Influence of Temperature on Rising Bubble Dynamics in Water and n-pentanol Solutions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Velocity Determination by Camera and Image Analysis
2.2.2. Velocity Determination by Ultrasound
2.2.3. Numerical Calculations
3. Results
3.1. Bubble Rising in Pure Water
3.2. Bubble Velocity Variations in n-pentanol Solutions of Various Concentrations and Temperature
3.2.1. Analysis of the Local Velocity Profiles in Different Temperatures
3.2.2. Analysis of Terminal Velocity (at a Distance of 200 mm)
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
dc | diameter of the capillary orifice |
deq | bubble equivalent diameter |
dh | horizontal (major) bubble axis |
dv | vertical (minor) bubble axis |
Rb | bubble equivalent radius (deq/2) |
—liquid phase density | |
—gas phase density | |
g | —gravitational constant |
σ | —surface tension |
Fb | —buoyant (attachment) force |
Fc | —capillary (detachment) force |
Fd | —drag force |
θ | —contact angle between air and water phases |
Vb | —bubble volume |
ut | —bubble terminal velocity |
us | —bubble terminal velocity by ultrasonic method |
uc | —bubble terminal velocity by image analysis |
We | —Weber number |
Re | —Reynolds number |
CD | —drag coefficient |
A | —bubble’s projected area |
χ | —bubble deformation ratio |
References
- Kulkarni, A.A.; Joshi, J.B. Bubble formation and bubble rise velocity in gas-liquid systems: A review. Ind. Eng. Chem. Res. 2005, 44, 5873–5931. [Google Scholar] [CrossRef]
- Kannan, A.; Hristov, P.; Li, J.; Zawala, J.; Gao, P.; Fuller, G.G. Surfactant-laden bubble dynamics under porous polymer films. J. Colloid Interface Sci. 2020, 575, 298–305. [Google Scholar] [CrossRef]
- Sarafraz, M.M.; Shadloo, M.S.; Tian, Z.; Tlili, I.; Alkanhal, T.A.; Safaei, M.Z.; Goodarzi, M.; Arjomandi, M. Convective Bubbly Flow of Water in an Annular Pipe: Role of Total Dissolved Solids on Heat Transfer Characteristics and Bubble Formation. Water 2019, 11, 1566. [Google Scholar] [CrossRef] [Green Version]
- Ellahi, R.; Zeeshan, A.; Hussain, F.; Safaei, M.R. Simulation of cavitation of spherically shaped hydrogen bubbles through a tube nozzle with stenosis. Int. J. Numer. Methods Heat Fluid Flow 2020, 30, 2535–2549. [Google Scholar] [CrossRef]
- Nguyen, A.V.; Evans, G.M. Attachment interaction between air bubbles and particles in froth flotation. Exp. Therm. Fluid Sci. 2004, 28, 381–385. [Google Scholar] [CrossRef]
- Dukhin, S.S.; Kovalchuk, V.I.; Gochev, G.G.; Lotfi, M.; Krzan, M.; Malysa, K.; Miller, R. Dynamics of Rear Stagnant Cap formation at the surface of spherical bubbles rising in surfactant solutions at large Reynolds numbers under conditions of small Marangoni number and slow sorption kinetics. Adv. Colloid Interface Sci. 2015, 222, 260–274. [Google Scholar] [CrossRef]
- Borkowski, M.; Kosior, D.; Zawala, J. Effect of initial adsorption coverage and dynamic adsorption layer formation at bubble surface in stability of single foam films. Colloids Surf. A Physicochem. Eng. Asp. 2020, 589, 124446. [Google Scholar] [CrossRef]
- Zawala, J.; Malysa, K. Influence of the Impact Velocity and Size of the Film Formed on Bubble Coalescence Time at Water Surface. Langmuir 2011, 27, 2250–2257. [Google Scholar] [CrossRef]
- Krasowska, M.; Malysa, K. Kinetics of bubble collision and attachment to hydrophobic solids: I. Effect of surface roughness. Int. J. Miner. Process. 2007, 81, 205–216. [Google Scholar] [CrossRef]
- Kosior, D.; Zawala, J. Initial degree of detaching bubble adsorption coverage and the kinetics of dynamic adsorption layer formation. Phys. Chem. Chem. Phys. 2018, 20, 2403–2412. [Google Scholar] [CrossRef]
- Suñol, F.; González-Cinca, R. Rise, bouncing and coalescence of bubbles impacting at a free surface. Colloids Surf. A Physicochem. Eng. Asp. 2010, 365, 36–42. [Google Scholar] [CrossRef]
- Sanada, T.; Watanabe, M.; Fukano, T. Effects of viscosity on coalescence of a bubble upon impact with a free surface. Chem. Eng. Sci. 2005, 60, 5372–5384. [Google Scholar] [CrossRef]
- Manica, R.; Klaseboer, E.; Chan, D.Y.C. The hydrodynamics of bubble rise and impact with solid surfaces. Adv. Colloid Interface Sci. 2016, 235, 214–232. [Google Scholar] [CrossRef]
- Tan, Y.H.; Rafiei, A.A.; Elmahdy, A.; Finch, J.A. Bubble size, gas holdup and bubble velocity profile of some alcohols and commercial frothers. Int. J. Miner. Process. 2013, 119, 1–5. [Google Scholar] [CrossRef]
- Tan, Y.H.; Finch, J.A. Frother structure-property relationship: Effect of hydroxyl position in alcohols on bubble rise velocity. Miner. Eng. 2016, 92, 1–8. [Google Scholar] [CrossRef]
- Tan, Y.H.; Finch, J.A. Frother structure-property relationship: Effect of alkyl chain length in alcohols and polyglycol ethers on bubble rise velocity. Miner. Eng. 2016, 95, 14–20. [Google Scholar] [CrossRef]
- Kowalczuk, P.B.; Zawala, J.; Drzymala, J. Concentration at the minimum bubble velocity (CMV) for various types of flotation frothers. Minerals 2017, 7, 118. [Google Scholar] [CrossRef] [Green Version]
- Leifer, I.; Patro, R.K.; Bowyer, P. A study on the temperature variation of rise velocity for large clean bubbles. J. Atmos. Ocean. Technol. 2000, 17, 1392–1402. [Google Scholar] [CrossRef]
- Okawa, T.; Tanaka, T.; Kataoka, I.; Mori, M. Temperature effect on single bubble rise characteristics in stagnant distilled water. Int. J. Heat Mass Transf. 2003, 46, 903–913. [Google Scholar] [CrossRef]
- Zhang, Y.; Sam, A.; Finch, J.A. Temperature effect on single bubble velocity profile in water and surfactant solution. Colloids Surf. A Physicochem. Eng. Asp. 2003, 223, 45–54. [Google Scholar] [CrossRef]
- Issaoui, R.; Ben Mansour, L. Experimental study of temperature effects on bubble characteristics and gas holdup in electroflotation column. Desalin. Water Treat. 2019, 162, 186–192. [Google Scholar] [CrossRef]
- Liu, N.; Yang, Y.; Wang, J.; Ju, B.; Brantson, E.T.; Tian, Y.; Dong, Y.; Mahlalela, M. Experimental Investigations of Single Bubble Rising in Static Newtonian Fluids as a Function of Temperature Using a Modified Drag Coefficient. Nat. Resour. Res. 2020, 29, 2209–2226. [Google Scholar] [CrossRef]
- Pawliszak, P.; Ulaganathan, V.; Bradshaw-Hajek, B.; Manica, R.; Beattie, D.A.; Krasowska, M. Mobile or Immobile? Rise Velocity of Air Bubbles in High-Purity Water. J. Phys. Chem. C. 2019, 15131–15138. [Google Scholar] [CrossRef]
- Wongsaroj, W.; Hamdani, A.; Thong-un, N.; Takahashi, H.; Kikura, H. Ultrasonic Measurement of Velocity Profile on Bubbly Flow Using a Single Resonant Frequency. Multidiscip. Digit. Publ. Inst. Proc. 2018, 2, 549. [Google Scholar] [CrossRef] [Green Version]
- Batsaikhan, M.; Hamdani, A.; Kikura, H. Velocity measurement on two-phase air bubble column flow using array ultrasonic velocity profiler. Int. J. Comput. Methods Exp. Meas. 2018, 6, 86–97. [Google Scholar] [CrossRef]
- Li, J.; Zhang, H.; Li, D.; Chen, H. On the Performance of Wireless-Energy-Transfer-Enabled Massive MIMO Systems with Superimposed Pilot-Aided Channel Estimation. IEEE Access 2015, 3, 2014–2027. [Google Scholar] [CrossRef]
- Nakamura, H. Trace: Tennessee Research and Creative Exchange Application of Ultrasound for Bubble Measurement in Water and Mercury. Master’s Thesis, University of Tennessee, Knoxville, TN, USA, 2010. [Google Scholar]
- Azevedo, M.B.; De Faccini, J.L.H.; Su, J. Ultrasonic Measurements of Bubble Shape and Liquid Film Thickness of a Taylor Bubble Rising in a Stagnant Water Column. In Proceedings of the 2013 International Nuclear Atlantic Conference—INAC, Recife, Brazil, 24–29 November 2013. [Google Scholar]
- Engineering ToolBox, Velocity of Sound in Water. 2004. Available online: https://www.engineeringtoolbox.com/sound-speed-water-d_598.html (accessed on 26 August 2021).
- Zawala, J.; Niecikowska, A. Bubble-on-demand generator with precise adsorption time control. Rev. Sci. Instrum. 2017, 88, 095106. [Google Scholar] [CrossRef]
- Ulaganathan, V.; Gochev, G.; Gehin-Delval, C.; Leser, M.E.; Gunes, D.Z.; Miller, R. Effect of pH and electrolyte concentration on rising air bubbles in β-lactoglobulin solutions. Colloids Surf. A Physicochem. Eng. Asp. 2016, 505, 165–170. [Google Scholar] [CrossRef]
- Optel Sp. z o.o. Available online: https://www.optel.eu/ (accessed on 25 August 2021).
- Popinet, S. An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 2009, 228, 5838–5866. [Google Scholar] [CrossRef] [Green Version]
- Fuster, D.; Agbaglah, G.; Josserand, C.; Popinet, S.; Zaleski, S. Numerical simulation of droplets, bubbles and waves: State of the art. Fluid Dyn. Res. 2009, 41, 065001. [Google Scholar] [CrossRef]
- Popinet, S. Gerris: A tree-based adaptive solver for the incompressible Euler equations in complex geometries. J. Comput. Phys. 2003, 190, 572–600. [Google Scholar] [CrossRef] [Green Version]
- Zawala, J. Energy balance in viscous liquid containing a bubble: Rise due to buoyancy. Can. J. Chem. Eng. 2016, 94, 586–595. [Google Scholar] [CrossRef]
- Tate, T. On the magnitude of a drop of liquid formed under different circumstances. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1864, 27, 176–180. [Google Scholar] [CrossRef]
- Legendre, D.; Zenit, R.; Velez-Cordero, J.R. On the deformation of gas bubbles in liquids. Phys. Fluids 2012, 24, 043303. [Google Scholar] [CrossRef] [Green Version]
- Manica, R.; Klaseboer, E.; Chan, D.Y.C. The impact and bounce of air bubbles at a flat fluid interface. Soft Matter 2016, 12, 3271–3282. [Google Scholar] [CrossRef] [Green Version]
- Moore, D.W. The velocity of rise of distorted gas bubbles in a liquid of small viscosity. J. Fluid Mech. 1965, 23, 749–766. [Google Scholar] [CrossRef]
- Loth, E. Drag of non-spherical solid particles of regular and irregular shape. Powder Technol. 2008, 182, 342–353. [Google Scholar] [CrossRef]
- Rastello, M.; Marié, J.L.; Lance, M. Drag and lift forces on clean spherical and ellipsoidal bubbles in a solid-body rotating flow. J. Fluid Mech. 2011, 682, 434–459. [Google Scholar] [CrossRef] [Green Version]
- Skelland, A.H.P.; Clift, R.; Grace, J.R.; Weber, M.E. Bubble, Drops, and Particles; Academic Press, Inc.: Cambridge, UK, 1978; pp. 1–380. [Google Scholar]
- Zawala, J.; Swiech, K.; Malysa, K. A simple physicochemical method for detection of organic contaminations in water. Colloids Surf. A. Physicochem. Eng. Asp. 2007, 302, 293–300. [Google Scholar] [CrossRef]
- Krzan, M.; Zawala, J.; Malysa, K. Development of steady state adsorption distribution over interface of a bubble rising in solutions of n-alkanols (C5, C8) and n-alkyltrimethylammonium bromides (C8, C12, C16). Colloids Surf. A Physicochem. Eng. Asp. 2007, 298, 42–51. [Google Scholar] [CrossRef]
No. | Temperature (°C) | Density (kg/m3) | Viscosity ((Pa⋅s × 10−3) | Surface Tension (mN/m) |
---|---|---|---|---|
1 | 5 | 999.9 | 1.52 | 74.9 |
2 | 15 | 999.1 | 1.14 | 73.5 |
3 1 | 20 | 998.2 | 1.00 | 72.8 |
4 | 25 | 997.0 | 0.89 | 72.0 |
5 | 35 | 994.1 | 0.72 | 70.4 |
6 | 45 | 990.2 | 0.60 | 68.8 |
No. | Temperature (°C) | Sound Velocity in Pure Water (m/s) |
---|---|---|
1 | 5 | 1427 |
2 | 15 | 1465 |
3 | 25 | 1495 |
4 | 35 | 1518 |
5 | 45 | 1534 |
No. | Dependence | Empirical Relation (Valid for Bubble in Waterat Temperature = 5–45 °C) |
---|---|---|
1 | Terminal velocity vs. Temperature | (Equation (10)) |
2 | Reynolds vs. Weber number | (Equation (15)) |
3 | Weber number vs. Temperature | (Equation (22)) |
4 | Reynolds number vs. Temperature | (Equation (23)) |
c (mol/dm3) | Temperature (°C) | umax (cm/s) |
---|---|---|
1.5 × 10−3 | 5 | 24.6 |
15 | 29.9 | |
25 | 30.3 | |
35 | 33.0 | |
45 | 34.6 |
No. | Temperature (°C) | CMV (mol/dm3) |
---|---|---|
1 | 5 | 2.9 × 10−3 |
2 | 15 | 3.0 × 10−3 |
3 | 20 | 3.0 × 10−3 |
4 | 25 | 3.2 × 10−3 |
5 | 35 | 3.0 × 10−3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borkowski, M.; Zawala, J. Influence of Temperature on Rising Bubble Dynamics in Water and n-pentanol Solutions. Minerals 2021, 11, 1067. https://doi.org/10.3390/min11101067
Borkowski M, Zawala J. Influence of Temperature on Rising Bubble Dynamics in Water and n-pentanol Solutions. Minerals. 2021; 11(10):1067. https://doi.org/10.3390/min11101067
Chicago/Turabian StyleBorkowski, Mariusz, and Jan Zawala. 2021. "Influence of Temperature on Rising Bubble Dynamics in Water and n-pentanol Solutions" Minerals 11, no. 10: 1067. https://doi.org/10.3390/min11101067
APA StyleBorkowski, M., & Zawala, J. (2021). Influence of Temperature on Rising Bubble Dynamics in Water and n-pentanol Solutions. Minerals, 11(10), 1067. https://doi.org/10.3390/min11101067