Biogeochemical Controls on 13CDIC Signatures from Circum-Neutral pH Groundwater in Cu–W–F Skarn Tailings to Acidic Downstream Surface Waters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling
2.2.1. Tailings and Ore Minerals (Calcite)
2.2.2. Groundwater and Surface Water
2.3. Analyses
3. Results
3.1. Chemical and Stable Carbon Isotope (δ13C) Composition of the Tailings
3.2. Hydrochemical and δ13CDIC Composition of Ground and Surface Waters
4. Discussions
4.1. Carbon Isotope (δ13C) Systematics and Secondary Carbonate Formation in the Tailings
4.2. Biogeochemical Processes Controlling δ13CDIC Signatures of the Groundwater and Downstream Surface Waters
5. Conclusions
- Lower δ13C values of carbonates in the deeper tailings relative to those of the primary calcite indicate the precipitation of secondary carbonates. The δ13C signatures of these secondary carbonates reflect a mixture of three C sources involving atmospheric CO2 (δ13C = −8‰), degraded organic matter (δ13C = −26‰) and primary calcite (+0.1‰) dissolution in the tailings.
- The recorded δ13CDIC signatures of the groundwater represent a mixture of C signals from calcite and secondary carbonate dissolution in the tailings, as well as the degradation of organic matter (vegetation and sewage sludge) in the uppermost section of the tailings, peat underneath the tailings and the surrounding forests.
- The lower δ13CDIC values of the mixed surface waters (i.e., C7 and C11) downstream of the Smaltjärnen repository in May are regulated by the degradation DOC from the mires and forests during the high discharge from the snowmelt.
- The myriad of potential in-stream biogeochemical processes regulating the δ13CDIC signatures of the downstream surface waters from June to September and the lack of DIC concentrations makes it difficult to decipher the dominant process. In view of this limitation, other isotopic systems and elemental concentrations may be helpful in unravelling the dominant biogeochemical process or source.
Author Contributions
Funding
Conflicts of Interest
References
- Nordstrom, D.K.; Alpers, C.N. Negative pH, efflorescent mineralogy, and consequences for environmental restoration at the Iron Mountain Superfund site, California. Proc. Natl. Acad. Sci. USA 1999, 96, 3455–3462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindsay, M.B.J.; Condon, P.D.; Jambor, J.L.; Lear, K.G.; Blowes, D.W.; Ptacek, C.J. Mineralogical, geochemical, and microbial investigation of a sulfide-rich tailings deposit characterized by neutral drainage. Appl. Geochem. 2009, 24, 2212–2221. [Google Scholar] [CrossRef]
- Moncur, M.; Ptacek, C.; Blowes, D.; Jambor, J. Release, transport and attenuation of metals from an old tailings impoundment. Appl. Geochem. 2005, 20, 639–659. [Google Scholar] [CrossRef]
- Gammons, C.H.; Duaime, T.E.; Parker, S.R.; Poulson, S.R.; Kennelly, P. Geochemistry and stable isotope investigation of acid mine drainage associated with abandoned coal mines in central Montana, USA. Chem. Geol. 2010, 269, 100–112. [Google Scholar] [CrossRef]
- Raymond, P.A.; Hamilton, S.K. Anthropogenic influences on riverine fluxes of dissolved inorganic carbon to the oceans. Limnol. Oceanogr. Lett. 2018, 3, 143–155. [Google Scholar] [CrossRef]
- Stumm, W.; Morgan, J. Chemical equilibria and rates in natural waters. In Aquatic Chemistry; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012. [Google Scholar]
- Webb, J.A.; Sasowsky, I.D. The interaction of acid mine drainage e with a carbonate terrane: Evidence from the Obey River, North-Central Tennessee. J. Hydrol. 1994, 161, 327–346. [Google Scholar] [CrossRef]
- Worrall, F.; Lancaster, A. The release of CO2 from riverwaters—the contribution of excess CO2 from groundwater. Biogeochemistry 2005, 76, 299–317. [Google Scholar] [CrossRef]
- Brunet, F.; Gaiero, D.M.; Probst, J.L.; Depetris, P.J.; Lafaye, F.G.; Stille, P. δ13C tracing of dissolved inorganic carbon sources in Patagonian rivers (Argentina). Hydrol. Process. 2005, 19, 3321–3344. [Google Scholar] [CrossRef]
- Höglund, L.O.; Jones, C.; Lindgren, M. Förstudie för Efterbehandling Av Sandmagasin i Yxsjöberg; Kemakta Konsult: Stockholm, Sweden, 2004. (In Swedish) [Google Scholar]
- Magnusson, N.H. Ljusnarsberg Malmtrakt. Sveriges Geologiska Undersökning Ca 23, 1-111; Rönnells Antikvariat AB: Stockholm, Sweden, 1940. (In Swedish) [Google Scholar]
- Ohlsson, L.G. Tungsten occurrences in central Sweden. Econ. Geol. 1979, 74, 1012–1034. [Google Scholar] [CrossRef]
- Hällström, L.P.; Alakangas, L.; Martinsson, O. Geochemical characterization of W, Cu and F skarn tailings at Yxsjöberg, Sweden. J. Geochem. Explor. 2018, 194, 266–279. [Google Scholar] [CrossRef]
- Rothelius, E. Swedish Mineral Dressing Mills, Short Descriptions and Flow Sheets; International Mineral Dressing Congress: Stockholm, Sweden, 1957; pp. 1–9. [Google Scholar]
- Salifu, M.; Hällström, L.; Aiglsperger, T.; Mörth, C.-M.; Alakangas, L. A simple model for evaluating isotopic (18O, 2H and 87Sr/86Sr) mixing calculations of mine—Impacted surface waters. J. Contam. Hydrol. 2020, 232, 103640. [Google Scholar] [CrossRef]
- Nordstrom, D.K. Aqueous Pyrite Oxidation and the Consequent Formation of Secondary Iron Minerals; Soil Science Society of America: Madison, WI, USA, 1982; pp. 37–56. [Google Scholar]
- Berger, A.C.; Bethke, C.M.; Krumhansl, J.L. A process model of natural attenuation in drainage from a historic mining district. Appl. Geochem. 2000, 15, 655–666. [Google Scholar] [CrossRef] [Green Version]
- Fonyuy, E.W.; Atekwana, E.A. Effects of acid mine drainage on dissolved inorganic carbon and stable carbon isotopes in receiving streams. Appl. Geochem. 2008, 23, 743–764. [Google Scholar] [CrossRef]
- Wilson, S.A.; Dipple, G.M.; Power, I.M.; Barker, S.; Fallon, S.; Southam, G. Subarctic weathering of mineral wastes provides a sink for atmospheric CO2. Environ. Sci. Technol. 2011, 45, 7727–7736. [Google Scholar] [CrossRef] [PubMed]
- Romer, R.L.; Öhlander, B. U–Pb age of the Yxsjöberg Tungsten-Skarn deposit, Sweden. GFF 1994, 116, 161–166. [Google Scholar] [CrossRef]
- Salifu, M.; Aiglsperger, T.; Hällström, L.; Martinsson, O.; Billström, K.; Ingri, J.; Dold, B.; Alakangas, L. Strontium (87Sr/86Sr) isotopes: A tracer for geochemical processes in mineralogically-complex mine wastes. Appl. Geochem. 2018, 99, 42–54. [Google Scholar] [CrossRef]
- Lindroth, G.T. Studier över Yxsjöfältets geologi och petrografi. Geol. Fören. Stockh. Förh. 1922, 44, 19–123. [Google Scholar] [CrossRef]
- SMHI. Annual and Monthly Statistics; Swedish Meteorological and Hydrological Institute: Örebro, Sweden, 2019; Available online: http://opendata-download-metobs.smhi.se/explore/?parameter=3 (accessed on 19 June 2020).
- Noble, T.L.; Lottermoser, B.G.; Parbhakar-Fox, A. Evaluation of pH testing methods for sulfidic mine waste. Mine Water Environ. 2016, 35, 318–331. [Google Scholar] [CrossRef]
- Hällström, L.P.; Alakangas, L.; Martinsson, O. Scheelite weathering and tungsten (W) mobility in historical oxidic-sulfidic skarn tailings at Yxsjöberg, Sweden. Environ. Sci. Pollut. Res. 2019, 27, 6180–6192. [Google Scholar] [CrossRef] [Green Version]
- Vogel, J. Variability of Carbon Isotope Fractionation during Photosynthesis. Stable Isotopes and Plant Carbon-Water Relations; Elsevier: Amsterdam, The Netherlands, 1993; pp. 29–46. [Google Scholar]
- Cerling, T.E.; Quade, J. Stable carbon and oxygen isotopes in soil carbonates. Climate Ch. Cont. Isot. Rec. 1993, 78, 217–231. [Google Scholar]
- Blowes, D.; Ptacek, C. Acid-Neutralization Mechanisms in Inactive Mine Tailings; National Water Research Institute: Waterloo, ON, Canada, 1994. [Google Scholar]
- Aggarwal, P.K.; Hinchee, R.E. Monitoring in situ biodegradation of hydrocarbons by using stable carbon isotopes. Environ. Sci. Technol. 1991, 25, 1178–1180. [Google Scholar] [CrossRef]
- Graven, H.; Allison, C.E.; Etheridge, D.M.; Hammer, S.; Keeling, R.F.; Levin, I.; Meijer, H.A.J.; Rubino, M.; Tans, P.P.; Trudinger, C.M.; et al. Compiled records of carbon isotopes in atmospheric CO2 for historical simulations in CMIP. Geosci. Model Dev. 2017, 10, 4405–4417. [Google Scholar] [CrossRef] [Green Version]
- Lee, E.S.; Hendry, M.; Hollings, P. Use of O2 consumption and CO2 production in kinetic cells to delineate pyrite oxidation–carbonate buffering and microbial respiration in unsaturated media. J. Contam. Hydrol. 2003, 65, 203–217. [Google Scholar] [CrossRef]
- Cerling, T.E. The stable isotopic composition of modern soil carbonate and its relationship to climate. Earth Planet. Sci. Lett. 1984, 71, 229–240. [Google Scholar] [CrossRef]
- Oehlert, A.M.; Swart, P.K. Interpreting carbonate and organic carbon isotope covariance in the sedimentary record. Nat. Commun. 2014, 5, 4672. [Google Scholar] [CrossRef] [Green Version]
- Salomons, W.; Goudie, A.; Mook, W.G. Isotopic composition of calcrete deposits from Europe, Africa and India. Earth Surf. Process. Landforms 1978, 3, 43–57. [Google Scholar] [CrossRef]
- Jurjovec, J.; Ptacek, C.J.; Blowes, D.W. Acid neutralisation mechanisms and metal release in mine tailings: A laboratory column experiment. Geochim. Cosmochim. Acta 2002, 66, 1511–1523. [Google Scholar] [CrossRef]
- Lin, G.; Ehleringer, J.R. Carbon isotopic fractionation does not occur during dark respiration in C3 and C4 plants. Plant Physiol. 1997, 114, 391–394. [Google Scholar] [CrossRef] [Green Version]
- Mayo, A.L.; Nielsen, P.J.; Loucks, M.; Brimhall, W.H. The use of solute and isotopic chemistry to identify flow patterns and factors which limit acid mine drainage in the wasatch range, Utah. Ground Water 1992, 30, 243–249. [Google Scholar] [CrossRef]
- Ali, H.N.; Atekwana, E.A. The effect of sulfuric acid neutralization on carbonate and stable carbon isotope evolution of shallow groundwater. Chem. Geol. 2011, 284, 217–228. [Google Scholar] [CrossRef]
- Finlay, J.C. Controls of stream water dissolved inorganic carbon dynamics in a forested watershed. Biogeochemistry 2003, 62, 231–252. [Google Scholar] [CrossRef]
- Yang, C.; Telmer, K.; Veizer, J. Chemical dynamics of the “St. Lawrence” riverine system: δDH2O, δ18OH2O, δ13CDIC, δ34Ssulfate, and dissolved 87Sr/86Sr. Geochim. Cosmochim. Acta 1996, 60, 851–866. [Google Scholar] [CrossRef]
- Cawley, K.M.; Ding, Y.; Fourqurean, J.W.; Jaffé, R. Characterising the sources and fate of dissolved organic matter in Shark Bay, Australia: A preliminary study using optical properties and stable carbon isotopes. Mar. Freshw. Res. 2012, 63, 1098. [Google Scholar] [CrossRef] [Green Version]
- Gennings, C.; Molot, L.A.; Dillon, P.J. Enhanced photochemical loss of organic carbon in acidic waters. Biogeochemistry 2001, 52, 339–354. [Google Scholar] [CrossRef]
Sample | Depth (cm) | pH | Cbulk | S | Organic C (Corg) | Inorganic C | δ13Cbulk | δ13Corg | δ13Ccarb | Remarks |
---|---|---|---|---|---|---|---|---|---|---|
(%) | (%) | (%) | (%) | (‰) | (‰) | (‰) | ||||
MS 1_BT | 10 | 4.5 | 0.14 | 0.07 | 0.03 | 0.11 | −25.78 | −25.85 | - | |
MS 2_BT | 20 | 4.4 | 0.06 | 0.1 | 0.01 | 0.05 | −25.96 | −25.79 | - | |
MS 3_BT | 30 | 3.9 | 0.03 | 0.2 | 0.01 | 0.02 | −24.58 | −24.73 | - | OZ |
MS 4_BT | 40 | 3.7 | 0.03 | 1.31 | 0.01 | 0.02 | −24.15 | −25.37 | - | |
MS 5_BT | 48 | 3.6 | 0.04 | 0.97 | 0.01 | 0.03 | −19.15 | −25.57 | - | |
MS 6_BT | 49 | 5.3 | 0.15 | 0.6 | 0.01 | 0.14 | −8.86 | −26.44 | 0.7 | |
MS 7_BT | 63 | 6.3 | 0.28 | 0.7 | 0.01 | 0.27 | −4.8 | −25.59 | −2.81 | TZ |
MS 8_BT | 100 | 6.8 | 0.46 | 0.85 | 0.01 | 0.45 | −4.22 | −28.34 | −2.42 | |
MS 9_BT | 120 | 6.2 | 0.21 | 1.04 | 0.01 | 0.2 | −5.78 | −29.48 | −2.06 | |
MS 10_BT | 150 | 6.4 | 0.32 | 1.24 | 0.01 | 0.31 | −2.54 | −30.54 | −0.97 | |
MS 11_BT | 157 | 6.3 | 0.43 | 0.83 | 0.01 | 0.42 | −5.05 | −30.7 | −2.12 | |
MS 12_BT | 177 | 7.2 | 0.68 | 0.69 | 0.01 | 0.67 | −3.85 | −30.63 | −2.86 | |
MS 13_BT | 240 | 7.4 | 0.35 | 0.71 | 0.01 | 0.34 | −4.54 | −30.91 | −3.92 | UUZ |
MS 14_BT | 309 | 7.6 | 0.57 | 0.78 | 0.01 | 0.56 | −5.09 | −30.11 | −4.58 | |
MS 15_BT | 360 | 7.9 | 0.75 | 0.64 | 0.02 | 0.73 | −4.61 | −28.92 | −4.25 | |
MS 16_BT | 480 | 7.7 | 0.5 | 1.28 | 0.01 | 0.49 | −4.69 | −28.43 | −4.16 | |
MS 17_BT | 500 | 7.6 | 0.58 | 0.84 | 0.01 | 0.57 | −3.88 | −27.9 | −3.23 | |
MS 18_BT * | 600 | 7.3 | 1.64 | 0.79 | 0.69 | 0.95 | −25.22 | −25.56 | - |
Sampling Site | EC (µS/cm) | pH | Al (mg/L) | Ca (mg/L) | Fe (mg/L) | Mg (mg/L) | Na (mg/L) | Be (µg/L) | W (µg/L) | SO42− (mg/L) | DOC (mg·C/L) | δ13CDIC (‰) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
May | ||||||||||||
A3 | 2500 | 6.5 | 29.83 | 635 | 36.62 | 31.33 | 15.45 | 4367 | 2.94 | 639 | 7.4 | −4.43 |
C7 | 100 | 5.7 | 0.22 | 12.42 | 0.77 | 0.93 | 2.05 | 8.7 | 0.17 | 11.76 | 14.2 | −16.09 |
C9 | 18 | 5.2 | 0.22 | 1.39 | 0.81 | 0.35 | 1.18 | 0.09 | 0.14 | 0.55 | 18.4 | |
C11 | 73 | 5.6 | 0.24 | 8.95 | 1.15 | 0.75 | 1.82 | 6.30 | 0.23 | 8.09 | ||
C13 | 27 | 6.1 | 0.11 | 2.52 | 0.32 | 0.37 | 1.75 | 0.04 | 0.38 | 0.91 | 13.2 | |
Ref | 18 | 5.0 | 0.22 | 1.50 | 0.65 | 0.39 | 1.25 | 0.04 | 0.02 | 0.48 | 15.4 | −20.23 |
June | ||||||||||||
A1 | 2660 | 6.4 | 0.06 | 607 | 59.38 | 46.19 | 15.72 | 3.28 | 0.49 | 547 | 18.9 | −12.64 |
A3 | 2670 | 6.2 | 34 | 642 | 57.35 | 27.45 | 14.58 | 4512 | 20.60 | 590 | 10.6 | −7.92 |
C7 | 256 | 5.8 | 0.23 | 43.30 | 2.13 | 2.36 | 2.84 | 35.10 | 0.14 | 40.20 | 10.4 | −15.94 |
C9 | 33 | 5.6 | 0.21 | 3.11 | 0.99 | 0.73 | 1.67 | 0.10 | 0.20 | 1.09 | 21.1 | −22.15 |
C11 | 163 | 5.7 | 0.21 | 21.61 | 0.90 | 1.54 | 2.19 | 15 | 0.14 | 18.54 | 14.5 | −16.1 |
C13 | 27 | 6.5 | 0.08 | 2.86 | 0.52 | 0.38 | 1.57 | 0.03 | 0.85 | 0.83 | 12 | −17.52 |
C14 | 66 | 6.6 | 0.09 | 7.83 | 0.57 | 0.74 | 1.75 | 3.10 | 0.57 | 5.46 | 12.1 | −19.17 |
Ref | 37 | 6.4 | 0.05 | 3.95 | 0.35 | 0.68 | 1.51 | 0.01 | 0.08 | 0.53 | 10.2 | −14.03 |
July | ||||||||||||
A1 | 2430 | 6.4 | 0.05 | 545 | 55.39 | 44.02 | 15.80 | 1.04 | 0.70 | 542 | 13 | |
A3 | 2590 | 6.2 | 36.87 | 594 | 56.10 | 30.45 | 15.80 | 4610 | 21.70 | 606 | 3.6 | −4.96 |
C7 | 306 | 5.2 | 0.23 | 41.72 | 2.81 | 2.72 | 3.14 | 35 | 0.10 | 43.53 | 7.8 | −15.36 |
C9 | 41 | 6.4 | 0.15 | 4.37 | 1.20 | 1.01 | 2.14 | 0.12 | 0.28 | 0.46 | 16.2 | −14.28 |
C11 | 259 | 5.8 | 0.25 | 35.95 | 0.96 | 2.50 | 3.08 | 27 | 0.10 | 35.86 | 8.5 | −13.4 |
C13 | 29 | 7.6 | 0.08 | 2.87 | 0.59 | 0.41 | 1.86 | 0.07 | 1.04 | 0.81 | 10.5 | −10.76 |
C14 | 63 | 6.4 | 0.07 | 7.26 | 0.60 | 0.76 | 2.06 | 2.10 | 0.81 | 5.03 | 9.3 | −12.78 |
Ref | 38 | 6.6 | 0.07 | 4.29 | 0.63 | 0.75 | 1.76 | 0.08 | 0.02 | 0.56 | 9.3 | −14.04 |
Aug | ||||||||||||
A3 | 2640 | 6.2 | 32.29 | 621 | 52.03 | 26.15 | 13.74 | 4671 | 21.34 | 577 | 3.3 | |
C7 | 460 | 5.5 | 0.27 | 65.63 | 3.12 | 3.93 | 3.44 | 52 | 0.62 | 66.50 | 5.9 | −22.95 |
C9 | 45 | 6.5 | 0.11 | 4.55 | 0.79 | 1.00 | 2.08 | 0.07 | 0.82 | 0.83 | 13.3 | −15.91 |
C11 | 402 | 5.8 | 0.35 | 55.77 | 0.69 | 3.44 | 3.27 | 42 | 0.60 | 55.37 | 5.5 | −24.86 |
C13 | 29 | 6.7 | 0.05 | 12.85 | 0.37 | 1.18 | 2.06 | 3.00 | 0.98 | 0.75 | 10.1 | −16.18 |
Ref | 40 | 6.3 | 0.06 | 4.08 | 0.86 | 0.67 | 1.40 | 0.03 | 0.52 | 0.62 | 8.9 | −19.98 |
Sept | ||||||||||||
C7 | 555 | 5.9 | 0.26 | 94.41 | 2.46 | 5.92 | 4.86 | 72 | 0.02 | 91.21 | 5.6 | −9.15 |
C11 | 400 | 6.0 | 0.28 | 74.66 | 1.59 | 5.06 | 4.33 | 58 | 0.03 | 74.54 | 6.9 | −17.37 |
C13 | 30 | 6.6 | 0.06 | 3.20 | 0.62 | 0.48 | 1.99 | 0.08 | 1.02 | 0.98 | 9.5 | −10.54 |
Ref | 35 | 6.5 | 0.10 | 4.09 | 0.74 | 0.77 | 1.67 | 0.03 | 0.01 | 0.77 | 9.1 | |
Oct | ||||||||||||
A1 | 2500 | 6.9 | 0.10 | 498 | 48.60 | 38.14 | 13.62 | 5.2 | 0.52 | 455 | 16.4 | |
A3 | 2690 | 6.2 | 28.59 | 576 | 49.93 | 23.85 | 11.82 | 4406 | 24.47 | 535 | 4.4 | |
C7 | 396 | 6.4 | 0.16 | 52.61 | 1.213 | 3.01 | 3.26 | 33 | 0.07 | 49.03 | 11.4 | −9.09 |
C9 | 36 | 6.0 | 0.17 | 3.29 | 1.23 | 0.79 | 1.64 | 0.18 | 0.24 | 1.18 | 17.6 | |
C11 | 220 | 6.4 | 0.17 | 42.49 | 1.51 | 2.61 | 2.93 | 26 | 0.12 | 39.79 | 12.2 | −7.21 |
C13 | 29 | 6.6 | 0.07 | 2.87 | 1.11 | 0.39 | 1.54 | 0.10 | 1.74 | 0.78 | 9.4 | |
C14 | 99 | 6.3 | 0.10 | 11.37 | 0.89 | 0.94 | 1.82 | 6.00 | 1.07 | 8.87 | 9.4 | −22.09 |
Ref | 38 | 6.5 | 0.15 | 4.17 | 1.24 | 0.69 | 1.47 | 0.16 | 0.07 | 0.84 | 11.7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salifu, M.; Aiglsperger, T.; Alakangas, L. Biogeochemical Controls on 13CDIC Signatures from Circum-Neutral pH Groundwater in Cu–W–F Skarn Tailings to Acidic Downstream Surface Waters. Minerals 2020, 10, 758. https://doi.org/10.3390/min10090758
Salifu M, Aiglsperger T, Alakangas L. Biogeochemical Controls on 13CDIC Signatures from Circum-Neutral pH Groundwater in Cu–W–F Skarn Tailings to Acidic Downstream Surface Waters. Minerals. 2020; 10(9):758. https://doi.org/10.3390/min10090758
Chicago/Turabian StyleSalifu, Musah, Thomas Aiglsperger, and Lena Alakangas. 2020. "Biogeochemical Controls on 13CDIC Signatures from Circum-Neutral pH Groundwater in Cu–W–F Skarn Tailings to Acidic Downstream Surface Waters" Minerals 10, no. 9: 758. https://doi.org/10.3390/min10090758
APA StyleSalifu, M., Aiglsperger, T., & Alakangas, L. (2020). Biogeochemical Controls on 13CDIC Signatures from Circum-Neutral pH Groundwater in Cu–W–F Skarn Tailings to Acidic Downstream Surface Waters. Minerals, 10(9), 758. https://doi.org/10.3390/min10090758