Crystal Chemical and Structural Characterization of Natural and Cation-Exchanged Mexican Erionite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Description
2.2. High Resolution Scanning Electron Microscopy (HR-SEM)
2.3. Scanning Electron Microscopy with Energy Dispersive X-ray Analysis (SEM-EDX)
2.4. X-ray Powder Diffraction (XRPD)
3. Results
3.1. Morphology Characterization
3.2. Chemical Structural Characterization of both Pristine and Ion-Exchanged Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- McCusker, L.B.; Olson, D.H.; Baerlocher, C. Atlas of Zeolite Framework Types, 6th ed.; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar] [CrossRef]
- Stocker, K.; Ellersdorfer, M.; Lehner, M.; Raith, J. Characterization and Utilization of Natural Zeolites in Technical Applications. BHM Berg- Und Hüttenmännische Monatshefte 2017, 162, 142–147. [Google Scholar] [CrossRef]
- Kròl, M. Natural vs synthetic zeolites. Crystals 2020, 10, 662. [Google Scholar] [CrossRef]
- Gottardi, G.; Galli, E. Natural Zeolites, Mineral and Rocks; Springer: Berlin/Heidelberg, Germany, 1985. [Google Scholar] [CrossRef]
- Marantos, I.; Christidis, G.E.; Ulmanu, M. Zeolite Formation and Deposits. In Handbook of Natural Zeolites; Inglezakis, V.J., Zorpas, A.A., Eds.; Bentham Science Publishers: Sharjah, United Arab Emirates, 2012; pp. 28–51. [Google Scholar]
- Gatta, G.D.; Lotti, P. Chapter 1-Systematics, crystal structures, and occurrences of zeolites. In Micro and Nano Technologies; Mercurio, M., Sarkar, B., Langella, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–25. ISBN 978-0-12-814617-0. [Google Scholar]
- Quiroz, K.; Hernandez, M.A.; Portillo, R.; Rubio, E.; Petranovskii, V. Comparación de la capacidad de secuestro de CO2 en Clinoptilolita, Epistilbita, Erionita, Mordenita y Caolinita como constituyentes del suelo. Superf. Y Vacío 2016, 29, 55–61. [Google Scholar]
- Ortega-Guerrero, M.A.; Carrasco-Núñez, G. Environmental occurrence, origin, physical and geochemical properties, and carcinogenic potential of erionite near San Miguel de Allende, Mexico. Environ. Geochem. Health 2014, 36, 517–529. [Google Scholar] [CrossRef]
- Ortega-Guerrero, M.A.; Carrasco-Núñez, G.; Barragán-Campos, H.; Ortega, M.R. High incidence of lung cancer and malignant mesothelioma linked to erionite fibre exposure in a rural community in Central Mexico. Occup. Environ. Med. 2015, 72, 216–218. [Google Scholar] [CrossRef]
- Hernández, M.A.; Corona, L.; Rojas, F. Adsorption characteristics of natural erionite, clinoptilolite and mordenite zeolites from Mexico. Adsorption 2000, 6, 33–45. [Google Scholar] [CrossRef]
- Hernandez, M.A.; Rojas, F.; Portillo, R.; Salgado, M.A.; Rubio, E.; Ruiz, S. Creating nanoporosity in Na, Ca and Mg exchanged erionite zeolite. Int. J. Nanotechnol. 2016, 13, 28–43. [Google Scholar] [CrossRef]
- Sheppard, B.R.A.; Gude, A.J. Zeolites and Associated Authigenic Silicate Minerals in Tuffaceous Rocks of the Big Sandy Formation, Mohave County, Arizona. USGS Professional Paper 830; 1973. Available online: https://pubs.usgs.gov/pp/0830/report.pdf (accessed on 28 April 2020).
- Tschernich, R.W. Zeolites of the World; Geoscience Press: Phoenix, AZ, USA, 1992. [Google Scholar]
- Bargar, K.E.; Beeson, M.H.; Keith, T.E.C. Zeolites in Yellowstone National Park. Mineral. Rec. 1981, 12, 29–38. [Google Scholar]
- Ballirano, P.; Andreozzi, G.B.; Dogan, M.; Dogan, A.U. Crystal structure and iron topochemistry of erionite-K from Rome, Oregon, U.S.A. Am. Mineral. 2009, 94, 1262–1270. [Google Scholar] [CrossRef]
- Gualtieri, A.; Artioli, G.; Passaglia, E.; Bigi, S.; Viani, A.; Hanson, J.C. Crystal structure-crystal chemistry relationships in the zeolites erionite and offretite. Am. Mineral. 1998, 83, 590–606. [Google Scholar] [CrossRef]
- IZA. Commission of Natural Zeolites. Erionite. Available online: http://www.iza-online.org/natural/Datasheets/Erionite/erionite.htm (accessed on 11 February 2020).
- Coombs, D.S.; Alberti, A.; Armbruster, T.; Artioli, G.; Colella, C.; Galli, E.; Grice, J.D.; Liebau, F.; Mandarino, J.A.; Minato, H.; et al. Recommended nomenclature for zeolite minerals: Report of the subcommittee on zeolites of the International Mineralogical Association, Commission on new Minerals and Mineral names. Can. Mineral. 1997, 35, 1571–1606. [Google Scholar] [CrossRef]
- Dogan, A.U.; Dogan, M. Re-evaluation and re-classification of erionite series minerals. Environ. Geochem. Health 2008, 30, 355–366. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, A.R.; Gude, A.J. Zeolitic authigenesis of tuffs inthe Ricardo Fromation, Kern Cpuntr, Sounthern California. USGS Prof. Pap. 1965, 525-D, D44–D47. [Google Scholar]
- Sheppard, R.A.; Gude, A. Chemical composition and physical properties of the related zeolites offretite and erionite. Am. Mineral. 1969, 54, 875–886. [Google Scholar]
- Vezzalini, G.; Quartieri, S.; Rossi, A. Occurrence of zeolites from Northern Victoria Land (Antarctica). Terra Antart. 1994, 1, 96–99. [Google Scholar]
- Passaglia, E.; Artioli, G.; Gualtieri, A. Crystal chemistry of the zeolites erionite and offretite. Am. Mineral. 1998, 83, 577–589. [Google Scholar] [CrossRef]
- Carbone, M.; Baris, Y.I.; Bertino, P.; Brass, B.; Comertpay, S.; Dogan, A.U.; Gaudino, G.; Jube, S.; Kanodia, S.; Partridge, C.R.; et al. Erionite exposure in North Dakota and Turkish villages with mesothelioma. Proc. Natl. Acad. Sci. USA 2011, 108, 13618–13623. [Google Scholar] [CrossRef] [Green Version]
- Baris, Y.I.; Sahin, A.A.; Ozesmi, M.; Kerse, I.; Ozen, E.; Kolacan, B.; Altinors, M.; Goktepeli, A. An outbreak of pleural mesothelioma and chronic fibrosing pleurisy in the village of Karain/Urgup in Anatolia. Thorax 1978, 33, 181–192. [Google Scholar] [CrossRef] [Green Version]
- Tekla, J.; Lakiss, L.; Valchev, V.; Tarach, K.A.; Jabłońska, M.; Girman, V.; Szymocha, A.; Kowalczyk, A.; Góra-Marek, K.; Gilson, J.P. Increasing the catalytic performance of erionite by hierarchization. Microporous Mesoporous Mater. 2020, 299, 110088. [Google Scholar] [CrossRef]
- Ballirano, P.; Bloise, A.; Gualtieri, A.F.; Lezzerini, M.; Pacella, A.; Perchiazzi, N.; Dogan, M.; Dogan, A.U. The crystal structure of mineral fibres. In Mineral Fibres: Crystal Chemistry, Chemical-Physical Properties, Biological Interaction and Toxicity; Gualtieri, A.F., Ed.; European Mineralogical Union and Mineralogical Society of Great Britain & Ireland: London, UK, 2017; ISBN 978-09003056-65-6. [Google Scholar] [CrossRef]
- Staples, L.W.; Gard, J.A. The fibrous zeolite erionite; its occurrence, unit cell, and structure. Mineral. Mag. J. Mineral. Soc. 1959, 32, 261–281. [Google Scholar] [CrossRef]
- Alberti, A.; Martucci, A.; Galli, E.; Vezzalini, G. A reexamination of the crystal structure of erionite. Zeolites 1997, 19, 349–352. [Google Scholar] [CrossRef]
- Bonenfant, D.; Kharoune, M.; Niquette, P.; Mimeault, M.; Hausler, R. Advances in principal factors influencing carbon dioxide adsorption on zeolites. Sci. Technol. Adv. Mater. 2008, 9, 013007–013014. [Google Scholar] [CrossRef] [PubMed]
- Lozinska, M.M.; Mowat, J.P.S.; Wright, P.A.; Thompson, S.P.; Jorda, J.L.; Palomino, M.; Valencia, S.; Rey, F. Cation gating and relocation during the highly selective “trapdoor” adsorption of CO2 on univalent cation forms of zeolite Rho. Chem. Mater. 2014, 26, 2052–2061. [Google Scholar] [CrossRef]
- Shang, J.; Li, G.; Singh, R.; Xiao, P.; Liu, J.Z.; Webley, P.A. Determination of composition range for “molecular trapdoor” effect in chabazite zeolite. J. Phys. Chem. C 2013, 117, 12841–12847. [Google Scholar] [CrossRef]
- De Baerdemaeker, T.; De Vos, D. Trapdoors in zeolites. Nat. Chem. 2013, 5, 89–90. [Google Scholar] [CrossRef] [PubMed]
- Pacella, A.; Fantauzzi, M.; Atzei, D.; Cremisini, C.; Nardi, E.; Montereali, M.R.; Rossi, A.; Ballirano, P. Iron within the erionite cavity and its potential role in inducing its toxicity: Evidence of Fe (III) segregation as extra-framework cation. Microporous Mesoporous Mater. 2017, 237, 168–179. [Google Scholar] [CrossRef]
- Pacella, A.; Cremisini, C.; Nardi, E.; Montereali, M.R.; Pettiti, I.; Ballirano, P. The mechanism of iron binding processes in erionite fibres. Sci. Rep. 2017, 7, 1319. [Google Scholar] [CrossRef] [Green Version]
- Ballirano, P.; Cametti, G. Minerals in the human body. Crystal chemical and structural modifications of erionite fibers leached with simulated lung fluids. Am. Mineral. 2015, 100, 103–112. [Google Scholar] [CrossRef]
- Cametti, G.; Pacella, A.; Mura, F.; Rossi, M.; Ballirano, P. New morphological, chemical, and structural data of woolly erionite-Na from Durkee, Oregon, U.S.A. Am. Mineral. 2013, 98, 2155–2163. [Google Scholar] [CrossRef]
- Quiroz-Estrada, K.; Hernández, M.Á.; Felipe-Mendoza, C.; Santamaría-Juárez, J.D.; Petranovskii, V.; Rubio, E. Critical admission temperature of H2 and CH4 in nanopores of exchanged ERI zeolites. Nanomaterials 2019, 9, 160. [Google Scholar] [CrossRef] [Green Version]
- Salinas-Pedroza, M.G.; Olguín, M.T. Thorium removal from aqueous solutions of Mexican erionite and X zeolite. J. Radioanal. Nucl. Chem. 2004, 260, 115–118. [Google Scholar] [CrossRef]
- Moreno-Gutiérrez, B.Y.; Olguín, M.T. Mercury removal from aqueous and organo-aqueous solutions by natural Mexican erionite. J. Radioanal. Nucl. Chem. 2003, 256, 245–348. [Google Scholar] [CrossRef]
- Bosch, P.; Caputo, D.; Liguori, B.; Colella, C. Safe trapping of Cs in heat-treated zeolite matrices. J. Nucl. Mater. 2004, 324, 183–188. [Google Scholar] [CrossRef]
- Hernandez, M.A.; Pestryakov, A.; Portillo, R.; Salgado, M.A.; Rojas, F.; Rubio, E.; Ruiz, S.; Petranovskii, V. CO2 Sequestration by Natural Zeolite for Greenhouse Effect Control. Procedia Chem. 2015, 15, 33–41. [Google Scholar] [CrossRef] [Green Version]
- IARC Working Group on the Evaluation of Carcinogenic Risk to Humans. Arsenic, Metals, Fibres and Dusts; Chemical Agents and Related Occupations; IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; International Agency for Research on Cancer: Lyon, France, 2011; Volume 100 C, Available online: https://www.ncbi.nlm.nih.gov/books/NBK304375 (accessed on 30 April 2020).
- Sherry, H.S. Ion-Exchange Properties of the Natural Zeolite Erionite. Clays Clay Miner. 1979, 27, 231–237. [Google Scholar] [CrossRef]
- Lewis, M.A.; Fischer, D.F.; Smith, L.J. Salt-Occluded Zeolites as an Immobilization Matrix for Chloride Waste Salt. J. Am. Ceram. Soc. 1993, 76, 2826–2832. [Google Scholar] [CrossRef]
- Santiago, O.; Walsh, K.; Kele, B.; Gardner, E.; Chapman, J. Novel pre-treatment of zeolite materials for the removal of sodium ions: Potential materials for coal seam gas co-produced wastewater. Springerplus 2016, 5, 571. [Google Scholar] [CrossRef] [Green Version]
- Pacella, A.; Ballirano, P.; Cametti, G. Quantitative chemical analysis of erionite fibres using a micro-analytical SEM-EDX method. Eur. J. Mineral. 2016, 28, 257–264. [Google Scholar] [CrossRef]
- Passaglia, E. The Crystal Chemistry of Chabazites. Am. Mineral. 1970, 55, 1278–1301. [Google Scholar]
- General Profile and Structure Analysis Software for Powder Diffraction Data; Bruker AXS: Karlsruhe, Germany, 2016.
- Cheary, R.W.; Coelho, A. Fundamental parameters approach to x-ray line-profile fitting. J. Appl. Crystallogr. 1992, 25, 109–121. [Google Scholar] [CrossRef]
- Passaglia, E.; Ferro, O. Occurrence and crystal structure of magnesian chabazite. Stud. Surf. Sci. Catal. 2002, 142, 1729–1735. [Google Scholar] [CrossRef]
- Alberti, A. The crystal structure of two clinoptilolites. Tschermaks Mineral. Und Petrogr. Mitt. 1975, 22, 25–37. [Google Scholar] [CrossRef]
- Meneghinello, E.; Alberti, A.; Cruciani, G. Order-disorder process in the tetrahedral sites of albite. Am. Mineral. 1999, 84, 1144–1151. [Google Scholar] [CrossRef]
- Le Page, Y.; Donnay, G. Refinement of the crystal structure of low-quartz. Acta Crystallogr. Sect. B 1976, 32, 2456–2459. [Google Scholar] [CrossRef]
- Sabine, T.M.; Hunter, B.A.; Sabine, W.R.; Ball, C.J. Analytical Expressions for the Transmission Factor and Peak Shift in Absorbing Cylindrical Specimens. J. Appl. Crystallogr. 1998, 31, 47–51. [Google Scholar] [CrossRef]
- Ballirano, P. Effects of the choice of different ionization level for scattering curves and correction for small preferred orientation in Rietveld refinement: The MgAl2O4 test case. J. Appl. Crystallogr. 2003, 36, 1056–1061. [Google Scholar] [CrossRef] [Green Version]
- Ballirano, P.; Pacella, A.; Cremisini, C.; Nardi, E.; Fantauzzi, M.; Atzei, D.; Rossi, A.; Cametti, G. Fe (II) segregation at a specific crystallographic site of fibrous erionite: A first step toward the understanding of the mechanisms inducing its carcinogenicity. Microporous Mesoporous Mater. 2015, 211, 49–63. [Google Scholar] [CrossRef]
- Jones, J.B. Al–O and Si–O tetrahedral distances in aluminosilicate framework structures. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1968, 24, 355. [Google Scholar] [CrossRef]
- Giordani, M.; Mattioli, M.; Ballirano, P.; Pacella, A.; Cenni, M.; Boscardin, M.; Valentini, L. Geological occurrence, mineralogical characterization, and risk assessment of potentially carcinogenic erionite in Italy. J. Toxicol. Environ. Health Part B Crit. Rev. 2017, 20, 81–103. [Google Scholar] [CrossRef]
- Young, R.A. Introduction to the Rietveld method. In The Rietveld Method; Young, R.A., Ed.; Oxford University Press: New York, NY, USA, 1993; pp. 1–38. [Google Scholar]
- Ballirano, P.; Pacella, A. Erionite-Na upon heating: Dehydration dynamics and exchangeable cations mobility. Sci. Rep. 2016, 6, 11786. [Google Scholar] [CrossRef] [Green Version]
Oxides (wt.%) | ERIN | ERINa3 | ERICa2 | ERIMg2 | Average | C2013 | B2015 |
---|---|---|---|---|---|---|---|
SiO2 | 58.00 (74) | 58.28 (102) | 59.04 (86) | 59.11 (98) | 58.74 (84) | 60.06 (47) | |
Al2O3 | 14.51 (36) | 14.15 (51) | 13.83 (55) | 13.88 (86) | 13.46 (45) | 12.81 (19) | |
Na2O | 3.70 (67) | 3.87 (64) | 2.04 (39) | 2.49 (35) | 5.75 (1.15) | 4.03 (27) | |
K2O | 3.20 (37) | 3.24 (35) | 3.23 (25) | 3.41 (28) | 3.22 (69) | 4.01 (42) | |
MgO | 0.88 (22) | 1.00 (18) | 0.78 (24) | 1.48 (32) | 0.33 (28) | 0.59 (24) | |
CaO | 1.21 (34) | 1.04 (11) | 2.58 (39) | 1.13 (36) | - | - | |
FeO | n.d. | n.d. | n.d. | n.d. | - | - | |
H2O * | 18.50 | 18.50 | 18.50 | 18.50 | 18.50 | 18.50 | |
Total | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | |
Si | 27.79 (23) | 27.98 (32) | 28.20 (33) | 28.19 (47) | 28.04 (17) | 28.34 (14) | 28.76 (11) |
Al | 8.21 (23) | 8.02 (32) | 7.80 (33) | 7.81 (47) | 7.96 (17) | 7.66 (14) | 7.24 (11) |
Na | 3.44 (64) | 3.61 (62) | 1.89 (36) | 2.30 (33) | 5.38 (1.17) | 3.75 (27) | |
K | 1.96 (24) | 1.99 (22) | 1.97 (15) | 2.08 (17) | 1.99 (45) | 2.45 (27) | |
Mg | 0.63 (16) | 0.71 (14) | 0.55 (17) | 1.05 (23) | 0.24 (20) | 0.42 (17) | |
Ca | 0.62 (18) | 0.54 (05) | 1.32 (20) | 0.58 (19) | - | - | |
Fe | - | - | - | - | - | - | |
O | 71.85 (15) | 72.04 (25) | 71.91 (06) | 71.92 (32) | 72.09 (49) | 72.10 (14) | |
H2O | 29.63 (17) | 29.69 (26) | 29.54 (04) | 29.49 (19) | 29.77 | 29.60 (17) | |
E% | 3.8 | −0.9 | 2.3 | 2.2 | −2.3 | 3.1 | |
R | 0.772 (6) | 0.777 (9) | 0.783 (9) | 0.783 (13) | 0.779 (5) | 0.787 | 0.799 (3) |
M/(M + D) | 0.809 (46) | 0.817 (12) | 0.673 (41) | 0.728 (37) | 0.969 | 0.936 (27) |
Phases | ERIN | σ | ERINa3 | σ | ERIMg2 | σ | ERICa2 | σ |
---|---|---|---|---|---|---|---|---|
Erionite | 85.7 | 0.3 | 83.0 | 0.3 | 66.4 | 0.4 | 68.1 | 0.4 |
Chabazite | 8.8 | 0.3 | 11.8 | 0.3 | 27.9 | 0.4 | 26.8 | 0.4 |
Albite | 3.31 | 0.09 | 2.89 | 0.09 | 2.60 | 0.09 | 2.30 | 0.10 |
Clinoptilolite | 1.40 | 0.09 | 1.62 | 0.09 | 2.63 | 0.10 | 2.37 | 0.11 |
Quartz | 0.74 | 0.03 | 0.62 | 0.02 | 0.35 | 0.03 | 0.44 | 0.03 |
Clays | > | > | > | > |
Statistical Indicators | ERIN | σ | ERINa3 | σ | ERIMg2 | σ | ERICa2 | σ |
---|---|---|---|---|---|---|---|---|
Rwp | 2.38 | 2.10 | 2.13 | 1.94 | ||||
Rp | 1.67 | 1.53 | 1.56 | 1.42 | ||||
χ2 | 3.08 | 2.43 | 2.54 | 2.23 | ||||
DWd | 0.30 | 0.41 | 0.43 | 0.48 | ||||
RBragg erionite | 0.95 | 0.70 | 0.56 | 0.62 | ||||
Cell parameters erionite | ||||||||
a (Å) | 13.2469 | 0.0002 | 13.2470 | 0.0002 | 13.2446 | 0.0003 | 13.2553 | 0.0003 |
C (Å) | 15.0895 | 0.0004 | 15.0881 | 0.0004 | 15.0905 | 0.0005 | 15.0803 | 0.0005 |
V (Å3) | 2293.17 | 0.10 | 2292.97 | 0.10 | 2292.53 | 0.13 | 2294.66 | 0.13 |
Cell parameters chabazite | ||||||||
a (Å) | 9.3604 | 0.0006 | 9.3624 | 0.0004 | 9.3636 | 0.0003 | 9.3665 | 0.0004 |
α(°) | 94.441 | 0.006 | 94.446 | 0.005 | 94.464 | 0.003 | 94.414 | 0.004 |
V (Å3) | 812.33 | 0.15 | 812.83 | 0.11 | 813.08 | 0.08 | 814.04 | 0.10 |
EF site scattering s.s. (e−) | ||||||||
Ca1 | 19.7 | 0.7 | 21.3 | 0.7 | 27.3 | 1.0 | 35.1 | 0.9 |
Ca2 | 32.2 | 0.7 | 31.8 | 0.7 | 32.0 | 1.0 | 27.1 | 1.0 |
Ca3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
K1 | 38.0 | 0.0 | 38.0 | 0.0 | 38.0 | 0.0 | 38.0 | 0.0 |
K2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0,0 | 0.0 |
Total cat. s.s. refinement | 89.9 | 1.4 | 91.0 | 1.4 | 97.3 | 1.9 | 100.2 | 1.9 |
Total cat. s.s. from SEM-EDX | 95.1 | 96.8 | 89.0 | 91.4 | ||||
H2O sites s.s. (e−) | ||||||||
OW7 | 6.3 | 1.3 | 8.5 | 2.2 | 7.6 | 1.5 | 5.9 | 2.1 |
OW8 | 38.6 | 1.1 | 38.3 | 1.2 | 36.1 | 1.6 | 55.8 | 1.7 |
OW9 | 61.9 | 1.8 | 59.3 | 2.1 | 79.1 | 4.9 | 60.4 | 2.9 |
OW10 | 71.9 | 2.0 | 72.8 | 2.1 | 49.7 | 5.4 | 78.3 | 2.5 |
OW11 | 75.2 | 1.8 | 74.0 | 2.5 | 78.2 | 2.1 | 62.4 | 2.8 |
OW12 | 22.3 | 2.0 | 24.2 | 2.3 | 27.3 | 2.7 | 17.7 | 3.2 |
Total s.s. H2O sites | 276.1 | 10.0 | 277.1 | 12.4 | 277.9 | 18.3 | 280.5 | 15.2 |
H2O apfu | 34.5 | 1.3 | 34.6 | 1.6 | 34.7 | 2.3 | 35.1 | 1.9 |
Fractional Coordinates | ERIN | σ | ERINa3 | σ | ERIMg2 | σ | ERICa2 | σ | Average |
---|---|---|---|---|---|---|---|---|---|
z Ca1 | 0.814 | 0.004 | 0.823 | 0.004 | 0.825 | 0.004 | 0.824 | 0.003 | |
z Ca2 | 0.1059 | 0.0019 | 0.106 | 0.002 | 0.110 | 0.003 | 0.111 | 0.003 | |
Bond distances | |||||||||
T1–O2 | 1.643 | 0.004 | 1.642 | 0.004 | 1.636 | 0.006 | 1.649 | 0.006 | |
T1–O4 | 1.626 | 0.004 | 1.624 | 0.004 | 1.633 | 0.005 | 1.632 | 0.005 | |
T1–O1 | 1.629 | 0.008 | 1.657 | 0.008 | 1.650 | 0.010 | 1.613 | 0.012 | |
T1–O3 | 1.675 | 0.007 | 1.697 | 0.007 | 1.693 | 0.009 | 1.660 | 0.010 | |
<T1–O> | 1.643 | 1.655 | 1.653 | 1.639 | 1.647 | ||||
T2–O6 | 1.611 | 0.008 | 1.611 | 0.007 | 1.622 | 0.010 | 1.631 | 0.011 | |
T2–O1 | 1.628 | 0.007 | 1.623 | 0.008 | 1.625 | 0.010 | 1.620 | 0.010 | |
T2–O1 | 1.628 | 0.007 | 1.623 | 0.008 | 1.625 | 0.010 | 1.620 | 0.010 | |
T2–O5 | 1.624 | 0.007 | 1.615 | 0.007 | 1.611 | 0.010 | 1.632 | 0.011 | |
<T2–O> | 1.623 | 1.618 | 1.621 | 1.626 | 1.622 | ||||
Si/Al partition | |||||||||
Al(1) apfu | 6.09 | 7.90 | 7.59 | 5.36 | 6.74 | ||||
Al(2) apfu | 1.47 | 1.10 | 1.32 | 1.70 | 1.40 | ||||
Altot apfu | 7.56 | 9.00 | 8.91 | 7.06 | 8.13 | ||||
Sitot apfu | 28.44 | 27.00 | 27.09 | 28.94 | 27.87 | ||||
R = Si/(Si + Al) | 0.790 | 0.750 | 0.753 | 0.804 | 0.774 | ||||
R from SEM-EDX | 0.772(6) | 0.777(9) | 0.783(9) | 0.783(13) | 0.779(5) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quiroz-Estrada, K.; Pacella, A.; Ballirano, P.; Hernández-Espinosa, M.Á.; Felipe, C.; Esparza-Schulz, M. Crystal Chemical and Structural Characterization of Natural and Cation-Exchanged Mexican Erionite. Minerals 2020, 10, 772. https://doi.org/10.3390/min10090772
Quiroz-Estrada K, Pacella A, Ballirano P, Hernández-Espinosa MÁ, Felipe C, Esparza-Schulz M. Crystal Chemical and Structural Characterization of Natural and Cation-Exchanged Mexican Erionite. Minerals. 2020; 10(9):772. https://doi.org/10.3390/min10090772
Chicago/Turabian StyleQuiroz-Estrada, Karla, Alessandro Pacella, Paolo Ballirano, Miguel Ángel Hernández-Espinosa, Carlos Felipe, and Marcos Esparza-Schulz. 2020. "Crystal Chemical and Structural Characterization of Natural and Cation-Exchanged Mexican Erionite" Minerals 10, no. 9: 772. https://doi.org/10.3390/min10090772
APA StyleQuiroz-Estrada, K., Pacella, A., Ballirano, P., Hernández-Espinosa, M. Á., Felipe, C., & Esparza-Schulz, M. (2020). Crystal Chemical and Structural Characterization of Natural and Cation-Exchanged Mexican Erionite. Minerals, 10(9), 772. https://doi.org/10.3390/min10090772