2: Design of concrete structures—Part 1-1: General rules and rules for buildings. Br. Stand. Inst. 2004, 1, 227.
- Ðokić, O.; Matović, V.; Erić, S.; Šarić, K. Influence of engineering properties on Polished Stone Value (PSV): A case study on basic igneous rocks from Serbia. Constr. Build. Mater. 2015, 101, 1088–1096. [Google Scholar] [CrossRef]
- Đokić, O. Influence of Mineralogical and Petrographical Characteristics on Aggregate Microroughness of Basic Igneous Rocks from Serbia. Ph.D. Thesis, The University of Belgrade, Belgrade, Serbia, 2016. [Google Scholar]
- FprEN 12620 European Standard Emitted by CEN, European Committee for Standardisation: Aggregates for Concrete; Technical Committee CEN/TC154 “Aggregates”: Brussels, Belgium, 2018; p. 52.
- FprEN 13043 European Standard Emitted by CEN, European Committee for Standardisation: Aggregates for Bituminous Mixtures and Surface Treatments for Roads, Airfields and Other Trafficked Areas; Technical Committee CEN/TC154 “Aggregates”: Brussels, Belgium, 2018; p. 50.
- EN 933-11 European Standard Emitted by CEN, European Committee for Standardisation: Classification Test for the Constituents of Coarse Recycled Aggregate; Technical Committee CEN/TC154 “Aggregates”: Brussels, Belgium, 2009; p. 13.
- EN 932-3+A1 European Standard Emitted by CEN, European Committee for Standardisation: Procedure and Terminology for Simplified Petrographic Description; Technical Committee CEN/TC154 “Aggregates”: Brussels, Belgium, 2003; p. 10.
- EN 12407 European Standard Emitted by CEN, European Committee for Standardisation: Petrographic examination; Technical Committee CEN/TC 246 “Natural Stones”: Brussels, Belgium, 2007; p. 18.
- EN 933-4 European Standard Emitted by CEN, European Committee for Standardisation: Determination of Particle Shape—Shape Index; Technical Committee CEN/TC154 “Aggregates”: Brussels, Belgium, 2008; p. 11.
- EN 933-5+A1 European Standard Emitted by CEN, European Committee for Standardisation: Determination of Percentage of Crushed and Broken Surfaces in Coarse Aggregate Particles; Technical Committee CEN/TC154 “Aggregates”: Brussels, Belgium, 2004; p. 10.
- EN 1097-2 European Standard Emitted by CEN, European Committee for Standardisation: Methods for the Determination of Resistance to Fragmentation; Technical Committee CEN/TC154 “Aggregates”: Brussels, Belgium, 2010; p. 38.
- 1097-1 European Standard Emitted by CEN, European Committee for Standardisation: Determination of the Resistance to Wear (Micro-Deval); Technical Committee CEN/TC154 “Aggregates”: Brussels, Belgium, 2011; p. 18.
- EN 1097-8 European Standard Emitted by CEN, European Committee for Standardisation: Determination of the Polished Stone Value; Technical Committee CEN/TC154 “Aggregates”: Brussels, Belgium, 2009; p. 33.
- Dunford, A. Establishing a New Supply of UK PSV Control Stone Including Results of Supplementary Experiments; Published Project Report PPR603; Transport Research Laboratory: Crothon, UK, 2013; p. 20. [Google Scholar]
- EN 1097-6 European Standard Emitted by CEN, European Committee for Standardisation: Determination of Particle Density and Water Absorption; Technical Committee CEN/TC154 “Aggregates”: Brussels, Belgium, 2013; p. 51.
- EN 1367-2 European Standard Emitted by CEN, European Committee for Standardisation: Magnesium Sulfate Test; European Committee for Standardisation: Brussels, Belgium, 2009; p. 17.
- Bilbija, N. The alkali-silica reactivity of the aggregate from the main streams in the Great Morava basin. In The Alkali-Silica Reactivity in Concrete; Highway Institute: Belgrade, Serbia, 1984; pp. 117–134. [Google Scholar]
- European Commission. Regulation (EU) no 305/2011 of the European Parliament and of the Council of 9 March 2011 laying down harmonised conditions for the marketing of construction products and repealing Council Directive 89/106/EEC. Off. J. Eur. Union 2011, 88, 39. [Google Scholar]
- Ugur, I.; Demirdag, S.; Yavuz, H. Effect of rock properties on the Los Angeles abrasion and impact test characteristics of the aggregates. Mater. Charact. 2010, 61, 90–96. [Google Scholar] [CrossRef]
- Hartley, A. A review of the geological factors influencing the mechanical properties of road surface aggregates. Q. J. Eng. Geol. Hydrogeol. 1974, 7, 69–100. [Google Scholar] [CrossRef]
- Török, Á.; Czinder, B. Relationship between density, compressive strength, tensile strength and aggregate properties of andesites from Hungary. Environ. Earth Sci. 2017, 76. [Google Scholar] [CrossRef]
- Thompson, A.; Burrows, A.; Flavin, D.; Walsh, I. The Sustainable Use of for Skid-Resistant Road Surfacing in England High Specification Aggregates; Capita Symonds Ltd.: East Grinstead, UK, 2004; p. 167. [Google Scholar]
- Smith, M.; Collis, L. Aggregates: Sand, Gravel and Crushed Rock Aggregates for Construction Purposes, 3rd ed.; The Geological Society: London, UK, 2001; ISBN 1862390797. [Google Scholar]
- Kong, D.; Xiao, Y.; Wu, S.; Tang, N.; Ling, J.; Wang, F. Comparative evaluation of designing asphalt treated base mixture with composite aggregate types. Constr. Build. Mater. 2017, 156, 819–827. [Google Scholar] [CrossRef]
- Mustafa, S.; Khan, M.A.; Khan, M.R.; Hameed, F.; Mughal, M.S.; Asghar, A.; Niaz, A. Geotechnical study of marble, schist, and granite as dimension stone: A case study from parts of Lesser Himalaya, Neelum Valley Area, Azad Kashmir, Pakistan. Bull. Eng. Geol. Environ. 2015, 74, 1475–1487. [Google Scholar] [CrossRef]
- Boudlal, O.; Djemai, M.; Hamza, A.; Khattaoui, M. Valorisation de nouveaux matériaux naturels et recyclés dans la construction routière en Algérie. Bull. Eng. Geol. Environ. 2017, 76, 523–535. [Google Scholar] [CrossRef]
- Public Enterprise Roads of Serbia SRCS Technical Conditions for Roads Construction, 2 Special technical Conditions, 2.4 Pavement; Public Enterprise Roads of Serbia: Belgrade, Serbia, 2012; p. 125.
- FGSV 613 E Technical Delivery Terms for Aggregates in Road Construction (TL Gestein-StB 04); German Road and Transportation Research Association (FGSV): Köln, Germeny, 2012; p. 64.
RCA and DI-1 Mixtures (%) | RCA Structure (%) | Number of Aggregate Grains * | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
RCA | DI-1 | ∑ | Rc | Ru | Rc + Ru | RCA | DI-1 | ∑ | RCA | |
Rc | Ru | |||||||||
0 | 100 | 100 | 0 | 0 | 0 | 0 | 38 | 38 | 0 | 0 |
15 | 85 | 100 | 57 | 43 | 100 | 6 | 32 | 38 | 4 | 2 |
30 | 70 | 100 | 57 | 43 | 100 | 11 | 27 | 38 | 6 | 5 |
45 | 55 | 100 | 57 | 43 | 100 | 17 | 21 | 38 | 10 | 7 |
60 | 40 | 100 | 57 | 43 | 100 | 23 | 15 | 38 | 13 | 10 |
100 | 0 | 100 | 57 | 43 | 100 | 38 | 0 | 38 | 22 | 16 |
Standard | Fraction | Rc | Ru | Rb | Ra | Rg | X | Rc + Ru | Rc + Ru + Rg | X + Rg | FL |
---|---|---|---|---|---|---|---|---|---|---|---|
(mm) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (cm3/kg) | |
EN 933-11 (classification) | 10/11 | 56.8 | 43.2 | 0.0 | 0.0 | 0.0 | 0.0 | 100.0 | 100.0 | 0.0 | 0.0 |
EN 12620 (categorization) | 10/11 | Rc 50 | Ru 43 | Rb 10- | Ra 1- | Rg 2- | X 1- | Rcu 95 | Rcug 90 | XRg 0.5- | FL 0.2- |
Test Methods | Standard | Fraction (mm) | Determined Values | Categorized According to EN 12620, EN 13043 | ||||
---|---|---|---|---|---|---|---|---|
RCA | DI-1 | RCA and DI-1 | RCA | DI-1 | RCA and DI-1 | |||
Shape index | EN 933-4 | 10/14 | 20 | 13 | - | SI 20 | SI 15 | - |
Percentage of crushed and broken surfaces | EN 933-5 | DI-1 10/14 RCA 10/11 | Cc 35 | Cc 0 | - | C 95/1 | C 100/0 | - |
Ctc 60 | Ctc 100 | |||||||
Cr 5 | Cr 0 | |||||||
Ctr 1 | Ctr 0 | |||||||
Resistance to fragmentation | EN 1097-2 | 10/14 | 31.5 | 20 | LA 35 | LA 20 | ||
Resistance to wear | EN 1097-1 | 10/14 | 16 | 14 | - | MDE 20 | MDE 15 | - |
Polished stone value | EN 1097-8 | sample | 57 | 57 | 15% RCA 57 | PSV 56 | PSV 56 | PSV 56 |
30% RCA 56 | PSV 56 | |||||||
45% RCA 55 | PSV 50 | |||||||
60% RCA 56 | PSV 56 | |||||||
Particle density | EN 1097-6 | 10/14 | ρa 2.62 | ρa 2.79 | ρa 2.62 | ρa 2.79 | ||
ρrd 2.40 | ρrd 2.74 | ρrd 2.40 | ρrd 2.74 | |||||
ρssd 2.49 | ρssd 2.76 | ρssd 2.49 | ρssd 2.76 | |||||
Water absorption | EN 1097-6 | 10/14 | 3.7 | 0.7 | NA | WA24 1 | ||
Magnesium sulphate test | EN 1367-2 | 10/14 | 10 | 5 | MS 18 | MS 18 |
Test Methods | Standard | Unit of Measure | Aggregate Mixtures and Categorisation EN 12620, EN 13043 | |||||
---|---|---|---|---|---|---|---|---|
DI-1 | 15% RCA | 30% RCA | 45% RCA | 60% RCA | 100% RCA | |||
Shape index | EN 933-4 | % | 13 | 14 | 15 | 16 | 17 | 20 |
Category | SI 15 | SI 15 | SI 15 | SI 20 | SI 20 | SI 20 | ||
Percentage of crushed and broken surfaces | EN 933-5 | Cc % | 0 | 5 | 11 | 16 | 21 | 35 |
Ctc % | 100 | 94 | 88 | 82 | 76 | 60 | ||
Cr % | 0 | 1 | 1 | 2 | 3 | 5 | ||
Ctr % | 0 | 0 | 0 | 0 | 0 | 1 | ||
Category | C 100/0 | C 95/1 | C 95/1 | C 95/1 | C 95/1 | C 95/1 | ||
Resistance to fragmentation | EN 1097-2 | % | 20 | 22 | 24 | 25 | 27 | 31.5 |
Category | LA 20 | LA 25 | LA 25 | LA 25 | LA 30 | LA 35 | ||
Resistance to wear | EN 1097-1 | % | 14 | 14 | 14 | 15 | 15 | 16 |
Category | MDE 15 | MDE 15 | MDE 15 | MDE 15 | MDE 15 | MDE 20 | ||
Polished stone value | EN 1097-8 | coeffic. | 57 | 57 | 56 | 55 | 56 | 57 |
Category | PSV 56 | PSV 56 | PSV 56 | PSV 50 | PSV 56 | PSV 56 | ||
Particle density | EN 1097-6 | Mg/m3 | ρa 2.79 | 2.77 | 2.74 | 2.72 | 2.69 | 2.63 |
ρrd 2.74 | 2.69 | 2.64 | 2.58 | 2.53 | 2.40 | |||
ρssd 2.76 | 2.72 | 2.67 | 2.63 | 2.59 | 2.49 | |||
Category | Declared | Declared | Declared | Declared | Declared | Declared | ||
Water absorption | EN 1097-6 | % | 0.7 | 1.1 | 1.6 | 2.0 | 2.5 | 3.7 |
Category | WA24 1 | WA24 2 | WA24 2 | WA24 2 | - | - | ||
Magnesium sulphate test | EN 1367-2 | % | 5 | 6 | 6 | 7 | 8 | 10 |
Category | MS 18 | MS 18 | MS 18 | MS 18 | MS 18 | MS 18 |
Pavement Layer | Unbound Base | Asphalt Concrete Base | Asphalt Concrete Binder | Asphalt Concrete Surface | Stone Mastic Asphalt | Porous Asphalt | Mastic Asphalt | |
---|---|---|---|---|---|---|---|---|
Traffic Loading ESAL 100 kN | ||||||||
Extremely heavy | >3000 | DI-1, 15–60% RCA | DI-1, 15–60% RCA | DI-1, 15–60% RCA | DI-1 | DI-1 | DI-1 | DI-1 |
Very heavy | 800–3000 | DI-1, 15–45% RCA | DI-1, 15–45% RCA | |||||
Heavy | 300–800 | |||||||
Medium | 80–300 | - | DI-1, 15–45% RCA | DI-1, 15–45% RCA | DI-1, 15–60% RCA | |||
Low | 30–80 | all aggregate mixtures | all aggregate mixtures | - | DI-1, 15–60% RCA | DI-1, 15–60% RCA | DI-1, 15–60% RCA | |
Very low | ≤30 | - |
Pavement Layer | AC T | AC TD | AC B | AC D, SMA, MA | PA |
---|---|---|---|---|---|
Mixtures type | all aggregate mixtures | all aggregate mixtures | DI-1 and 0–45% RCA | DI-1 and 0–60% RCA | DI-1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Đokić, O.; Radević, A.; Zakić, D.; Đokić, B. Potential of Natural and Recycled Concrete Aggregate Mixtures for Use in Pavement Structures. Minerals 2020, 10, 744. https://doi.org/10.3390/min10090744
Đokić O, Radević A, Zakić D, Đokić B. Potential of Natural and Recycled Concrete Aggregate Mixtures for Use in Pavement Structures. Minerals. 2020; 10(9):744. https://doi.org/10.3390/min10090744
Chicago/Turabian StyleĐokić, Olivera, Aleksandar Radević, Dimitrije Zakić, and Božidar Đokić. 2020. "Potential of Natural and Recycled Concrete Aggregate Mixtures for Use in Pavement Structures" Minerals 10, no. 9: 744. https://doi.org/10.3390/min10090744
APA StyleĐokić, O., Radević, A., Zakić, D., & Đokić, B. (2020). Potential of Natural and Recycled Concrete Aggregate Mixtures for Use in Pavement Structures. Minerals, 10(9), 744. https://doi.org/10.3390/min10090744