Distribution of Selenium in the Soil–Plant–Groundwater System: Factors Controlling Its Bio-Accumulation
Abstract
:1. Introduction
2. Materials and Methods
Study Area and Sampling Procedure
3. Distribution of Selenium in Neogene Basins of Greece
3.1. Soils of the Assopos-Thiva and Attica Basins
3.2. Selenium Contents in Plants
3.3. Accumulation Factor
3.4. Distribution of Se in Groundwater
4. Discussion
4.1. Bio-Accumulation of Selenium
4.2. Source(s) of Selenium
4.3. Implications to the Increase of the Se Uptake by Crops
5. Conclusions
- The dry weight Se values are relatively low (0.1–0.9 mg/kg) and they are higher in the cultivated plants from the neutral-alkaline soil of the Assopos basin with respect to non-cultivated plants from the Attica basin, and higher in shoots than in roots of the plants. The highest Se content was recorded in garlic (bulb), beet (shoot) and lettuce (shoot);
- The translocation percentage [(mplant/msoil) × 100] for Se, P and S is much higher in the cultivated Assopos basin compared to that for the non-cultivated Attica basin;
- A negative Se-organic matter correlation suggests that under less oxidizing conditions the reduction in Se in soil makes Se less available for plant uptake. A negative trend between Se and Fe for the soil samples from the Assopos-Thiva and Attica basins, in contrast to the positive trend for the Se-bearing soils from Ermioni and Othrys, may be related to the alkaline soil in the former (the predominant species are selenite ions, SeO42−), and the presence of sulphides (low pH, with predominant selenite, SeO32− salts) in the latter;
- The soil pH and the oxidizing conditions (Eh) are considered to be the main driving force to make Se available for plant uptake;
- There is a diversity between the Se source in soil and coastal groundwater;
- Potential sources for Se in Greece are Fe-Cu-Zn-sulphide ores, peat deposits with average = 270 mg/kg Se content, but the application of the leaching testing protocol is necessary to select the most appropriate proportion of additives, in order to improve the Se deficiencies in agricultural soil.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gupta, M.; Gupta, S. An Overview of Selenium Uptake, Metabolism and Toxicity in Plants. Front. Plant Sci. 2017, 7, 2074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strand, T.A.; Lillegaard, I.T.L.; Frøyland, L.; Haugen, M.; Henjum, S.; Løvik, M.; Stea, T.H.; Holvik, K. Assessment of selenium intake in relation to tolerable upper intake levels. Eur. J. Nutr. Food Saf. 2018, 8, 155–156. [Google Scholar] [CrossRef] [Green Version]
- Hu, T.; Liang, Y.; Zhao, G.; Wu, W.; Li, H.; Guo, Y. Selenium biofortification and antioxidant activity in Cordyceps militaris supplied with selenate, selenite, or selenomethionine. Biol. Trace Elem. Res. 2019, 187, 553–561. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Alarcon, M.; Cabrera-Vique, C. Selenium in food and the human body: A review. Sci. Total Environ. 2008, 400, 115–141. [Google Scholar] [CrossRef] [PubMed]
- Plant, J.A.; Kinniburgh, D.G.; Smedley, P.L.; Fordyce, F.M.; Klinck, B.A. Arsenic and Selenium. In Environmental Geochemistry; Dollar, B.S., Ed.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 9, pp. 17–66. [Google Scholar]
- Kabata-Pendias, A.; Mukherjee, A.B. Trace Elements from Soil to Human; Springer: Berlin/Heidelberg, Germany, 2007; p. 550. [Google Scholar]
- Hannington, M.D.; Galley, A.; Gerzig, P.; Petersen, S. Comparison of the TAG mound and stockwork complex with Cyprus-type massive sulfide deposits. Proc. Ocean Drill. Program 1998, 158, 389–415. [Google Scholar]
- Eliopoulos, D.G.; Economou-Eliopoulos, M.; Economou, G.; Skounakis, V. Mineralogical and Geochemical Constraints on the Origin of Mafic–Ultramafic-Hosted Sulphides: The Pindos Ophiolite Complex. Minerals 2020, 10, 454. [Google Scholar] [CrossRef]
- Tabelin, C.B.; Igarashi, T.; Villacorte-Tabelin, M.; Park, I.; Opiso, E.M.; Ito, M.; Hiroyoshi, N. Arsenic, selenium, boron, lead, cadmium, copper, and zinc in naturally contaminated rocks: A review of their sources, modes of enrichment, mechanisms of release, and mitigation strategies. Sci. Total Environ. 2018, 645, 1522–1553. [Google Scholar] [CrossRef]
- Tabelin, C.B.; Sasaki, R.; Igarashi, T.; Park, I.; Tamoto, S.; Arima, T.; Ito, M.; Hiroyoshi, N. Simultaneous leaching of arsenite, arsenate, selenite, and selenate, and their migration in tunnel-excavated sedimentary rocks: I. Column experiments under intermittent and unsaturated flow. Chemosphere 2017, 186, 558–569. [Google Scholar] [CrossRef]
- Tabelin, C.B.; Sasaki, R.; Igarashi, T.; Park, I.; Tamoto, S.; Arima, T.; Ito, M.; Hiroyoshi, N. Simultaneous leaching of arsenite, arsenate, selenite, and selenate, and their migration in tunnel-excavated sedimentary rocks: II. Kinetic and reactive transport modeling. Chemosphere 2017, 188, 444–454. [Google Scholar] [CrossRef]
- Zhong, X.; Gan, Y.; Deng, Y. Distribution, origin and speciation of soil selenium in the lack soil region of Northeast China. Environ. Geochem. Health 2020, 1–15. [Google Scholar] [CrossRef]
- Xiao, K.; Tang, J.; Chen, H.; Li, D.; Liu, Y. Impact of land use/land cover change on the topsoil selenium concentration and its potential bioavailability in a karst area of outhwest China. Sci. Total Environ. 2020, 708, 135201. [Google Scholar] [CrossRef] [PubMed]
- Tamoto, S.; Tabelin, C.B.; Igarashi, T.; Ito, M.; Hiroyoshi, N. Short and long term release mechanisms of arsenic, selenium and boron from tunnel-excavated sedimentary rock under in situ conditions. J. Contam. Hydrol. 2015, 175, 60–71. [Google Scholar] [CrossRef] [PubMed]
- Metsios, C. Mobility of Selenium—Environmental Impact. Master’s Thesis, National University of Athens, Athens, Greece, 1999. (In Greek). [Google Scholar]
- Kieliszek, M.; Błazejak, S. Current knowledge on the importance of selenium in food for living organisms: A review. Molecules 2016, 21, 609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasilatos, C.; Megremi, I.; Economou-Eliopoulos, M.; Mitsis, I. Hexavalent chromium and other toxic elements in natural waters in the Thiva–Tanagra–Malakasa Basin, Greece. Hell. J. Geosci. 2008, 43, 57–66. [Google Scholar]
- Megremi, Ι. Distribution and bioavailability of Cr in Central Evia, Greece. Cent. Eur. J. Geosci. 2009, 2, 103–123. [Google Scholar]
- Megremi, I. Controlling Factors of the Mobility and Bioavailability of Cr and Other Metals at the Environment of Ni-Laterites. Ph.D. Thesis, Univerity of Athens, Athens, Greek, 2010. [Google Scholar]
- Moraki, A. Assessment of groundwater contamination by hexavalent chromium and its remediation at Avlida area, Central Greece. Hell. J. Geosci. 2010, 45, 175–183. [Google Scholar]
- Economou-Eliopoulos, M.; Antivachi, D.; Vasilatos, C.; Megremi, I. Evaluation of the Cr(VI) and other toxic element contamination and their potential sources: The case of the Thiva basin (Greece). Geosci. Front. 2012, 3, 523–539. [Google Scholar] [CrossRef] [Green Version]
- Economou-Eliopoulos, M.; Frei, R.; Atsarou, C. Application of chromium stable isotopes to the evaluation of Cr (VI) contamination in groundwater and rock leachates from central Euboea and the Assopos basin (Greece). Catena 2014, 122, 216–228. [Google Scholar] [CrossRef]
- Economou-Eliopoulos, M.; Frei, R.; Megremi, I. Potential leaching of Cr (VI) fromlaterite mines and residues of metallurgical products (red mud and slag): An integrated approach. J. Geochem. Explor. 2016, 262, 40–49. [Google Scholar] [CrossRef]
- Kelepertzis, E. Accumulation of heavy metals in agricultural soils of Mediterranean: Insights from Argolida basin, Peloponnese, Greece. Geoderma 2014, 221, 82–90. [Google Scholar] [CrossRef]
- Vasileiou, E.; Perraki, M.; Stamatis, G.; Gartzos, E. The effects of water rock interaction and the human activities on the occurrence of hexavalent chromium in waters. The Case Study of the Psachna Basin, Central Euboea, Greece. In Proceedings of the EGU General Assembly, Vienna, Australia, 27 April–2 May 2014. [Google Scholar]
- Papazotos, P.; Vasileiou, E.; Perraki, M. The synergistic role of agricultural activities in groundwater quality in ultramafic environments: The case of the Psachna basin, Central Euboea, Greece. Environ. Monit. Assess. 2019, 191, 317. [Google Scholar] [CrossRef] [PubMed]
- Vasileiou, E.; Papazotos, P.; Dimitrakopoulos, D.; Perraki, M. Expounding the origin of chromium in groundwater of the Sarigkiol basin, Western Macedonia, Greece: A cohesive statistical approach and hydrochemical study. Environ. Monit. Assess. 2019, 191, 509. [Google Scholar] [CrossRef] [PubMed]
- Dermatas, D.; Mpouras, T.; Chrysochoou, M.; Panagiotakis, I.; Vatseris, C.; Linardos, N.; Theologou, E.; Bompoti, N.; Xenidis, A.; Papassiopi, N.; et al. Origin and concentration profile of chromium in a Greek aquifer. J. Hazard. Mater. 2015, 281, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Remoundaki, E.; Vasileiou, E.; Philippou, A.; Perraki, M.; Kousi, P.; Hatzikioseyian, A.; Stamatis, G. Groundwater deterioration: The simultaneous effects of intense agricultural activity and heavy metals in soil. Procedia Eng. 2016, 162, 545–552. [Google Scholar] [CrossRef] [Green Version]
- Pavlopoulos, K.; Chrisanthaki, I.; Economou–Eliopoulos, M.; Lekkas, S. Hydrochemical study of metals in the groundwater of the wider area of Koropi. In Advances in the Research of Aquatic Environment; Springer: Berlin/Heidelberg, Germany, 2011; pp. 169–176. [Google Scholar]
- Kampouroglou, E.E. Investigation of Contamination at the Carbonic Basin in Varnavas, Attica from Arsenic and Heavy Metals and Their Source of Origin. Master’s Thesis, University of Athens, Athens, Greece, 2011. (In Greek). [Google Scholar]
- Kampouroglou, E.E.; Economou-Eliopoulos, M. Assessment of the environmental impact by as and heavy metals in lacustrine travertine limestone and soil in Attica, Greece: Mapping of potentially contaminated sites. Catena 2016, 139, 137–166. [Google Scholar] [CrossRef]
- Kampouroglou, E.E.; Economou-Eliopoulos, M. Assessment of arsenic and associated metals in the soil-plant-water system in Neogene basins of Attica, Greece. Catena 2017, 150, 206–222. [Google Scholar] [CrossRef]
- Paikaray, S. Origin, mobilization and distribution of selenium in a soil/water/air system: A global perspective with special reference to the Indian scenario. Clean 2016, 44, 474–487. [Google Scholar] [CrossRef]
- Shahid, M.; Niazi, N.K.; Khalid, S.; Murtaza, B.; Bibi, I.; Rashid, M.I. A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health. Environ. Pollut. 2018, 234, 915–934. [Google Scholar]
- Stoffaneller, R.; Morse, N.L. A review of dietary selenium intake and selenium status in Europe and the Middle East. Nutrients 2015, 7, 1494–1537. [Google Scholar] [CrossRef]
- Schulpis, K.H.; Karakonstantakis, T.; Gavrili, S.; Chronopoulou, G.; Karikas, G.A.; Vlachos, G.; Papassotiriou, I. Maternal-neonatal serum selenium and copper levels in Greeks and Albanians. Eur. J. Clin. Nutr. 2004, 58, 1314–1318. [Google Scholar] [CrossRef]
- Dinh, Q.T.; Cui, Z.; Huang, J.; Tran, T.; Wang, D.; Yang, W.; Liang, D. Selenium distribution in the Chinese environment and its relationship with human health: A review. Environ. Int. 2018, 112, 294–309. [Google Scholar] [CrossRef] [PubMed]
- Mason, R.P.; Soerensen, A.L.; DiMento, B.P.; Balcom, P.H. The global marine selenium cycle: Insights from measurements and modeling. Glob. Biogeochem. Cycles 2018, 32, 1720–1737. [Google Scholar] [CrossRef]
- Papanikolaou, D.J.; Mariolakos, I.D.; Lekkas, E.L.; Lozios, S.G. Morphotectonic observations at the Assopos basin and the coastal zone of Oropos. Contribution to the neotectonics of Northern Attica. In Proceedings of the Bulletin Geological Society of GREECE, Athens, Greek, 25–27 May 1988; pp. 251–267. [Google Scholar]
- Chatoupis, T.; Fountoulis, I. The neotectonic deformation of N. Parnis Mt. (Attica, Greece). In Proceedings of the 10th Congress Geological Society Greece, Thessaloniki, Greek, 15–17 April 2004; Volume 3, pp. 1588–1597. [Google Scholar]
- ASTM. Standard Test Methods for Moisture, Ash and Organic Matter of Peat and Other Organic Soils, Method D 2974-00; American Society for Testing and Materials: West Conshohocken, PA, USA, 2000. [Google Scholar]
- Robertson, A.H.F.; Varnavas, S.P.; Panagos, A.G. Ocean ridge origin and tectonic setting of Mesozoic sulphide and oxide deposits of the Argolis peninsula of the Peloponnesus, Greece. Sediment. Geol. 1987, 53, 1–32. [Google Scholar] [CrossRef]
- Robertson, A.H.F.; Varnavas, S.P. The origin of hydrothermal metalliferous sediments associated with the early Mesozoic Othris and Pindos ophiolites, mainland Greece. Sediment. Geol. 1993, 83, 87–113. [Google Scholar] [CrossRef]
- Economou-Eliopoulos, M.; Megremi, I.; Vasilatos, C. Factors controlling the heterogeneous distribution of Cr (VI) in soil, plants and groundwater: Evidence from the Assopos basin, Greece. Geochemistry 2011, 71, 39–52. [Google Scholar] [CrossRef]
- Asyminas, G. Assessment of the Environmental Impact by Chromium and Other Heavy Metals in Soil and Groundwater of the Assopos Basin: The Role of the Organic Matter to the Metal Bio-Availability. Master’s Thesis, University of Athens, Athens, Greece, 2 January 2012. [Google Scholar]
- Helsel, D.R. More than obvious: Better methods for interpreting nondetect data. Environ. Sci. Technol. 2005, 39, 419A–423A. [Google Scholar] [CrossRef] [Green Version]
- Maksimovic, Z.; Djujic, I.; Jovic, V.; Rsumovic, M. Selenium deficiency in Yugoslavia. Biol. Trace Elem. Res. 1992, 33, 187–196. [Google Scholar] [CrossRef]
- Liesack, W.; Schnell, S.; Wevsbech, N.P. Microbiology of flooded rice paddies. FEMS Microbiol. Rev. 2000, 24, 625–645. [Google Scholar] [CrossRef]
- Sharma, S.; Singh, R.; Nielson, G.G. Selenium in soil, plant, and animal systems. Crit. Rev. Environ. Sci. Technol. 1983, 13, 23–50. [Google Scholar] [CrossRef]
- Atsarou, C. Distribution of Chromium and Other HeavyMetals in Groundwater, Soiland Crops at the Avlona Area, Attica: Factors Controlling Their Bioavailability. Master’s Thesis, University of Athens, Athens, Greek, 2011. [Google Scholar]
- Daskalaki, P.; Voudouris, K. Groundwater quality of porous aquifers in Greece: A synoptic review. Environ. Geol. 2008, 54, 505–513. [Google Scholar] [CrossRef]
- Giannoulopoulos, P. Hydrogeological–Hydro-Chemical Survey of Groundwater Quality in the Wider Area of Asopos River Basin, Viotia Prefecture; Institute of Geology and Mineral Exploration (IGME): Athens, Greek, 2008; pp. 1–74. (In Greek) [Google Scholar]
- Megremi, I.; Vasilatos, C.; Atsarou, A.; Theodoratou, C.; Economou-Eliopoulos, M.; Mitsis, I. Geochemical evidences for the sources of the Cr(VI) contamination in groundwater in central Euboea and Assopos-Thiva basins, Greece. Natural versus anthropogenic origin. Eur. Water 2013, 41, 23–34. [Google Scholar]
- Megremi, I.; Vasilatos, C.; Vassilakis, E.; Economou-Eliopoulos, M. Spatial diversity of Cr distribution in soil and groundwater sites in relation with land use management in a Mediterranean region: The case of C. Evia and Assopos-Thiva Basins, Greece. Sci. Total Environ. 2019, 651, 656–667. [Google Scholar] [CrossRef] [PubMed]
- Post, V.E.A.; Eichholz, M.; Brentführer, R. Groundwater Management in Coastal Zones; Bundesanstalt für Geowissenschaften und Rohstoffe (BGR): Hannover, Germany, 2018. [Google Scholar]
- Stamatis, G.; Lambrakis, N.; Alexakis, D.; Zagana, E. Goundwater quality in Mesogea basin in eastern Attica (Greece). Hydrol. Process. 2006, 20, 2803–2818. [Google Scholar] [CrossRef]
- Hopper, J.L.; Parker, D.R. Plant availability of selenite and selenate as influenced by the competing ions phosphate and sulfate. Plant Soil 1999, 210, 199–207. [Google Scholar] [CrossRef]
- Tsioubri, M.; Gasparatos, D.; Economou-Eliopoulos, M. Selenium Uptake by Lettuce (Lactuca sativa L.) and Berseem (Trifolium alexandrinum L.) as Affected by the Application of Sodium Selenate, Soil Acidity and Organic Matter Content. Plants 2020, 9, 605. [Google Scholar] [CrossRef]
- Li, H.F.; McGrath, S.P.; Zhao, F.J. Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytol. 2008, 178, 92–102. [Google Scholar] [CrossRef]
- Feist, L.J.; Parker, D.R. Ecotypic variation in selenium accumulation among populations of Stanleya pinnata. New Phytol. 2001, 149, 61–69. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Frankenberger, W.T. Factors affecting removal of selenate in agricultural drainage water utilizing rice straw. Sci. Total Environ. 2003, 305, 207–216. [Google Scholar] [CrossRef]
- White, P.J.; Bowen, H.C.; Parmaguru, P.; Fritz, M.; Spracklen, W.P.; Spiby, R.E.; Broadley, M.R. Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. J. Exp. Bot. 2004, 55, 1927–1937. [Google Scholar] [CrossRef] [Green Version]
- Peng, Q.; Wang, M.K.; Cui, Z.W.; Huang, J.; Chen, C.E.; Guo, L.; Liang, D.L. Assessment of bioavailability of selenium in different plant-soil systems by diffusive gradients in thin-films (DGT). Environ. Pollut. 2017, 225, 637–643. [Google Scholar] [CrossRef]
- Seby, F.; Potin-Gautier, M.; Giffaut, E.; Donard, O.F.X. Assessing the speciation and the biogeochemical processes affecting the mobility of selenium from a geological repository of radioactive wastes to the biosphere. Analusis 1998, 26, 193–198. [Google Scholar] [CrossRef] [Green Version]
- Economou-Eliopoulos, M.; Eliopoulos, D.G. Selenium content of sulfide ores related to ophiolites of Greece. J. Environ. Pathol. Toxicol. Oncol. 1998, 17, 199–204. [Google Scholar] [PubMed]
- Economou-Eliopoulos, M.; Eliopoulos, D.G. Palladium, platinum and gold concentrations in porphyry copper systems of Greece and their genetic significance. Ore Geol. Rev. 2000, 16, 59–70. [Google Scholar] [CrossRef]
- Kim, H.; Kang, H.J.; You, K.T.; Kim, S.H.; Lee, K.Y.; Kim, T.I.; Kim, C.; Song, S.Y.; Kim, H.J.; Lee, C.; et al. Suppression of human selenium-binding protein 1 is a late event in colorectal carcinogenesis and is associated with poor survival. Proteomics 2006, 6, 3466–3476. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Wang, J.; Tang, Y.; Shi, H.; Ladwig, K. Leaching Characteristics of Arsenic and Selenium from Coal Fly Ash: Role of Calcium. Energy Fuels 2009, 23, 2959–2966. [Google Scholar] [CrossRef]
- Dermatas, D.; Vatseris, C.; Panagiotakis, I.; Chrysochoou, M. Potential contribution of Geogenic chromium in groundwater contamination of a Greek heavily industrialized area. Chem. Eng. Trans. 2012, 28, 217–222. [Google Scholar] [CrossRef]
- Tsioptsias, C.; Samiotis, G.; Lefteri, L.; Amanatidou, E. Cr(VI) Leached from Lignite Fly Ash—Assessment of Groundwater Contamination Risk. Water Air Soil Pollut. 2020, 231, 373. [Google Scholar] [CrossRef]
- Georgakopoulos, A.; Filippidis, A.; Kassoli-Fournaraki, A. Leachability of major and trace elements of fly ash from Ptolemais power station, Northern Greece. Energy Sources 2002, 24, 103–113. [Google Scholar] [CrossRef]
- Veranis, N.; Nimfopoulos, M.K.; Gertsis, A.; Gerouki, F. Agricultural and industrial applications of the hellenic fly ash and environmental impacts. In Proceedings of the 19th International Congress Industrial Minerals, Athens, Greek, 30 March–2 April 2008. [Google Scholar]
- Christanis, K.; Georgakopoulos, A. Fernandez-Turiel, J.L.; Bouzinos, A. Geological factors influencing the concentration of trace elements in the Philippi peatland, eastern Macedonia, Greece. Int. J. Coal Geol. 1998, 36, 295–313. [Google Scholar] [CrossRef]
mg/kg | wt% | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Se | Cr | Ni | Zn | Cu | Mn | Co | Fe | Al | Ca | Mg | S | Organic M. | |
Assopos Basin | |||||||||||||
Ass.1 | 0.25 | 200 | 470 | 60 | 28 | 910 | 39 | 2.96 | 1.67 | 7.74 | 2 | 0.06 | 0.86 |
Ass.2 | 0.25 | 190 | 480 | 62 | 28 | 860 | 36 | 1.81 | 1.39 | 6.85 | 1.89 | <0.05 | 0.82 |
Ass.3 | 0.25 | 200 | 450 | 60 | 47 | 920 | 39 | 2.82 | 1.59 | 7.68 | 1.89 | 0.06 | 0.97 |
Ass.4 | 0.25 | 150 | 320 | 71 | 50 | 920 | 31 | 3.31 | 1.80 | 7.21 | 1.74 | 0.06 | 1.04 |
Ass.5 | 0.25 | 130 | 300 | 70 | 36 | 860 | 28 | 2.96 | 1.57 | 7.06 | 1.70 | <0.05 | 1.22 |
Ass.6 | 0.25 | 190 | 470 | 57 | 26 | 860 | 36 | 2.90 | 1.62 | 7.28 | 2.05 | <0.05 | 0.80 |
Ass.7 | 0.25 | 130 | 260 | 76 | 37 | 810 | 29 | 3.02 | 1.84 | 7.38 | 1.62 | <0.05 | 1.37 |
Ass.8 | 0.25 | 67 | 130 | 66 | 28 | 690 | 19 | 2.69 | 1.25 | 5.60 | 1.14 | <0.05 | 0.70 |
Ass.9 | 0.25 | 180 | 470 | 115 | 40 | 880 | 37 | 2.84 | 1.51 | 8.71 | 1.68 | <0.05 | 1.16 |
Ass.10 | 0.25 | 140 | 340 | 58 | 41 | 680 | 30 | 2.19 | 1.04 | 7.19 | 1.70 | <0.05 | 1.40 |
Ass.11 | 0.25 | 140 | 330 | 47 | 30 | 670 | 29 | 2.10 | 0.99 | 6.84 | 1.61 | 0.05 | 1.90 |
Ass.12 | 0.25 | 130 | 260 | 93 | 41 | 800 | 30 | 3.05 | 1.79 | 7.20 | 1.64 | <0.05 | 1.20 |
Ass.13 | 0.25 | 89 | 190 | 49 | 24 | 660 | 21 | 2.39 | 1.20 | 6.14 | 0.83 | <0.05 | 1.15 |
Ass.14 | 0.25 | 130 | 290 | 65 | 31 | 830 | 28 | 2.92 | 1.45 | 7.01 | 1.61 | <0.05 | 1.20 |
Or.1 * | 0.25 | 50 | 50 | 87 | 23 | 827 | 10 | 1.53 | 1.07 | 2.02 | 0.48 | 0.18 | 17.0 |
Or.2 * | 0.25 | 54 | 52 | 84 | 27 | 846 | 13 | 1.97 | 1.46 | 2.07 | 0.48 | 0.15 | 9.00 |
Or.3 * | 0.25 | 67 | 52 | 63 | 36 | 1120 | 19 | 3.23 | 2.58 | 6.52 | 0.36 | 0.17 | 0.98 |
Or.4 * | 0.25 | 70 | 51 | 66 | 34 | 1060 | 18 | 3.34 | 2.77 | 4.95 | 0.32 | 0.15 | 0.90 |
Thiva Basin | |||||||||||||
Th1 | 0.25 | 230 | 760 | 70 | 35 | 1000 | 50 | 4.39 | 2.82 | 1.99 | 2.38 | <0.05 | 3.81 |
Th2 | 0.25 | 240 | 710 | 60 | 31 | 990 | 46 | 4.25 | 2.89 | 3.80 | 2.74 | <0.05 | 3.71 |
Th3 | 0.25 | 270 | 1650 | 62 | 33 | 1260 | 110 | 5.60 | 1.97 | 0.93 | 3.41 | <0.05 | 5.60 |
Th4 | 0.25 | 340 | 1150 | 50 | 36 | 1100 | 73 | 4.52 | 1.73 | 3.13 | 7.10 | <0.05 | 3.18 |
Th5 | 0.25 | 340 | 1400 | 48 | 30 | 1200 | 82 | 4.77 | 1.62 | 1.11 | 6.17 | <0.05 | 3.64 |
Th6 | 0.25 | 320 | 1400 | 48 | 31 | 1140 | 80 | 4.58 | 1.45 | 1.50 | 6.18 | <0.05 | 3.79 |
Attica Basin, travertine-bearing | |||||||||||||
Att.1 * | 0.25 | 150 | 100 | 76 | 26 | 1100 | 19 | 2.50 | 4.10 | 12.00 | 0.80 | 0.05 | 9.10 |
Att.2 * | 0.25 | 190 | 160 | 170 | 30 | 1400 | 29 | 4.10 | 7.10 | 1.20 | 0.80 | 0.05 | 10.50 |
Att.3 * | 0.25 | 140 | 98 | 89 | 22 | 670 | 18 | 2.90 | 5.10 | 11.00 | 0.80 | 0.08 | 6.20 |
Att.4 * | 0.25 | 640 | 410 | 62 | 64 | 620 | 33 | 3.00 | 3.70 | 11.00 | 2.60 | 0.07 | 3.40 |
Att.5 * | 0.6 | 162 | 81 | 64 | 39 | 937 | 23 | 3.36 | 1.88 | 12.98 | 1.06 | 0.05 | 4.10 |
Att.6 * | 0.5 | 45 | 55 | 118 | 20 | 414 | 34 | 2.06 | 1.45 | 11.28 | 0.39 | 0.11 | 5.70 |
Att.7 * | 0.25 | 31 | 48 | 80 | 15 | 302 | 23 | 1.57 | 0.94 | 17.61 | 0.34 | 0.05 | 4.20 |
Att.8 | 1.0 | 41 | 54 | 180 | 19 | 670 | 14 | 2.37 | 0.90 | 14.66 | 0.25 | 0.05 | 1.30 |
Att.9 | 0.9 | 42 | 53 | 240 | 18 | 635 | 13 | 2.40 | 0.88 | 18.85 | 0.17 | 0.06 | 1.40 |
Att.10 | 1.0 | 35 | 52 | 240 | 19 | 595 | 13 | 2.30 | 0.72 | 19.17 | 0.17 | 0.05 | 1.00 |
Att.11 | 0.9 | 47 | 64 | 265 | 23 | 710 | 14 | 2.90 | 0.96 | 17.49 | 0.19 | 0.05 | 1.40 |
Ermioni | 44 | 19 | 13 | 64 | 2120 | 130 | 10 | 17.4 | |||||
9.0 | 60 | 36 | 150 | 3170 | 500 | 60 | 3.20 | ||||||
14 | 70 | 44 | 120 | 2750 | 450 | 70 | 7.40 | ||||||
10 | 58 | 58 | 360 | 2660 | 330 | 60 | 6.20 | ||||||
7.1 | 58 | 67 | 620 | 4380 | 1412 | 120 | 8.50 | ||||||
1.6 | 63 | 42 | 95 | 1500 | 540 | 22 | 1.10 | ||||||
2.9 | 58 | 68 | 113 | 12720 | 2632 | 31 | 2.60 | ||||||
5.4 | 57 | 70 | 75 | 28160 | 1180 | 22 | 6.70 | ||||||
2.9 | 42 | 51 | 85 | 5696 | 1580 | 26 | 3.00 | ||||||
6.9 | 66 | 71 | 670 | 4000 | 2470 | 140 | 15.30 | ||||||
3.7 | 78 | 45 | 130 | 1960 | 1200 | 49 | 3.00 | ||||||
3.8 | 79 | 74 | 90 | 12400 | 2100 | 33 | 3.00 | ||||||
8.8 | 26 | 19 | 460 | 1000 | 100 | 17 | 15.8 | ||||||
4.4 | 50 | 34 | 410 | 860 | 500 | 27 | 3.70 | ||||||
3.1 | 74 | 93 | 110 | 4170 | 1900 | 31 | 2.50 | ||||||
4.2 | 47 | 71 | 110 | 6570 | 520 | 17 | 3.80 | ||||||
Othrys | 0.7 | 78 | 76 | 1930 | 620 | 3340 | 70 | 10.90 | |||||
4.5 | 100 | 290 | 320 | 550 | 1950 | 47 | 10.50 | ||||||
0.6 | 44 | 63 | 100 | 70 | 1800 | 27 | 2.10 | ||||||
44 | 110 | 25 | 1430 | 1800 | 220 | 32 | 21.0 | ||||||
0.9 | 1530 | 390 | 120 | 1710 | 1900 | 53 | 5.90 | ||||||
7.5 | 160 | 120 | 1520 | 2250 | 580 | 44 | 14.30 | ||||||
5.2 | 97 | 250 | 970 | 1830 | 650 | 38 | 11.30 | ||||||
4.7 | 90 | 170 | 880 | 1650 | 460 | 31 | 9.40 | ||||||
Det. Limit | 0.5 | 1.0 | 0.1 | 1.0 | 0.1 | 1.0 | 0.1 | 0.01 | 0.01 | 0.01 | 0.01 | 0.05 |
mg/kg | wt% | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SAMPLES | Se | Cr | Ni | Mn | Fe | Zn | Cu | Pb | Co | K | Na | Mg | Ca | S | P |
Cultivated | |||||||||||||||
Assopos basin | |||||||||||||||
Onion-shoot | 0.3 | 1.8 | 2.0 | 60 | 12 | 24 | 6.0 | 0.2 | 3.8 | 4.1 | 0.100 | 0.630 | 2.0 | 0.33 | 0.680 |
Onion-bulb | 0.4 | 0.7 | 2.9 | 22 | 2.0 | 39 | 6.0 | 0.1 | 2.3 | 2.3 | 0.040 | 0.160 | 0.5 | 0.40 | 0.530 |
Garlic-shoot | 0.5 | 1.4 | 1.8 | 34 | 14 | 28 | 3.8 | 0.2 | 2.0 | 3.2 | 0.030 | 0.680 | 1.7 | 0.39 | 0.530 |
Garlic-bulb | 0.6 | 0.7 | 3.1 | 15 | 4.0 | 46 | 8.1 | 0.1 | 6.1 | 1.7 | 0.020 | 0.120 | 0.4 | 0.60 | 0.520 |
Cocozelle-shoot | 0.3 | 1.3 | 14 | 52 | 15 | 34 | 10 | 0.1 | 3.8 | 4.5 | 0.000 | 0.890 | 2.5 | 0.37 | 0.740 |
Beet-shoot | 0.9 | 0.8 | 1.3 | 115 | 8.0 | 11 | 7.1 | 0.4 | 2.4 | 3.9 | 8.200 | 1.470 | 1.1 | 0.48 | 0.170 |
Beet-root | 0.2 | 0.6 | 0.5 | 23 | 3.0 | 12 | 7.7 | 0.0 | 2.7 | 2.7 | 1.470 | 0.200 | 0.1 | 0.19 | 0.180 |
Beet-root | 0.3 | 0.9 | 2.0 | 29 | 9.0 | 21 | 12 | 0.1 | 5.3 | 3.1 | 0.940 | 0.280 | 0.2 | 0.18 | 0.380 |
Lettuce-shoot | 0.6 | 1 | 3.2 | 49 | 15 | 48 | 10 | 0.4 | 1.0 | 6.9 | 1.050 | 0.710 | 0.8 | 0.34 | 0.540 |
Cabbage-shoot | 0.3 | 0.8 | 7.7 | 22 | 5.0 | 15 | 2.5 | 0.0 | 1.9 | 3.0 | 0.120 | 0.200 | 0.5 | 0.50 | 0.270 |
Leek-shoot | 0.2 | 0.7 | 1.6 | 16 | 5.0 | 17 | 4.7 | 0.1 | 2.0 | 4.0 | 0.160 | 0.180 | 0.3 | 0.50 | 0.310 |
Leek-root | 0.5 | 8.0 | 11 | 23 | 70 | 19 | 8.3 | 0.3 | 1.9 | 3.5 | 1.630 | 0.800 | 0.5 | 0.81 | 0.260 |
Leek-shoot | 0.2 | 0.6 | 1.3 | 17 | 6.0 | 20 | 4.4 | 0.1 | 2.4 | 2.9 | 0.040 | 0.110 | 0.1 | 0.45 | 0.440 |
Leek-root | 0.3 | 5.4 | 8.0 | 40 | 120 | 25 | 7.4 | 0.7 | 1.4 | 3.3 | 1.040 | 0.770 | 0.4 | 0.51 | 0.350 |
Beet-shoot | 0.6 | 3.7 | 10 | 138 | 20 | 38 | 10 | 0.7 | 1.6 | 6.1 | 4.370 | 1.230 | 0.8 | 0.39 | 0.430 |
Lettuce-shoot | 0.2 | 1.3 | 2.7 | 31 | 17 | 17 | 10 | 0.3 | 2.9 | 7.6 | 0.190 | 0.320 | 1.0 | 0.22 | 0.590 |
Spinach-shoot | 0.4 | 2.6 | 5.0 | 45 | 54 | 68 | 10 | 0.5 | 2.2 | 5.9 | 1.510 | 1.300 | 0.6 | 0.38 | 0.600 |
Cocozelle-shoot | 0.3 | 0.9 | 13 | 56 | 17 | 37 | 10 | 0.1 | 4.0 | 4.5 | 0.004 | 0.892 | 2.5 | 0.37 | 0.742 |
Coccozele-shoot | 0.4 | 0.6 | 11 | 34 | 15 | 23 | 7.3 | 0.1 | 3.7 | 6.9 | 0.019 | 0.931 | 1.9 | 0.27 | 0.554 |
Coccozele-shoot | 0.3 | 0.5 | 8.3 | 21 | 18 | 18 | 13 | 0.1 | 0.5 | 8.0 | 0.013 | 0.519 | 1.1 | 0.26 | 0.623 |
Lettuce-shoot * | |||||||||||||||
O.shoot1 | 0.6 | 7.5 | 1.9 | 117 | 880 | 42 | 12 | 0.4 | 0.37 | 6.2 | 0.980 | 0.416 | 1.65 | 0.49 | 0.372 |
O.root1 | 0.5 | 6.8 | 1.8 | 123 | 700 | 43 | 11 | 0.5 | 0.46 | 5.1 | 0.795 | 0.445 | 1.84 | 0.43 | 0.307 |
O.shoor1, org. | 0.6 | 2.2 | 0.8 | 57 | 160 | 33 | 7.9 | 0.5 | 0.31 | 6.2 | 0.755 | 0.180 | 0.50 | 0.34 | 0.404 |
O.root, org. | 0.4 | 13.1 | 1.6 | 135 | 360 | 52 | 193 | 1.7 | 0.29 | 11.0 | 0.147 | 0.321 | 1.01 | 0.40 | 0.448 |
O.shoot2 | 0.7 | 4.1 | 1.2 | 47 | 450 | 41 | 11 | 0.3 | 0.49 | 7.2 | 0.635 | 0.279 | 0.94 | 0.50 | 0.315 |
O.roo2 | 0.4 | 6.0 | 1.6 | 112 | 570 | 42 | 12 | 0.5 | 0.39 | 4.8 | 0.722 | 0.361 | 1.60 | 0.43 | 0.298 |
O.shoot2, org | 0.6 | 2.1 | 0.9 | 40 | 190 | 39 | 12 | 0.5 | 0.37 | 5.4 | 0.990 | 0.170 | 0.45 | 0.30 | 0.479 |
O.root2,org | 0.4 | 3.7 | 0.7 | 110 | 150 | 49 | 12 | 0.2 | 0.14 | 10.5 | 0.214 | 0.321 | 0.99 | 0.38 | 0.482 |
Thiva basin | |||||||||||||||
Carrot1 | 0.3 | 2.0 | 3.2 | 10 | 40 | 19 | 7.6 | 0.20 | 3.2 | 3.01 | 0.230 | 0.210 | 0.39 | 0.13 | 0.280 |
Carrot2 | 0.3 | 2.0 | 3.3 | 8 | 40 | 19 | 7.1 | 0.01 | 0.5 | 3.30 | 0.230 | 0.210 | 0.38 | 0.12 | 0.320 |
Carrot3 | 0.2 | 2.0 | 3.0 | 7 | 40 | 19 | 7.3 | 0.01 | 0.4 | 3.50 | 0.320 | 0.210 | 0.38 | 0.14 | 0.290 |
Carrot4 | 0.3 | 2.0 | 3.3 | 8 | 50 | 18 | 7.4 | 0.04 | 0.8 | 3.10 | 0.230 | 0.190 | 0.38 | 0.14 | 0.290 |
Carrot5 | 0.1 | 2.4 | 5,2 | 7 | 40 | 14 | 5.1 | 0.07 | 0.6 | 2.19 | 0.050 | 0.120 | 0.04 | 0.17 | 0.280 |
Potatoes 1 | 0.2 | 2.1 | 6.2 | 7 | 90 | 12 | 3.0 | 0.17 | 4.3 | 2.35 | 0.010 | 0.150 | 0.07 | 0.22 | 0.360 |
Potatoes 2 | 0.1 | 2.1 | 5.1 | 8 | 50 | 26 | 5.7 | 0.08 | 1.1 | 2.33 | 0.010 | 0.150 | 0.07 | 0.19 | 0.320 |
Potatoes 3 | 0.2 | 2.4 | 5.0 | 8 | 40 | 32 | 7.6 | 1.37 | 1.3 | 2.31 | 0.005 | 0.120 | 0.04 | 0.16 | 0.280 |
Potatoes 4 | 0.1 | 2.3 | 6.3 | 12 | 30 | 37 | 8.6 | 0.28 | 0.3 | 2.03 | 0.004 | 0.120 | 0.04 | 0.16 | 0.260 |
Potatoes 5 | 0.2 | 2.2 | 8.6 | 14 | 50 | 47 | 3.9 | 0.59 | 0.5 | 2.10 | 0.025 | 0.120 | 0.04 | 0.21 | 0.260 |
Onion1 | 0.4 | 4.6 | 18 | 18 | 340 | 32 | 7.6 | 1.40 | 1.3 | 2.63 | 0.210 | 0.260 | 0.24 | 0.63 | 0.410 |
onion2 | 0.1 | 2.6 | 20 | 12 | 60 | 37 | 8.6 | 0.30 | 0.3 | 1.33 | 0.280 | 0.190 | 0.20 | 0.79 | 0.480 |
onion3 | 0.2 | 2.1 | 7.8 | 14 | 30 | 47 | 3.9 | 0.60 | 0.5 | 1.78 | 0.110 | 0.160 | 0.14 | 0.49 | 0.330 |
No-cultivated | |||||||||||||||
Attica | |||||||||||||||
Att.1 * | 0.1 | 3.1 | 1.3 | 20 | 240 | 17 | 3.8 | 1.0 | 31 | 1.0 | 0.043 | 0.058 | 0.36 | 0.11 | 0.027 |
Att.2 * | 0.1 | 27 | 72 | 170 | 540 | 145 | 8.6 | 0.2 | 22 | 0.9 | 1.957 | 0.284 | 1.76 | 0.10 | 0.040 |
Att.3 * | 0.2 | 2.1 | 1.4 | 39 | 190 | 41 | 8.4 | 0.7 | 12 | 0.7 | 0.044 | 0.053 | 0.22 | 0.21 | 0.162 |
Att.4 * | 0.1 | 3.3 | 1.1 | 14 | 270 | 9.6 | 4.4 | 0.7 | 7.3 | 0.6 | 0.101 | 0.112 | 0.95 | 0.06 | 0.031 |
Att.5 * | 0.2 | 27 | 20 | 49 | 1600 | 38 | 16 | 1.2 | 46 | 2.9 | 0.061 | 0.418 | 2.19 | 0.31 | 0.259 |
Att.7 * | 0.1 | 1.4 | 2.5 | 28 | 100 | 41 | 3.7 | 0.2 | 0.8 | 2.0 | 0.040 | 0.110 | 1.54 | 0.5 | 0.330 |
Shoots | |||||||||||||||
ALF1 | 0.5 | 8.4 | 7.1 | 84 | 130 | 47 | 16 | 2.4 | 5.0 | 1.0 | 1.171 | 0.243 | 2.39 | 0.27 | 0.138 |
ALF2 | 0.3 | 2.4 | 1.9 | 42 | 51 | 107 | 14 | 1.7 | 5.8 | 2.8 | 1.960 | 0.319 | 1.47 | 0.46 | 0.184 |
ALF4 | 0.3 | 3.6 | 3.0 | 34 | 99 | 66 | 24 | 2.8 | 4.7 | 2.4 | 0.089 | 0.199 | 1.83 | 0.18 | 0.126 |
ALF5 | 0.6 | 2.8 | 6.8 | 118 | 64 | 59 | 7.7 | 1.5 | 5.8 | 1.9 | 0.012 | 0.077 | 0.74 | 0.36 | 0.096 |
ALF6 | 0.3 | 4.9 | 7.3 | 251 | 190 | 58 | 6.6 | 5.1 | 5.7 | 1.4 | 0.106 | 0.088 | 1.24 | 0.24 | 0.087 |
ALF7 | 0.3 | 5.4 | 7.3 | 266 | 250 | 150 | 18 | 10 | 5.1 | 1.2 | 0.307 | 0.130 | 2.13 | 0.26 | 0.142 |
ALF8 | 0.5 | 1.8 | 2.4 | 77 | 69 | 57 | 6.8 | 1.8 | 4.0 | 3.4 | 0.577 | 0.154 | 4.57 | 1.38 | 0.319 |
Roots | |||||||||||||||
ALF1 | 0.2 | 8.8 | 6.1 | 43 | 108 | 39 | 10 | 0.6 | 5 | 0.8 | 0.810 | 0.123 | 1.18 | 0.14 | 0.080 |
ALF2 | 0.2 | 2.7 | 2.0 | 23 | 62 | 53 | 13 | 2.0 | 22 | 1.1 | 0.614 | 0.127 | 0.83 | 0.12 | 0.111 |
ALF4 | 0.3 | 3.0 | 2.7 | 35 | 72 | 66 | 71 | 1.7 | 6.1 | 1.6 | 0.098 | 0.399 | 1.23 | 0.21 | 0.262 |
ALF5 | 0.3 | 11 | 20 | 197 | 377 | 126 | 13 | 14 | 47 | 1.0 | 0.032 | 0.093 | 2.55 | 0.13 | 0.075 |
ALF6 | 0.2 | 20 | 24 | 411 | 875 | 157 | 105 | 32 | 21 | 0.7 | 0.048 | 0.104 | 4.83 | 0.09 | 0.068 |
ALF7 | 0.1 | 2.7 | 2.1 | 52 | 80 | 39 | 6.8 | 1.7 | 31 | 0.4 | 0.069 | 0.034 | 0.41 | 0.06 | 0.078 |
ALF8 | 0.1 | 2.5 | 1.9 | 30 | 66 | 40 | 8.8 | 1.1 | 11 | 3.2 | 0.557 | 0.105 | 1.01 | 0.70 | 0.202 |
Det. Limit | 0.1 | 0.1 | 0.1 | 1.0 | 0.001 | 0.1 | 0.01 | 0.01 | 0.01 | 0.01 | 0.001 | 0.001 | 0.01 | 0.01 | 0.001 |
Ref. Material | |||||||||||||||
FLOUR | <1 | 0.8 | 0.3 | 32 | 4 | 25 | 3.2 | 0.22 | 0.02 | 0.32 | 0.001 | 0.13 | 0.03 | 0.18 | 0.376 |
STD V14 | 50 | 0.8 | 1.5 | 2130 | 17 | 14 | 4.3 | 0.79 | 0.77 | 0.52 | 0.002 | 0.08 | 0.62 | 0.07 | 0.092 |
STD V16 | 38 | 375 | 10 | 756 | 535 | 37 | 7.3 | 2.89 | 1.24 | 0.24 | 0.002 | 0.056 | 0.28 | 0.02 | 0.052 |
Location | (mp/ms) × 100 | Soil | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Assopos | Se | Cr | Ni | Zn | Cu | Mn | Co | Fe | S | P | Organic Matter |
Ass.1 | 130 | 2.3 | 1.5 | 96 | 20 | 4.9 | 7.1 | 0.16 | 630 | 750 | 1.04 |
Ass.2 | 130 | 1.0 | 0.9 | 24 | 28 | 3.6 | 10 | 0.05 | 900 | 400 | 1.22 |
Ass.3 | 230 | 9.4 | 4.6 | 71 | 26 | 9.7 | 5.8 | 2.00 | 280 | 1040 | 0.4 |
Ass.4 | 100 | 0.5 | 4.4 | 48 | 28 | 3.8 | 6.4 | 0.06 | 520 | 510 | 0.82 |
Ass.5 | 100 | 5.8 | 1.8 | 26 | 17 | 10 | 6.3 | 0.15 | 1130 | 420 | 1.35 |
Ass.6 | 167 | 1.2 | 1.1 | 29 | 23 | 8.5 | 10 | 0.02 | 520 | 280 | 1.2 |
Ass.7 | 170 | 0.6 | 0.5 | 60 | 22 | 2.8 | 11 | 2.60 | 780 | 580 | 1.22 |
Ass.8 | 117 | 0.6 | 0.5 | 53 | 21 | 4.5 | 7.9 | 0.02 | 610 | 760 | 0.9 |
O.shoot1 | 280 | 8.2 | 2.4 | 47 | 48 | 6 | 5.0 | 2.00 | 270 | 410 | 0.9 |
O.root1 | 240 | 15 | 3.8 | 48 | 52 | 14 | 4.0 | 5.80 | 280 | 470 | 0.9 |
O.shoot2 | 280 | 9.0 | 3.1 | 67 | 33 | 10 | 2.2 | 1.80 | 250 | 970 | 0.8 |
O.root2 | 200 | 10 | 3.5 | 68 | 31 | 11 | 2.8 | 2.20 | 253 | 1000 | 0.8 |
O.shoot1, org | 240 | 4.4 | 1.6 | 38 | 35 | 2 | 3.0 | 1.00 | 167 | 506 | 17 |
O.root1, org | 240 | 4.2 | 3.2 | 60 | 830 | 16 | 3.0 | 2.00 | 190 | 570 | 17 |
O.shoot2, org | 200 | 4.2 | 1.4 | 74 | 35 | 10 | 0.6 | 1.00 | 227 | 1600 | 9.0 |
O.root2, org | 160 | 6.8 | 1.0 | 40 | 31 | 17 | 2.3 | 0.60 | 253 | 430 | 9.0 |
Thiva | |||||||||||
Th.1 | 77 | 1.2 | 0.7 | 81 | 16 | 1.3 | 0.8 | 3.10 | 810 | 1270 | 3.8 |
Th.2 | 100 | 1.0 | 0.5 | 9.2 | 54 | 0.9 | 2.0 | 0.09 | 260 | 610 | 4.0 |
Th.3 | 67 | 0.6 | 0.4 | 41 | 14 | 0.7 | 2.0 | 0.11 | 360 | 610 | 3.5 |
Attica | |||||||||||
Att.1 | 33 | 2.1 | 1.3 | 23 | 15 | 1.8 | 166 | 0.80 | 550 | 38 | 9.0 |
Att.2 | 25 | 1.6 | 1.4 | 26 | 10 | 3.8 | 118 | 1.20 | 430 | 100 | 10.5 |
Att.3 | 17 | 2.4 | 1.1 | 11 | 20 | 2.1 | 41 | 1.00 | 200 | 78 | 6.2 |
Att.4 | 29 | 0.5 | 0.3 | 18 | 14 | 2.4 | 36 | 0.67 | 700 | 410 | 3.4 |
Att.5 | 62 | 0.5 | 0.6 | 33 | 10 | 6.2 | 3.2 | 0.28 | 500 | 570 | 3.8 |
Att.6 | 14 | 1.1 | 1.8 | 137 | 14 | 3 | 3.5 | 0.31 | 830 | 380 | 5.1 |
Shoots | |||||||||||
ALF1 | 250 | 5.2 | 8.8 | 73 | 42 | 9 | 22 | 3.90 | 500 | 165 | 4.1 |
ALF2 | 38 | 5.3 | 3.7 | 91 | 72 | 10 | 8.2 | 2.40 | 420 | 430 | 5.7 |
ALF4 | 43 | 12 | 44 | 82 | 160 | 11 | 20 | 6.40 | 360 | 370 | 4.2 |
ALF5 | 67 | 6.8 | 13 | 33 | 42 | 18 | 41 | 2.70 | 720 | 480 | 1.3 |
ALF6 | 120 | 12 | 14 | 24 | 43 | 39 | 44 | 7.90 | 480 | 440 | 1.4 |
ALF7 | 120 | 15 | 14 | 62 | 97 | 45 | 40 | 10.9 | 520 | 470 | 1.0 |
ALF8 | 200 | 2.8 | 3.8 | 22 | 30 | 11 | 28 | 2.40 | 2760 | 1600 | 1.4 |
Roots | |||||||||||
ALF1 | 40 | 105 | 86 | 83 | 62 | 51 | 100 | 8.3 | 56 | 58 | 4.1 |
ALF2 | 67 | 29 | 100 | 50 | 93 | 55 | 380 | 124 | 27 | 69 | 5.7 |
ALF4 | 100 | 83 | 90 | 100 | 296 | 103 | 130 | 72 | 120 | 208 | 4.2 |
ALF5 | 50 | 4.0 | 310 | 214 | 162 | 170 | 810 | 745 | 36 | 78 | 1.3 |
ALF6 | 67 | 400 | 330 | 270 | 160 | 160 | 370 | 460 | 38 | 78 | 1.4 |
ALF7 | 33 | 50 | 30 | 26 | 39 | 194 | 610 | 32 | 23 | 55 | 1.0 |
ALF8 | 20 | 140 | 79 | 70 | 132 | 39 | 275 | 94 | 51 | 63 | 1.4 |
mp/ms × 100 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Assopos | Se | Cr | Ni | Zn | Cu | Mn | Co | Fe | S | P | O.M.soil |
Thiva | |||||||||||
Se | 1.00 | ||||||||||
Cr | 0.70 | 1.00 | |||||||||
Ni | 0.53 | 0.65 | 1.00 | ||||||||
Zn | 0.21 | 0.17 | 0.27 | 1.00 | |||||||
Cu | 0.28 | 0.01 | 0.23 | 0.07 | 1.00 | ||||||
Mn | 0.51 | 0.67 | 0.48 | 0.13 | 0.43 | 1.00 | |||||
Co | −0.13 | −0.31 | −0.11 | −0.18 | −0.16 | −0.19 | 1.00 | ||||
Fe | 0.50 | 0.67 | 0.41 | 0.34 | 0.14 | 0.33 | −0.22 | 1.00 | |||
S | −0.61 | −0.43 | −0.36 | −0.09 | −0.27 | −0.33 | 0.58 | −0.22 | 1.00 | ||
P | 0.05 | 0.08 | 0.08 | 0.68 | −0.10 | −0.01 | −0.51 | 0.19 | −0.17 | 1.00 | |
O.M.soil | 0.24 | −0.07 | −0.09 | −0.05 | 0.61 | 0.21 | −0.45 | −0.03 | −0.44 | 0.02 | 1 |
cont. | mp/ms × 100 | ||||||||||
Attica | Se | Cr | Ni | Zn | Cu | Mn | Co | Fe | S | P | O.M.soil |
Se | 1 | ||||||||||
Cr | −0.08 | 1 | |||||||||
Ni | −0.09 | 0.69 | 1.00 | ||||||||
Zn | −0.06 | 0.66 | 0.87 | 1.00 | |||||||
Cu | 0.04 | 0.44 | 0.60 | 0.56 | 1.00 | ||||||
Mn | −0.08 | 0.52 | 0.74 | 0.57 | 0.52 | 1.00 | |||||
Co | −0.22 | 0.29 | 0.72 | 0.46 | 0.33 | 0.85 | 1.00 | ||||
Fe | −0.08 | 0.43 | 0.94 | 0.80 | 0.47 | 0.70 | 0.78 | 1.00 | |||
S | 0.49 | −0.31 | −0.38 | −0.30 | −0.37 | −0.42 | −0.42 | −0.30 | 1.00 | ||
P | 0.49 | −0.28 | −0.33 | −0.26 | −0.22 | −0.34 | −0.43 | −0.27 | 0.93 | 1.00 | |
O.M.soil | −0.31 | −0.29 | −0.34 | −0.27 | −0.28 | −0.48 | −0.27 | −0.32 | −0.11 | −0.30 | 1 |
Location | n | μg/L | mg/L | g/L | pH | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cr | C(VI) | Se | Li | As | B | Ca | Mg | S | Na | K | TDS | |||
Drinking Water | ||||||||||||||
Mavrosouvala | 3 | <1 | <1 | <0.5 | 2.5 | 2.4 | 18 | 90.3 | 17 | 4 | 14 | 0.6 | 0.31 | 7.4 |
Assopos Basin | ||||||||||||||
Avlida | 10 | 70 | 64 | 9.3 | 16 | 4 | 440 | 36 | 99.8 | 37 | 310 | 11 | 1.13 | 7.4 |
Oropos | 3 | 61 | 57 | 3 | 23 | 3 | 120 | 38.5 | 55.3 | 15 | 109 | 1.6 | 0.59 | 7.5 |
Oropos | As.K.W. | 900 | 850 | 8.8 | 32 | 4.5 | 130 | 40.2 | 140 | 60 | 408 | 2.5 | 1.42 | 7.7 |
Attica Basin | ||||||||||||||
Attica, Athens | 19 | 9.7 | 9 | 1.9 | 6.4 | 3.5 | 43 | 120 | 20 | 15 | 44 | 2.5 | 0.43 | 7.3 |
Attica, Koropi | 31 | 12 | 10 | 10 | 8 | 8.4 | 130 | 135 | 55 | 37 | 217 | 8.8 | 0.48 | 7.4 |
Sea Water | Evoikos Gulf | <1 | <1 | 360 | 160 | 80 | 4200 | 390 | 1200 | 1200 | 6400 | 490 | 35 | 7.9 |
Det. Limit | 1.0 | 1.0 | 0.5 | 0.1 | 0.5 | 5.0 | 0.05 | 0.05 | 1.0 | 0.05 | 0.05 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eliopoulos, G.D.; Eliopoulos, I.-P.D.; Tsioubri, M.; Economou-Eliopoulos, M. Distribution of Selenium in the Soil–Plant–Groundwater System: Factors Controlling Its Bio-Accumulation. Minerals 2020, 10, 795. https://doi.org/10.3390/min10090795
Eliopoulos GD, Eliopoulos I-PD, Tsioubri M, Economou-Eliopoulos M. Distribution of Selenium in the Soil–Plant–Groundwater System: Factors Controlling Its Bio-Accumulation. Minerals. 2020; 10(9):795. https://doi.org/10.3390/min10090795
Chicago/Turabian StyleEliopoulos, George D., Ioannis-Porfyrios D. Eliopoulos, Myrto Tsioubri, and Maria Economou-Eliopoulos. 2020. "Distribution of Selenium in the Soil–Plant–Groundwater System: Factors Controlling Its Bio-Accumulation" Minerals 10, no. 9: 795. https://doi.org/10.3390/min10090795
APA StyleEliopoulos, G. D., Eliopoulos, I. -P. D., Tsioubri, M., & Economou-Eliopoulos, M. (2020). Distribution of Selenium in the Soil–Plant–Groundwater System: Factors Controlling Its Bio-Accumulation. Minerals, 10(9), 795. https://doi.org/10.3390/min10090795