The Effects of Munsell Neutral Grey Backgrounds on the Colour of Chrysoprase and the Application of AP Clustering to Chrysoprase Colour Grading
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. UV-VIS Spectroscopy
2.3. Backgrounds
2.4. Colourimetric Analysis
2.5. CIE1976 L*a*b* Colour System
2.6. Affinity Propagation (AP) Clustering Algorithm
3. Results
3.1. UV-VIS Spectrum Analysis
3.2. Effects of Neutral Grey Backgrounds on the Colour of Chrysoprase
3.3. The Effect of Transparency on the Colour of Chrysoprase on Different Backgrounds
3.4. Colour Grading of Chrysoprase on an N9.5 Background
4. Discussion
4.1. Reasons for the Effects of a Neutral Grey Background on the Colour of Chrysoprase
4.2. Feasibility of the Colour Classification Scheme
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eggleton, R.A.; Gerald, J.F.; Foster, L. Chrysoprase from Gumigil, Queensland. Aust. J. Earth Sci. 2011, 58, 767–776. [Google Scholar] [CrossRef]
- Nagase, T.; Akizuki, M.; Onoda, M.; Sato, M. Chrysoprase from Warrawanda, Western Australia. Neues Jahrb. Mineral. Mon. 1997, 7, 289–300. [Google Scholar] [CrossRef]
- Sachanbinski, M.; Janeczek, J.; Platonov, A.; Rietmeijer, F.J.M. The origin of colour of chrysoprase from Szklary (Poland) and Sarykul Boldy (Kazakhstan). Neues Jahrb. Mineral.-Abh. 2001, 177, 61–76. [Google Scholar] [CrossRef]
- Cermakova, Z.; Hradil, D.; Bezdika, P.; Hradilova, J. New data on “kerolite-pimelite” series and the colouring agent of Szklary chrysoprase, Poland. Phys. Chem Miner. 2017, 44, 193–202. [Google Scholar] [CrossRef]
- Jiang, Y.; Guo, Y. Genesis and influencing factors of the colour of chrysoprase. Sci. Rep. 2021, 11, 9939. [Google Scholar] [CrossRef] [PubMed]
- Heflik, W.; Kwiecinska, B.; Natkaniec-Nowak, L. Colour of chrysoprase in light of mineralogical studies. Aust. Gemmol. 1989, 17, 43–46. [Google Scholar]
- Barsanov, G.; Yakovleva, M. Mineralogical investigations of some precious and semiprecious varieties of cryptocrystalline silica. New Mineral. Data USSR Acad. Sci. 1981, 29, 1981. [Google Scholar]
- King, J.; Moses, T.; Shigley, J.; Liu, Y. Color grading of colored diamonds in the GIA Gem Trade Laboratory. Gem Gemol. 1994, 30, 220–242. [Google Scholar] [CrossRef]
- King, J.M.; Moses, T.M.; Shigley, J.E.; Welbourn, C.M.; Lawson, S.C.; Cooper, M. Characterizing natural-color type IIb blue diamonds. Gems Gemol. 1998, 34, 246–268. [Google Scholar] [CrossRef]
- King, J.M.; Shigley, J.E.; Guhin, S.S.; Gelb, T.H.; Hall, M. Characterization and grading of natural-color pink diamonds. Gems Gemol. 2002, 38, 128–147. [Google Scholar] [CrossRef] [Green Version]
- King, J.; Shigley, J.; Gelb, T.; Guhin, S.; Hall, M.; Wang, W. Characterization and grading of natural-color yellow diamonds. Gems Gemol. 2005, 41, 88–115. [Google Scholar] [CrossRef]
- King, J.M.; Geurts, R.H.; Gilbertson, A.M.; Shigley, J.E. Color grading “d-to-z” diamonds at the gia laboratory. Gems Gemol. 2008, 44, 296–321. [Google Scholar] [CrossRef]
- Sun, Z.; Palke, A.; Renfro, N.; Breitzmann, H.; Hand, D.; Muyal, J. Discovery of color-change chrome grossular garnets from Ethiopia. Gems Gemol. 2018, 54, 33–236. [Google Scholar]
- Sun, Z.; Palke, A.C.; Renfro, N. Vanadium-and chromium-bearing pink pyrope garnet: Characterization and quantitative colorimetric analysis. Gems Gemol. 2015, 51, 348–369. [Google Scholar] [CrossRef] [Green Version]
- Schmetzer, K.; Bernhardt, H.-J.; Bosshart, G.; Hainschwang, T. Colour-change garnets from Madagascar: Variation of chemical, spectroscopic and colorimetric properties. J. Gemmol. 2009, 31, 235–282. [Google Scholar] [CrossRef]
- Krzemnicki, M.S.; Hanni, H.; Reusser, E. Colour change garnets from Madagascar: Comparison of colorimetric with chemical data. J. Gemmol. 2001, 27, 395–408. [Google Scholar] [CrossRef]
- Liu, Y.; Shigley, J.; Halvorsen, A. Colour hue change of a gem tourmaline from the Umba Valley, Tanzania. J. Gemol. Lond. 1999, 26, 386–396. [Google Scholar] [CrossRef]
- Guo, Y. Quality evaluation of tourmaline red based on uniform color space. Clust. Comput. 2017, 20, 3393–3408. [Google Scholar] [CrossRef]
- Han, J.; Guo, Y.; Liu, S. Environmental Issues on Color Quality Evaluation of Blue Sapphire based on GemdialogueTM Color Comparison Charts. Ekoloji Derg. 2018, 1365–1376. [Google Scholar]
- Liu, Y.; Shigley, J.; Fritsch, E.; Hemphill, S. The “alexandrite effect” in gemstones. Color. Res. Appl. 1994, 19, 186–191. [Google Scholar] [CrossRef]
- Tang, J.; Guo, Y.; Xu, C. Metameric effects on peridot by changing background color. JOSA A 2019, 36, 2030–2039. [Google Scholar] [CrossRef]
- Tang, J.; Guo, Y.; Xu, C. Light pollution effects of illuminance on yellowish green forsterite color under CIE standard light source D65. Ekoloji 2018, 27, 1181–1190. [Google Scholar]
- Sun, Z.; Renfro, N.; Palke, A.C. Tri-color-change holmium-doped synthetic CZ. Gems Gemol. 2017, 53, 259–260. [Google Scholar]
- Liu, Y.; Shi, G.; Wang, S. Color phenomena of blue amber. Gems Gemol. 2014, 50, 2–8. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, H.; Du, H. The foundation of a color-chip evaluation system of jadeite-jade green with color difference control of medical device. Multimed. Tools Appl. 2016, 75, 14491–14502. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, H.; Li, X.; Dong, S. Metamerism appreciation of jadeite-jade green under the standard light sources D65, A and CWF. Acta Geol. Sin.-Engl. Ed. 2016, 90, 2097–2103. [Google Scholar] [CrossRef]
- Guo, Y. Quality grading system of Jadeite-Jade green based on three colorimetric parameters under CIE standard light sources D-65, CWF and A. Bulg. Chem. Commun. 2017, 49, 961–968. [Google Scholar]
- Guo, Y.; Zong, X.; Qi, M. Feasibility study on quality evaluation of Jadeite-jade color green based on GemDialogue color chip. Multimed. Tools Appl. 2019, 78, 841–856. [Google Scholar] [CrossRef]
- Guo, Y.; Zong, X.; Qi, M.; Zhang, Y.; Wang, H. Feasibility study on color evaluation of jadeite based on GemDialogue color chip images. EURASIP J. Image Video Process. 2018, 2018, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Zhang, X.; Li, X.; Zhang, Y. Quantitative characterization appreciation of golden citrine golden by the irradiation of [FeO4] 4−. Arab. J. Chem. 2018, 11, 918–923. [Google Scholar]
- Cheng, R.; Guo, Y. Study on the effect of heat treatment on amethyst color and the cause of coloration. Sci. Rep. 2020, 10, 14927. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Kamber, M.; Pei, J. Data mining concepts and techniques third edition. Morgan Kaufmann Ser. Data Manag. Syst. 2011, 5, 83–124. [Google Scholar]
- Nazari, A.; Dehghan, A.; Nejatian, S.; Rezaie, V.; Parvin, H. A comprehensive study of clustering ensemble weighting based on cluster quality and diversity. Pattern Anal. Appl. 2019, 22, 133–145. [Google Scholar] [CrossRef]
- Frey, B.J.; Dueck, D. Clustering by passing messages between data points. Science 2007, 315, 972–976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Guo, C.; Sun, L. Fast Clustering by Affinity Propagation Based on Density Peaks. IEEE Access 2020, 8, 138884–138897. [Google Scholar] [CrossRef]
- Dueck, D.; Frey, B.J.; Jojic, N.; Jojic, V.; Giaever, G.; Emili, A.; Musso, G.; Hegele, R. Constructing treatment portfolios using affinity propagation. In Proceedings of the Annual International Conference on Research in Computational Molecular Biology, Singapore, 30 March–2 April 2008; pp. 360–371. [Google Scholar]
- Huang, T.-H.; Cheng, K.-Y.; Chuang, Y.-Y. A collaborative benchmark for region of interest detection algorithms. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 296–303. [Google Scholar]
- Verma, R.; Wang, P. On detecting subtle pathology via tissue clustering of multi-parametric data using affinity propagation. In Proceedings of the 2007 IEEE 11th International Conference on Computer Vision, Rio de Janeiro, Brazil, 14–21 October 2007; pp. 1–8. [Google Scholar]
- Dueck, D.; Frey, B.J. Non-metric affinity propagation for unsupervised image categorization. In Proceedings of the 2007 IEEE 11th International Conference on Computer Vision, Rio de Janeiro, Brazil, 14–21 October 2007; pp. 1–8. [Google Scholar]
- Zhao, Z.-Q.; Gao, J.; Glotin, H.; Wu, X. A matrix modular neural network based on task decomposition with subspace division by adaptive affinity propagation clustering. Appl. Math. Model. 2010, 34, 3884–3895. [Google Scholar] [CrossRef]
- Reddy, B.J.; Frost, R.L. Electronic and vibrational spectra of gaspeite. Neues Jahrb. Mineral.—Mon. 2004, 2004, 525–536. [Google Scholar] [CrossRef]
- Shigley, J.E.; Laurs, B.M.; Renfro, N.D. Chrysoprase and prase opal from Haneti, Central Tanzania. Gems Gemol. 2009, 45, 271–279. [Google Scholar] [CrossRef]
- Faye, G. Optical absorption spectrum of Ni (super 2+) in garnierite; a discussion. Can. Mineral. 1974, 12, 389–393. [Google Scholar]
- Rao, J.L.; Purandar, K. Optical absorption spectrum of Ni2+ in zinc cesium sulphate hexahydrate. Spectrochim. Acta Part A Mol. Spectrosc. 1981, 37, 787–792. [Google Scholar] [CrossRef]
- Brindley, G.; Bish, D.; Wan, H.-M. Compositions, structures, and properties of nickel-containing minerals in the kerolite-pimelite series. Am. Mineral. 1979, 64, 615–625. [Google Scholar]
- Lam, Y.M.; Xin, J.H. Evaluation of the quality of different D65 simulators for visual assessment. Colour Res. Appl. 2002, 27, 243–251. [Google Scholar] [CrossRef]
- Chang, C.-W.; Hon, M.-H.; Leu, C. The transmittance and sheet resistance of chemically and heat reduced graphene oxide film. Opt. Quantum Electron. 2019, 51, 4. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, Y.; Wu, C.; Xiong, S.; Zhou, C. Chitosan/halloysite nanotubes bionanocomposites: Structure, mechanical properties and biocompatibility. Int. J. Biol. Macromol. 2012, 51, 566–575. [Google Scholar] [CrossRef] [PubMed]
Wavelength (nm) | Assignment |
---|---|
390 | 3A2g(F) → 3T1g(P) |
460 | 3A2g(F) → 1T2g(D) |
650 | 3A2g(F) → 3T1g(F) |
750 | 3A2g(F) → 1Eg(D) |
Cluster Centre | L* | a* | b* | Simulated Colour |
---|---|---|---|---|
1 | 71.9 | −21.51 | 11.18 | |
2 | 65.19 | −31.38 | 14.33 | |
3 | 69.65 | −34.46 | 14.76 | |
4 | 59.88 | −35.72 | 13.72 | |
5 | 54.56 | −30.94 | 18.71 |
Colour Parameter | Clustering | Error | F | Sig | ||
---|---|---|---|---|---|---|
Mean Square | Df | Mean Square | Df | |||
L* | 370.683 | 4 | 6.961 | 35 | 53.249 | 0.000 |
a* | 327.212 | 4 | 8.558 | 35 | 38.234 | 0.000 |
b* | 42.431 | 4 | 7.626 | 35 | 5.564 | 0.001 |
Samples/ΔE00 | Cluster Centre | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
Gr-Chr-019 | 16.712 | 10.258 | 13.514 | 5.486 * | 4.174 ** |
Gr-Chr-023 | 8.814 | 3.184 ** | 3.445 * | 5.333 | 11.039 |
Gr-Chr-032 | 7.989 | 2.074 ** | 3.073 * | 5.110 | 10.606 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.; Guo, Y.; Zhou, Y.; Li, X.; Liu, S. The Effects of Munsell Neutral Grey Backgrounds on the Colour of Chrysoprase and the Application of AP Clustering to Chrysoprase Colour Grading. Minerals 2021, 11, 1092. https://doi.org/10.3390/min11101092
Jiang Y, Guo Y, Zhou Y, Li X, Liu S. The Effects of Munsell Neutral Grey Backgrounds on the Colour of Chrysoprase and the Application of AP Clustering to Chrysoprase Colour Grading. Minerals. 2021; 11(10):1092. https://doi.org/10.3390/min11101092
Chicago/Turabian StyleJiang, Yuansheng, Ying Guo, Yufei Zhou, Xiang Li, and Simin Liu. 2021. "The Effects of Munsell Neutral Grey Backgrounds on the Colour of Chrysoprase and the Application of AP Clustering to Chrysoprase Colour Grading" Minerals 11, no. 10: 1092. https://doi.org/10.3390/min11101092
APA StyleJiang, Y., Guo, Y., Zhou, Y., Li, X., & Liu, S. (2021). The Effects of Munsell Neutral Grey Backgrounds on the Colour of Chrysoprase and the Application of AP Clustering to Chrysoprase Colour Grading. Minerals, 11(10), 1092. https://doi.org/10.3390/min11101092