Preliminary U-Pb Detrital Zircon Ages from Tufiti di Tusa Formation (Lucanian Apennines, Southern Italy): Evidence of Rupelian Volcaniclastic Supply
Abstract
:1. Introduction
2. Geological Framework of Volcaniclastic Detritus
3. Analytical Methods
4. Petrographic and Chemical Features of Sandstones
4.1. Background
4.2. Sample TTA and TTB
5. Morphology and Internal Zircon Textures
6. Detrital Zircon Chronology
6.1. Zircon Ages in the TTA Sample
6.2. Zircon Ages in the TTB Sample
7. Discussion
7.1. Priabonian-Rupelian Sedimentation Ages
7.2. Geological History Told by Zircon Ages from the Pre-Carboniferous to the Rupelian Times
8. Conclusions
- (a)
- (b)
- The high volume of volcanic detritus (approximately 70%) in the considered succession, with a thickness of about 60 m, shows that the maximum syn-sedimentary volcanic input in the Southern Apennines foredeep took place during the Late Priabonian–Early Rupelian as evidenced by the abundances of magmatic idiomorphic zircons with ages around 33 ± 1 Ma (Figure 8 and Figure 10a), suggesting the true sedimentation age, for almost all the study levels. However, more volcaniclastic strata must be analyzed to extrapolate this age to the entire volcaniclastic sequence.
- (c)
- A comparison of the established U-Pb zircon ages with those of the syn-orogenic and syn-sedimentary volcanic deposits outcropping in the Mediterranean region, shows great similarities with the ages of the volcaniclastic sandstones of the Val d’Aveto–Petrignacola and Ranzano formations in the Northern Apennine [6,8,11,23] and with those of the Taveyannaz sandstones deposited in the Northern Alpine foredeep [60].
- (d)
- Priabonian-Rupelian volcanic activity does not correspond to the maximum climax recorded in Sardinia (around 22–18 Ma in [10]). The hinterland terranes or the Mesomediterranean Microplate facing the foredeep basins of the Apennine-Maghrebian system can be depicted as a complex structured source area formed by remnants of Cadomian terranes in the Variscan basement, consisting of granitoids and metamorphic rocks, HP-LT metamorphites, ophiolites, and Priabonian-Rupelian volcanic edifices widespread from north to south in the Western Mediterranean area.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dilek, Y.; Furnes, H. Tethyan ophiolites and Tethyan seaways. J. Geol. Soc. 2019, 176, 899–912. [Google Scholar] [CrossRef]
- Carminati, E.; Lustrino, M.; Doglioni, C. Geodynamic evolution of the central and western Mediterranea: Tectonics vs. igneous petrology constraints. Tectonophysics 2012, 579, 173–192. [Google Scholar] [CrossRef]
- Vitale, S.; Ciarcia, S. Tectono-stratigraphic and kinematic evolution of the southern Apennines/Calabria–Peloritani Terrane system (Italy). Tectonophysics 2013, 583, 164–182. [Google Scholar] [CrossRef]
- De Capoa, P.; Guerrera, F.; Perrone, V.; Serrano, F.; Tramontana, M. The onset of the syn-orogenic sedimentation in the Flysch Basin of the Sicilian Maghrebids: State of the art and new biostratigraphic constraints. Ecl. Geol. Helv. 2000, 93, 65–79. [Google Scholar]
- Guerrera, F.; Martín-Martín, M. Geodynamic events reconstructed in the Betic, Maghrebian, and Apennine chains (central-western Tethys). Bull. Soc. Géol. Fr. 2014, 185, 329–341. [Google Scholar] [CrossRef]
- Mattioli, M.; Lustrino, M.; Ronca, S.; Bianchini, G. Alpine subduction imprint in Apennine volcaniclastic rocks.Geochemical–petrographic constraints and geodynamic implications from Early Oligocene Aveto-Petrignacola Formation (N Italy). Lithos 2012, 134, 201–220. [Google Scholar] [CrossRef]
- Cibin, U.; Tateo, F.; Catanzariti, R.; Martelli, L.; Rio, D. Composizione, origine ed età del vulcanismo andesitico oligocenico inferiore dell’Appennino settentrionale: Le intercalazioni vulcano-derivate nella Formazione di Ranzano. Boll. Soc. Geol. Ital. 1998, 117, 569–591. [Google Scholar]
- Malferrari, D.; Gualtieri, A.F.; Panini, F.; Fioroni, C. Oligocene-Miocene volcanism in the Apennines: Discovery and characterization of a baryte and Ba-rich phillipsite bed in the lower part of the Ranzano Formation (Reggio Emilia, Italy). Ital. J. Geosci. 2020, 139, 287–299. [Google Scholar] [CrossRef]
- Lu, G.; Di Capua, A.; Winkler, W.; Rahn, M.; Guillong, M.; von Quadt, A.; Willett, S.D. Restoring the source-to-sink relationships in the Paleogene foreland basins in the Central and Southern Alps (Switzerland, Italy, France): A detrital zircon study approach. Int. J. Earth Sci. 2019, 108, 1817–1834. [Google Scholar] [CrossRef]
- Lustrino, M.; Morra, V.; Fedele, L.; Franciosi, L. Beginning of the Apennine subduction system in central western Mediterranean: Constraints from Cenozoic “orogenic” magmatic activity of Sardinia, Italy. Tectonics 2009, 28, 5. [Google Scholar] [CrossRef]
- Di Capua, A.; Vezzoli, G.; Groppelli, G. Climatic, tectonic and volcanic controls of sediment supply to an Oligocene Foredeep basin: The Val d’Aveto Formation (Northern Italian Apennines). Sediment. Geol. 2016, 332, 68–84. [Google Scholar] [CrossRef]
- Bonardi, G.; Amore, F.O.; Ciampo, G.; de Capoa, P.; Miconnet, P. Il complesso Liguride Auct.: Stato delle conoscenze e problemi aperti dulla sur evoluzione pre-Appenninica ed i suoli rapporti con l’Arco Calabro. Mem. Soci. Geol. Ital. 1988, 41, 17–35. [Google Scholar]
- Ciarcia, S.; Vitale, S.; Di Staso, A.; Iannace, A.; Mazzoli, S.; Torre, M. Stratigraphy and tectonics of an Internal Unit of the southern Apennines: Implications for the geodynamic evolution of the peri-Tyrrhenian mountain belt. Terra Nova 2009, 21, 88–96. [Google Scholar] [CrossRef]
- De Capoa, P.; D’Errico, M.; Di Staso, A.; Morabito, S.; Perrone, V.; Perrotta, S. Biostratigraphic and petrographic study of the Oligocene-Lower Miocene successions of the external oceanic units in the Apennines and Sicilian Maghrebides. Rev. Soc. Geol. Esp. 2014, 27, 151–173. [Google Scholar]
- Lentini, F.; Carbone, S. Geologia della Sicilia-geology of Sicily. Mem. Descr. Carta Geol. Ital. 2014, 95, 7–30. [Google Scholar]
- De Capoa, P.; Di Staso, A.; Guerrera, F.; Perrone, V.; Tramontana, M. The age of the oceanic accretionary wedge and onset of continental collision in the Sicilian Maghrebian Chain. Geodin. Acta 2004, 17, 331–348. [Google Scholar] [CrossRef]
- Martín-Martín, M.; Guerrera, F.; Tramontana, M. Geodynamic implications of the latest Chattian-Langhian central-western peri-Mediterranean volcano-sedimentary event: A review. J. Geol. 2020, 128, 29–43. [Google Scholar] [CrossRef]
- Critelli, S. Provenance of Mesozoic to Cenozoic circum-Mediterranean sandstones in relation to tectonic setting. Earth Sci. Rev. 2018, 185, 624–648. [Google Scholar] [CrossRef]
- Baruffini, L.; Lottaroli, F.; Torricelli, S. Integrated high-resolution stratigraphy of the lower oligocene Tusa Tuffite Formation in the Calabro-Lucano area and Sicily (southern Italy). Riv. Ital. Paleont. Strat. 2002, 108, 457–477. [Google Scholar]
- Guerrera, F.; Martín-Martín, M.; Tramontana, M. Evolutionary geological models of the central-western peri-Mediterranean chains: A review. Int. Geol. Rev. 2019, 1–22. [Google Scholar] [CrossRef]
- Patacca, E.; Scandone, P. Geology of the Southern Apennines. Boll. Soc. Geol. Ital. 2007, 7, 75–119. [Google Scholar]
- Molli, G.; Malavieille, J. Orogenic processes and the Corsica/Apennines geodynamic evolution: Insights from Taiwan. Int. J. Earth Sci. 2011, 100, 1207–1224. [Google Scholar] [CrossRef]
- Malusà, M.G.; Anfinson, O.A.; Dafov, L.N.; Stockli, D.F. Tracking Adria indentation beneath the Alps by detrital zircon U-Pb geochronology: Implications for the Oligocene–Miocene dynamics of the Adriatic microplate. Geology 2016, 44, 155–158. [Google Scholar] [CrossRef]
- Leprêtre, R.; de Lamotte, D.F.; Combier, V.; Gimeno-Vives, O.; Mohn, G.; Eschard, R. The Tell-Rif orogenic system (Morocco, Algeria, Tunisia) and the structural heritage of the southern Tethys margin. Bulletin de la Société Géologique de France 2018. [Google Scholar] [CrossRef] [Green Version]
- De Capoa, P.; Di Staso, A.; Guerrera, F.; Perrone, V.; Tramontana, M.; Zaghloul, M.N. The lower Miocene volcanoclastic sedimentation in the Sicilian sector of the Maghrebian Flysch Basin: Geodynamic implications. Geodin. Acta 2002, 15, 141–157. [Google Scholar] [CrossRef] [Green Version]
- Guerrera, F.; Martín-Martín, M.; Raffaelli, G.; Tramontana, M. The Early Miocene “Bisciaro volcaniclastic event” (northern Apennines, Italy): A key study for the geodynamic evolution of the central-western Mediterranean. Int. J. Earth Sci. 2015, 104, 1083–1106. [Google Scholar] [CrossRef] [Green Version]
- Zuppetta, A.; Russo, M.; Turco, E. Alcune osservazioni sulle Tufiti di Tusa nell’area compresa tra la Valsinni e Rocca Imperiale (confine calabro-lucano). Boll. Soc. Geol. Ital. 1984, 103, 623–627. [Google Scholar]
- Critelli, S.; De Rosa, R.; Sonnino, M.; Zuffa, G.G. Significato dei depositi vulcanoclastici della Formazione delle Tufiti di Tusa, Miocene inferiore, Lucanìa meridionale). Boll. Soc. Geol. Ital. 1990, 109, 743–762. [Google Scholar]
- Critelli, S.; Le Pera, E. Post-Oligocene sediment-dispersal systems and unroofing history of the Calabrian microplate, Italy. Int. Geol. Rev. 1998, 40, 609–637. [Google Scholar] [CrossRef]
- Critelli, S. The interplay of lithospheric flexure and thrust accommodation in forming strati-graphic sequences in the southern Apennines foreland basin system, Italy. Rend. Lincei 1999, 10, 257–326. [Google Scholar] [CrossRef]
- Perri, F.; Critelli, S.; Cavalcante, F.; Mongelli, G.; Sonnino, M.; Dominici, R.; De Rosa, R. Provenance signatures for the Miocene volcaniclastic succession of the Tufiti di Tusa Formation, southern Apennines, Italy. Geol. Mag. 2012, 149, 423–442. [Google Scholar] [CrossRef]
- Carbone, S. Note illustrative Foglio 523 Rotondella, Carta Geologica d’Italia, 1:50.000 2013. ISPRA. Available online: https://www.isprambiente.gov.it/Media/carg/note_illustrative/523_Rotondella.pdf (accessed on 1 January 2013).
- SGI. Carta Geologica d’Italia, scala 1:50.000; Foglio 523 “Rotondella”: ISPRA. Available online: https://www.isprambiente.gov.it/Media/carg/523_ROTONDELLA/Foglio.html (accessed on 1 January 2012).
- Fornelli, A.; Micheletti, F.; Langone, A.; Perrone, V. First U-Pb detrital zircon ages from Numidian sandstones in Southern Apennines (Italy): Evidences of African provenance. Sediment. Geol. 2015, 320, 19–29. [Google Scholar] [CrossRef]
- Gallicchio, S.; Maiorano, P. Revised stratigraphy of the Serra Palazzo formation, a Miocene foredeep turbidite succession of the Southern Apennines (Italy). Rivista Italiana di Paleontologia e Stratigrafia 1999, 105, 287–302. [Google Scholar]
- Cerone, D.; Gallicchio, S.; Moretti, M.; Tinterri, R. Vertical facies evolution of the Tufiti di Tusa Formation cropping out in the Lucanian Apennines (Southern Italy). J. Medit. Earth Sci. 2017, 9, 109–112. [Google Scholar]
- Fornelli, A.; Piccarreta, G. Mineral and chemical provenance indicators in some early Miocene sandstones of the Southern Apennines (Italy). Eur. J. Min. 1997, 9, 433–447. [Google Scholar] [CrossRef] [Green Version]
- Fornelli, A.; Gallicchio, S.; Mongelli, G.; Salvemini, A.; Summa, V.; Ventrella, N.; Zaza, S. Areniti a glaucofane nell’Appennino meridionale. Min. Petropr. Acta 1992, 35, 199–214. [Google Scholar]
- Speranza, F.; Adamoli, L.; Maniscalco, R.; Florindo, F. Genesis and evolution of a curved mountain front: Paleomagnetic and geological evidence from the Gran Sasso range (central Apennines, Italy). Tectonophysics 2003, 362, 183–197. [Google Scholar] [CrossRef]
- Speranza, F.; Maniscalco, R.; Grasso, M. Pattern of orogenic rotations in central–eastern Sicily: Implications for the timing of spreading in the Tyrrhenian Sea. J. Geol. Soc. 2003, 160, 183–195. [Google Scholar] [CrossRef]
- Ingersoll, R.V.; Bullard, T.F.; Ford, R.L.; Grimm, J.P.; Pickle, J.D.; Sares, S.W. The effect of grain size on detrital modes: A test of the Gazzi-Dickinson point-counting method. J. Sediment. Res. 1984, 54, 103–116. [Google Scholar]
- Zuffa, G.G. Unravelling hinterland and offshore palaeogeography from deep-water arenites. In Marine Clastic Sedimentology; Leggett, J.K., Zuffa, G.G., Eds.; Springer: Dordrecht, The Netherlands, 1987; pp. 39–61. [Google Scholar]
- Malusà, M.G.; Garzanti, E. The Sedimentology of Detrital Thermochronology. In Fission-Track Thermochronology and Its Application to Geology; Malusà, M., Fitzgerald, P., Eds.; Springer: Cham, Switzerland, 2019; pp. 123–143. [Google Scholar]
- Malusà, M.G.; Carter, A.; Limoncelli, M.; Villa, I.; Garzanti, E. Bias in detrital zircon geochronology and thermochronometry. Chem. Geol. 2013, 359, 90–170. [Google Scholar] [CrossRef]
- Coutts, D.; Hubbard, S.M.; Matthews, W.; Bain, H.; Guest, B. Application of Large-N Detailed Max Depositional Age (MDA) Calculation to Determine Sedimentary Rates of a Deepwater Conduit. In AAPG Annual Convention and Exhibition; The American association of Petroleum Geologists: Tulsa, OK, USA, 2016. [Google Scholar]
- Thomas, W.A.; Gehrels, G.E.; Sundell, K.E.; Greb, S.F.; Finzel, E.S.; Clark, R.J.; Malone, D.H.; Hampton, B.A.; Romero, M.C. Detrital zircons and sediment dispersal in the eastern Midcontinent of North America. Geosphere 2020, 16, 817–843. [Google Scholar] [CrossRef]
- Griffin, B.J.; Joy, D.C.; Michael, J.R. A comparison of a luminescence-based VPSE and an electron-based GSED for SE and CL imaging in variable pressure SEM with conventional SE imaging. Microsc. Microanal. 2010, 16, 624–625. [Google Scholar] [CrossRef] [Green Version]
- Fornelli, A.; Langone, A.; Micheletti, F.; Piccarreta, G. REE partition among zircon, orthopyroxene, amphibole and garnet in a high-grade metabasic system. Geol. Mag. 2018, 155, 1705–1726. [Google Scholar] [CrossRef]
- Fornelli, A.; Gallicchio, S.; Micheletti, F. U-Pb detrital zircon ages and compositional features of Bifurto quartz-rich sandstones from Southern Apennines (Southern Italy): Comparison with Numidian Flysch sandstones to infer source area. Ital. J. Geosci. 2019, 138, 216–230. [Google Scholar] [CrossRef]
- Horstwood, M.S.; Košler, J.; Gehrels, G.; Jackson, S.E.; Mclean, N.M.; Paton, C.; Bowring, J.F. Community derived standards for LA-ICP-MS U(Th) Pb geochronology–Uncertainty propagation, age interpretation and data reporting. Geostand. Geoanal. Res. 2016, 40, 311–332. [Google Scholar] [CrossRef] [Green Version]
- Mueller, P.; Langone, A.; Patacci, M.; Di Giulio, A. Towards a Southern European Tethyan Palaeomargin provenance signature: Sandstone detrital modes and detrital zircon U-Pb age distribution of the Upper Cretaceous–Paleocene Monte Bignone Sandstones (Ligurian Alps, NW Italy). Int. J. Earth Sci. 2020, 109, 201–220. [Google Scholar] [CrossRef]
- Spencer, C.J.; Kirkland, C.L.; Taylor, R.J.M. Strategies towards statistically robust interpretations in situ U-Pb zircon geochronology. Geosci. Front. 2016, 7, 581–589. [Google Scholar] [CrossRef] [Green Version]
- Gehrels, G. Detrital zircon U-Pb geochronology: Current methods and new opportunities. In Tectonics of Sedimentary Basins: Recent Advances; Busby, C., Azor, A., Eds.; Blackwell Publishing: Oxford, UK, 2014; pp. 45–62. [Google Scholar]
- Vermeesch, P. On the visualization of detrital age distributions. Chem. Geol. 2012, 312, 190–194. [Google Scholar] [CrossRef]
- Dickinson, W.R. Interpreting provenance relations from detrital modes of sandstones. In Provenance of Arenites; Zuffa, G.C., Ed.; D. Reidel Publishing Company: Dordrecht, The Netherlands, 1985; pp. 333–362. [Google Scholar]
- Dickinson, W.R.; Beard, L.S.; Brakenridge, G.R.; Erjavec, J.L.; Ferguson, R.C.; Inman, K.F.; Knepp, R.A.; Lindberg, F.A.; Ryberg, P.T. Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geol. Soc. Am. Bull. 1983, 94, 222–235. [Google Scholar] [CrossRef]
- Xu, X.S.; Zhang, M.; Zhu, K.Y.; Chen, X.M.; He, Z.Y. Reverse age zonation of zircon formed by metamictisation and hydrothermal fluid leaching. Lithos 2012, 150, 256–267. [Google Scholar] [CrossRef]
- Corfu, F.; Hanchar, J.M.; Hoskin, P.W.O.; Kinny, P. Atlas of zircon textures. In Zircon; Hanchar, J.M., Hoskin, P.W.O., Eds.; Reviews in Mineralogy and Geochemistry: Washington, DC, USA, 2003; pp. 469–500. [Google Scholar]
- Critelli, S.; Muto, F.; Perri, F.; Tripodi, V. Interpreting provenance relations from sandstone detrital modes, southern Italy foreland region: Stratigraphic record of the Miocene tectonic evolution. Mar. Pet. Geol. 2017, 87, 47–59. [Google Scholar] [CrossRef]
- Lu, G.; Winkler, W.; Rahn, M.; von Quadt, A.; Willett, S.D. Evaluating igneous sources of the Taveyannaz formation in the Central Alps by detrital zircon U–Pb age dating and geochemistry. Swiss J. Geosci. 2018, 111, 399–416. [Google Scholar] [CrossRef]
- Arenas, R.; Martínez, S.S.; Albert, R.; Haissen, F.; Fernández-Suárez, J.; Pujol-Solà, N.; Andonaegui, P.; Díez Fernández, R.A.; Proenza, J.; Antonio Garcia-Casco, A.; et al. 100 Ma cycles of oceanic lithosphere generation in peri-Gondwana: Neoproterozoic to Devonian ophiolites from the NW African-Iberian margin of Gondwana and the Variscan Orogen. Spec. Publ. Geol. Soc. Lond. 2020, 503. [Google Scholar] [CrossRef]
- Von Raumer, J.F.; Stampfli, G.M.; Arenas, R.; Martínez, S.S. Ediacaran to Cambrian oceanic rocks of the Gondwana margin and their tectonic interpretation. Int. J. Earth Sci. 2015, 104, 1107–1121. [Google Scholar] [CrossRef]
- Alvarez, W.; Cocozza, T.; Wezel, F.C. Fragmentation of the Alpine orogenic belt by microplate dispersal. Nature 1974, 248, 309–314. [Google Scholar] [CrossRef]
- Lustrino, M.; Fedele, L.; Agostini, S.; Di Vincenzo, G.; Morra, V. Eocene-Miocene igneous activity in Provence (SE France): 40Ar/39Ar data, geochemical-petrological constraints and geodynamic implications. Lithos 2017, 288, 72–90. [Google Scholar] [CrossRef]
- Kastens, K.; Mascle, J.; Auroux, C.; Bonatti, E.; Broglia, C.; Channell, J.; Curzi, P.; Kay-Christian, E.; Glaçon, G.; Shiro hasegawa, S.; et al. ODP Leg 107 in the Tyrrhenian Sea: Insights into passive margin and back-arc basin evolution. Geol. Soc. Am. Bull. 1988, 100, 1140–1156. [Google Scholar] [CrossRef]
- Balestro, G.; Festa, A.; Dilek, Y. Structural architecture of the Western Alpine Ophiolites, and the Jurassic seafloor spreading tectonics of the Alpine Tethys. J. Geol. Soc. 2019, 176, 913–930. [Google Scholar] [CrossRef]
- Rebay, G.; Zanoni, D.; Langone, A.; Luoni, P.; Tiepolo, M.; Spalla, M.I. Dating of ultramafic rocks from the Western Alps ophiolites discloses Late Cretaceous subduction ages in the Zermatt-Saas Zone. Geol. Mag. 2018, 155, 298–315. [Google Scholar] [CrossRef] [Green Version]
- Fornelli, A.; Gallicchio, S.; Micheletti, F.; Langone, A. U–Pb detrital zircon ages from Gorgoglione Flysch sandstones in Southern Apennines (Italy) as provenance indicators. Geol. Mag. 2020. [Google Scholar] [CrossRef]
Sample | SiO2 | TiO2 | Al2O3 | Fe2O3 | MnO | MgO | CaO | Na2O | K2O | P2O5 | LOI | Rb | Sr | Y | Zr | Nb |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TTA | 52.94 | 0.69 | 16.55 | 7.40 | 0.08 | 5.67 | 5.33 | 2.23 | 1.32 | 0.10 | 7.68 | 43 | 597 | 20 | 145 | 11 |
TTB | 54.08 | 0.72 | 18.00 | 6.71 | 0.09 | 5.23 | 4.58 | 2.82 | 1.63 | 0.15 | 6.00 | 55 | 960 | 19 | 166 | 11 |
Mean in [37] | 54.37 | 0.77 | 15.19 | 6.72 | 0.09 | 5.36 | 6.00 | 2.96 | 1.68 | 0.15 | 6.34 | 63 | 724 | 21 | 146 | 9 |
Sample | Neoarchean-Paleoproterozoic Ages | Cryogenian-Ediacaran Ages | Ordovician-Devonian Ages | Carboniferous-Permian Ages | Upper Jurassic Ages | Cretaceous Ages | Priabonian-Rupelian Ages |
---|---|---|---|---|---|---|---|
TTA | - | 717 ± 7; 640 ± 7; 614 ± 6; 606 ± 6; 573 ± 6; 535 ± 5; (506 ± 5 Cambrian) | 455 ± 4; 394 ± 4; 387 ± 4 | 315 ± 3; 313 ± 3; 303 ± 3; 301 ± 3; 298 ± 3; 295 ± 3; 294 ± 3; 287 ± 3; 283 ± 3; 277 ± 3; 276 ± 3; 274 ± 3; 265 ± 3 | 157 ±2; 156 ±2 | (130 ± 1 Lower Cretaceous) (78 ± 1; 67 ± 1 Upper Cretaceous) | 36 ± 1; 36 ± 1; 36 ± 1; 35 ± 1; 35 ± 1; 35 ± 1; 34 ± 1; 34 ± 1; 34 ± 1; 34 ± 1; 33 ± 1; 33 ± 1; 33 ± 1; 33 ± 1; 33 ± 1; 33 ± 1; 32 ± 1; 32 ± 1; 32 ± 1; 32 ± 1; 32 ± 1; 32 ± 1; 32 ± 1; 32 ± 1; 32 ± 1; 31 ± 1; 30 ± 1; 35 ± 1; 34 ± 1; 34 ± 1; 34 ± 1; 33 ± 1; 33 ± 1, 31 ± 1 |
TTB | 2813 ± 30; 2737 ± 29; 1998 ± 21; 1885 ± 20 | 416 ± 4 | 348 ± 3; 338 ± 3; 307 ± 3; 285 ± 3; 270 ± 3; 260 ± 6; 258 ± 2 | 36 ± 1; 35 ± 1; 34 ± 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fornelli, A.; Gallicchio, S.; Micheletti, F.; Langone, A. Preliminary U-Pb Detrital Zircon Ages from Tufiti di Tusa Formation (Lucanian Apennines, Southern Italy): Evidence of Rupelian Volcaniclastic Supply. Minerals 2020, 10, 786. https://doi.org/10.3390/min10090786
Fornelli A, Gallicchio S, Micheletti F, Langone A. Preliminary U-Pb Detrital Zircon Ages from Tufiti di Tusa Formation (Lucanian Apennines, Southern Italy): Evidence of Rupelian Volcaniclastic Supply. Minerals. 2020; 10(9):786. https://doi.org/10.3390/min10090786
Chicago/Turabian StyleFornelli, Annamaria, Salvatore Gallicchio, Francesca Micheletti, and Antonio Langone. 2020. "Preliminary U-Pb Detrital Zircon Ages from Tufiti di Tusa Formation (Lucanian Apennines, Southern Italy): Evidence of Rupelian Volcaniclastic Supply" Minerals 10, no. 9: 786. https://doi.org/10.3390/min10090786
APA StyleFornelli, A., Gallicchio, S., Micheletti, F., & Langone, A. (2020). Preliminary U-Pb Detrital Zircon Ages from Tufiti di Tusa Formation (Lucanian Apennines, Southern Italy): Evidence of Rupelian Volcaniclastic Supply. Minerals, 10(9), 786. https://doi.org/10.3390/min10090786