Spectral Induced Polarization Survey with Distributed Array System for Mineral Exploration: Case Study in Saudi Arabia
Abstract
:1. Introduction
GEMTIP Resistivity Relaxation Model
2. Spectral IP Survey Description
2.1. Geological Background
2.2. Geophysical Background
2.3. Field Data Collection
2.4. Field Data Processing
3. Analysis of Inductive Coupling (IC) Effect
3.1. Inductive Coupling in IP Measurements
3.2. Three-Dimensional Forward Modeling Using Integral Equation Method
3.3. Numerical Modeling of Inductive Coupling in the Frequency and Time Domain
3.4. Discrimination of the IP Time Constant and Relaxation Coefficient When Considering the IC Effects
4. Inversion of the IP Data
4.1. Modeling of the Inductive Coupling
4.2. Inversion
5. Results of Interpretation of SIP Survey Data
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhdanov, M.; Alfouzan, F.; Cox, L.; Alotaibi, A.; Alyousif, M.; Sunwall, D.; Endo, M. Large-Scale 3D Modeling and Inversion of Multiphysics Airborne Geophysical Data: A Case Study from the Arabian Shield, Saudi Arabia. Minerals 2018, 8, 271. [Google Scholar] [CrossRef] [Green Version]
- Sheard, N.; Ritchie, T.; Rowston, P. MIMDAS-A quantum change in surface electrical geophysics. In Proceedings of the PDAC Conference, Toronto, ON, Canada, 10–13 March 2002. [Google Scholar]
- Eaton, P.; Anderson, B.; Queen, S.; MacKenzie, I.; Wynn, D. NEWDAS—The Newmont Distributed IP Data Acquisition System. In SEG Technical Program Expanded Abstracts 2010; Society of Exploration Geophysicists: Tulsa, OK, USA, 2010; pp. 1768–1772. [Google Scholar]
- Zonge, K.L.; Wynn, J.C. Recent advances and applications in complex resistivity measurements. Geophysics 1975, 40, 851–864. [Google Scholar] [CrossRef]
- Zhdanov, M. Generalized effective-medium theory of induced polarization. Geophysics 2008, 73, F197–F211. [Google Scholar] [CrossRef]
- Nordsiek, S.; Weller, A. A new approach to fitting induced-polarization spectra. Geophysics 2008, 73, F235–F245. [Google Scholar] [CrossRef]
- Cole, K.S.; Cole, R.H. Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics. J. Chem. Phys. 1941, 9, 341–351. [Google Scholar] [CrossRef] [Green Version]
- Pelton, W.H. Interpretation of Induced Polarization and Resistivity Data. Ph.D. Thesis, University of Utah, Salt Lake City, UT, USA, 1977. [Google Scholar]
- Pelton, W.H.; Rijo, L.; Swift, C.M. Inversion of two-dimensional resistivity and induced-polarization data. Geophysics 1978, 43, 788–803. [Google Scholar] [CrossRef]
- Pelton, W.H.; Ward, S.H.; Hallof, P.G.; Sill, W.R.; Nelson, P.H. Mineral discrimination and removal of inductive coupling with multifrequency IP. Geophysics 1978, 43, 588–609. [Google Scholar] [CrossRef]
- Seigel, H.O.; Vanhala, H.; Sheard, S.N. Some case histories of source discrimination using time-domain spectral IP. Geophysics 1997, 62, 1394–1408. [Google Scholar] [CrossRef]
- Yuval, W.; Oldenburg, D. Computation of Cole-Cole parameters from IP data. Geophysics 1997, 62, 436–448. [Google Scholar] [CrossRef] [Green Version]
- Routh, P.S.; Oldenburg, D.W. Electromagnetic coupling in frequency-domain induced polarization data: A method for removal. Geophys. J. Int. 2001, 145, 59–76. [Google Scholar] [CrossRef]
- Rowston, P.; Busuttil, S.; McNeill, G. Cole–Cole Inversion of Telluric Cancelled IP Data. ASEG Ext. Abstr. 2003, 2003, 1–4. [Google Scholar] [CrossRef]
- Yoshioka, K.; Zhdanov, M.S. Three-dimensional nonlinear regularized inversion of the induced polarization data based on the Cole–Cole model. Phys. Earth Planet. Inter. 2005, 150, 29–43. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, J.-X.; Guo, Z.-W.; Tong, X.-Z. Cole-Cole model based on the frequency-domain IP method of forward modeling. In Proceedings of the Progress in Electromagnetics Research Symposium Proceedings, Xi’an, China, 5–8 July 2010; pp. 383–386. [Google Scholar]
- Burtman, V.; Zhdanov, M.; Lin, W.; Endo, M. Complex resistivity of mineral rocks in the context of the generalized effective-medium theory of the IP effect. In SEG Technical Program Expanded Abstracts 2016; Society of Exploration Geophysicists: Dallas, TX, USA, 2016; pp. 2238–2242. [Google Scholar]
- Zhdanov, M.S.; Burtman, V.; Endo, M.; Lin, W. Complex resistivity of mineral rocks in the context of the generalised effective-medium theory of the induced polarisation effect. Geophys. Prospect. 2018, 66, 798–817. [Google Scholar] [CrossRef]
- Li, Y.; Oldenburg, D.W. Inversion of 3-D DC resistivity data using an approximate inverse mapping. Geophys. J. Int. 1994, 116, 527–537. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Oldenburg, D.W. 3-D inversion of induced polarization data. Geophysics 2000, 65, 1931–1945. [Google Scholar] [CrossRef] [Green Version]
- Dey, A.; Morrison, H.F. Electromagnetic coupling in frequency and time-domain induced-polarization surveys over a multilayered earth. Geophysics 1973, 38, 380–405. [Google Scholar] [CrossRef]
- Commer, M.; Newman, G.A.; Williams, K.H.; Hubbard, S.S. 3D induced-polarization data inversion for complex resistivity. Geophysics 2011, 76, F157–F171. [Google Scholar] [CrossRef] [Green Version]
- Fiandaca, G.; Auken, E.; Christiansen, A.V.; Gazoty, A. Time-domain-induced polarization: Full-decay forward modeling and 1D laterally constrained inversion of Cole–Cole parameters. Geophysics 2012, 77, E213–E225. [Google Scholar] [CrossRef]
- Fullagar, P.K.; Zhou, B.; Bourne, B. EM-coupling removal from time-domain IP data. Explor. Geophys. 2000, 31, 134–139. [Google Scholar] [CrossRef]
- Smith, R.S.; Walker, P.W.; Polzer, B.D.; West, G.F. The time-domain electromagnetic response of polarizable bodies: An approximate convolution algorithm1. Geophys. Prospect. 1988, 36, 772–785. [Google Scholar] [CrossRef]
- Marchant, D.; Kang, S.; McMillian, M.; Haber, E. Modelling IP effects in airborne time domain electromagnetics. ASEG Ext. Abstr. 2018, 2018, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Tikhonov, A.N.; Arsenin, V.I. Solutions of Ill-Posed Problems; Halsted Press: Washington, DC, USA; New York, NY, USA, 1977. [Google Scholar]
- Zhdanov, M.S. Inverse Theory and Applications in Geophysics; Elsevier Science: Amsterdam, The Netherlands; Boston, MA, USA, 2015. [Google Scholar]
- Zhdanov, M.S. Geophysical Inverse Theory and Regularization Problems; Elsevier Science: Amsterdam, The Netherlands; Boston, MA, USA, 2002. [Google Scholar]
- Zhdanov, M.S. Geophysical Electromagnetic Theory and Methods, 1st ed.; Elsevier: Amsterdam, The Netherlands; Boston, MA, USA, 2009. [Google Scholar]
- Xu, Z.; Zhdanov, M.S. Three-Dimensional Cole-Cole Model Inversion of Induced Polarization Data Based on Regularized Conjugate Gradient Method. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1180–1184. [Google Scholar]
- Zhdanov, M.; Endo, M.; Cox, L.; Sunwall, D. Effective-Medium Inversion of Induced Polarization Data for Mineral Exploration and Mineral Discrimination: Case Study for the Copper Deposit in Mongolia. Minerals 2018, 8, 68. [Google Scholar] [CrossRef] [Green Version]
- Rudd, J.; Chubak, G. The Facility of a Fully-Distributed DCIP System with CVR. In Proceedings of the 15th SAGA Biennial Conference and Exhibition, Cape Town, South Africa, 31 July 2017. [Google Scholar]
- Zhdanov, M.S. Foundations of Geophysical Electromagnetic Theory and Methods; Elsevier Science: Amsterdam, The Netherlands; Boston, MA, USA, 2018. [Google Scholar]
- Zhdanov, M. New Geophysical Technique for Mineral Exploration and Mineral Discrimination Based on Electromagnetic Methods. US Patent No. 7,324,899, 29 January 2008. [Google Scholar]
- Cox, L.H.; Wilson, G.A.; Zhdanov, M.S. 3D inversion of airborne electromagnetic data. Geophysics 2012, 77, WB59–WB69. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
DC Resistivity (ρDC) | 100 [Ohm·m] |
Chargeability (η) | 100 [mV/V] |
Time Constant (τ) | 0.1 [s] |
Relaxation Factor (C) | 0.5 [ ] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alfouzan, F.A.; Alotaibi, A.M.; Cox, L.H.; Zhdanov, M.S. Spectral Induced Polarization Survey with Distributed Array System for Mineral Exploration: Case Study in Saudi Arabia. Minerals 2020, 10, 769. https://doi.org/10.3390/min10090769
Alfouzan FA, Alotaibi AM, Cox LH, Zhdanov MS. Spectral Induced Polarization Survey with Distributed Array System for Mineral Exploration: Case Study in Saudi Arabia. Minerals. 2020; 10(9):769. https://doi.org/10.3390/min10090769
Chicago/Turabian StyleAlfouzan, Fouzan A., Abdulrahman M. Alotaibi, Leif H. Cox, and Michael S. Zhdanov. 2020. "Spectral Induced Polarization Survey with Distributed Array System for Mineral Exploration: Case Study in Saudi Arabia" Minerals 10, no. 9: 769. https://doi.org/10.3390/min10090769
APA StyleAlfouzan, F. A., Alotaibi, A. M., Cox, L. H., & Zhdanov, M. S. (2020). Spectral Induced Polarization Survey with Distributed Array System for Mineral Exploration: Case Study in Saudi Arabia. Minerals, 10(9), 769. https://doi.org/10.3390/min10090769