Interzeolitic Transformation of Clinoptilolite into GIS and LTA Zeolite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Standard Zeolite Synthesis LTA and FAU
2.2. Synthesis of the FAU Zeolite with Clinoptilolite
2.3. Synthesis of the LTA Zeolite with Clinoptilolite
2.4. Material Characterization
3. Results
3.1. Standard Zeolite Synthesis
3.2. FAU Zeolite Synthesis with Clinoptilolite
Oxide | Clinoptilolite | FAUP4d | FAUP8d | GISC4d | GISC8d |
---|---|---|---|---|---|
SiO2 (%) | 72.29 | 68.06 | 68.24 | 56.78 | 56.36 |
Al2O3 (%) | 12.80 | 21.45 | 20.67 | 23.66 | 24.11 |
K2O (%) | 4.47 | 0.02 | n.d. | 3.76 | 3.49 |
CaO (%) | 4.09 | n.d. | n.d. | 3.30 | 3.13 |
SO3 (%) | 0.12 | 0.18 | 0.18 | 0.07 | 0.08 |
Fe2O3 (%) | 2.30 | 0.09 | 0.08 | 1.86 | 1.72 |
MgO (%) | 2.10 | 1.50 | 1.60 | 1.60 | 1.90 |
Na2O (%) | 1.30 | 8.40 | 9.00 | 8.40 | 8.70 |
Others (%) | 0.53 | 0.32 | 0.26 | 0.55 | 0.53 |
Sample | Si/Al Ratio | Synthesis Yield * % (m/m) |
---|---|---|
Clinoptilolite | 4.79 | - |
FAUP4d | 2.69 | - |
FAUP8d | 2.80 | - |
GISC4d | 2.03 | 66.30 |
GISC8d | 1.98 | 61.95 |
3.3. LTA Zeolite Synthesis Using Clinoptilolite
Oxide | Clinoptilolite | LTA P3h | LTA P6h | LTA C1h | LTA C2h | LTA C3h | LTA C4h | LTA C5h | LTA C6h |
---|---|---|---|---|---|---|---|---|---|
SiO2 (%) | 72.29 | 48.39 | 48.05 | 69.84 | 59.32 | 56.18 | 52.80 | 53.35 | 53.52 |
Al2O3 (%) | 12.80 | 34.93 | 35.36 | 13.49 | 20.59 | 23.67 | 27.71 | 26.02 | 24.32 |
K2O (%) | 4.47 | 0.05 | n.d. | 3.53 | 3.09 | 2.80 | 2.57 | 2.43 | 2.54 |
CaO (%) | 4.09 | n.d. | n.d. | 4.26 | 3.69 | 3.53 | 3.35 | 3.44 | 3.61 |
SO3 (%) | 0.12 | 0.15 | 0.19 | 0.15 | 0.12 | - | 0.13 | 0.19 | 0.25 |
Fe2O3 (%) | 2.30 | 0.05 | 0.04 | 2.15 | 1.98 | 1.93 | 1.82 | 1.78 | 1.85 |
MgO (%) | 2.10 | 1.30 | 1.40 | 2.00 | 2.30 | 1.70 | 2.20 | 1.70 | 1.90 |
Na2O (%) | 1.30 | 14.90 | 14.70 | 4.00 | 8.40 | 9.60 | 10.80 | 10.60 | 11.40 |
Others (%) | 0.53 | 0.21 | 0.21 | 0.58 | 0.53 | 0.54 | 0.55 | 0.54 | 0.62 |
Sample | Ratio Si/Al | % Relative Crystallinity | Synthesis Yield % (m/m) |
---|---|---|---|
Clinoptilolite | 4.79 | - | - |
LTAP3h | 1.17 | 100 | 64.79 |
LTAP6h | 1.15 | n.c. | 61.46 |
LTAC1h | 4.40 | 9.7 | 38.66 |
LTAC2h | 2.45 | 20.1 | 38.67 |
LTAC3h | 2.01 | 26.1 | 32.98 |
LTAC4h | 1.61 | 32.0 | 41.19 |
LTAC5h | 1.74 | 24.7 | 58.90 |
LTAC6h | 1.86 | 27.3 | 63.73 |
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Armbruster, T.; Gunter, M.E. Crystal Structures of Natural Zeolites. Rev. Min. Geo. 2001, 45, 1–67. [Google Scholar] [CrossRef]
- Bish, D.L.; Boak, J.M. Clinoptilolite-Heulandite Nomenclature. Rev. Min. Geo. 2001, 45, 207–216. [Google Scholar] [CrossRef]
- Colella, C.; Wise, W.S. The Iza Handbook of Natural Zeolites: A tool of knowledge on the most important family of porous minerals. Micro. Meso. Mat. 2014, 189, 4–10. [Google Scholar] [CrossRef]
- Kocak, Y.; Tasci, E.; Kaya, U. The effect of using natural zeolite on the properties and hydration characteristics of blended cements. Constr. Build. Mater. 2013, 47, 720–727. [Google Scholar] [CrossRef]
- Seryotkin, Y.V. High-pressure behavior of HEU-type zeolites: X-ray diffraction study of clinoptilolite-Na. Micro. Meso. Mat. 2016, 235, 20–31. [Google Scholar] [CrossRef]
- Aksoy, Y.Y. Characterization of two natural zeolites for geotechnical and geoenvironmental applications. Appl. Clay Sci. 2010, 50, 130–136. [Google Scholar] [CrossRef]
- Braga, A.A.C.; Morgon, N.H. Descrições estruturais cristalinas de zeólitos. Quím. Nova. 2007, 30, 178–188. [Google Scholar] [CrossRef] [Green Version]
- Valpotic, H.; Gracner, D.; Turk, R.; Duricic, D.; Vince, S.; Folnozic, I.; Lojkic, M.; Zaja, I.Z.; Bedrica, L.; Macesic, N.; et al. Zeolite clinoptilolite nanoporous feed additive for animals of veterinary importance: Potencials and limitations. Periodicum. Biologorum. 2017, 119, 159–172. [Google Scholar] [CrossRef]
- Bessa, R.A.; Costa, L.S.; Oliveira, C.P.; Bohn, F.; Nascimento, R.F.; Sasaki, J.M.; Loiola, A.R. Kaolin-based magnetic zeolites A and P as water softeners. Micro. Meso. Mat. 2017, 245, 64–72. [Google Scholar] [CrossRef]
- Du, Y.; Shi, S.; Dai, H. Water-bathing synthesis of high-surface-area zeolite P from diatomite. Particuology 2011, 9, 174–178. [Google Scholar] [CrossRef]
- Nascimento, C.R.; Sobrinho, E.M.O.; Assis, R.B.; Fagundes, R.F.; Bieseki, L.; Pergher, S.B.C. Síntese da Zeólita A utilizando diatomita como fonte de sílicio e alumínio. Cerâmica 2014, 60, 63–68. [Google Scholar] [CrossRef] [Green Version]
- Silva Filho, S.H.; Bieseki, L.; Silva, A.R.; Maia, A.A.B.; Gil San, R.A.S.; Pergher, S.B.C. Synthesis of Zeolite A employing Amazon kaolin waste. Cerâmica 2015, 61, 409–413. [Google Scholar] [CrossRef] [Green Version]
- Menezes, R.A.; Paz, S.P.A.; Angélica, R.S.; Neves, R.F.; Pergher, S.B.C. Color and shade parameters of ultramarine zeolitic pigments synthesized from kaolin waste. Mat. Res. 2014, 17, 23–27. [Google Scholar] [CrossRef] [Green Version]
- Schwanke, A.J.; Spazzini, S.T.; Penha, F.G.; Pergher, S.B.C. Síntese da zeóita Cancrenita a partir de Caulim: Uma alternativa viável à redução de impactos ambientais. Tecnology 2011, 15, 11–14. [Google Scholar]
- Rigo, R.T.; Pergher, S.B.C.; Petkowicz, D.I.; Santos, J.H.Z. Um novo procedimento de sintese da zeolita A empregando argilas naturais. Quím. Nova. 2009, 32, 21–25. [Google Scholar] [CrossRef]
- Mignoni, M.L.; Petkowicz, D.I.; Machado, N.R.C.F.; Pergher, S.B.C. Synthesis of mordenite using kaolin as Si and Al source. Appl. Clay Sci. 2008, 41, 99–104. [Google Scholar] [CrossRef]
- Mignoni, M.L.; Detoni, C.; Pergher, S.B.C. Estudo da Síntese da Zeólita ZSM-5 a partir de Argilas Naturais. Quím. Nova 2007, 30, 45–48. [Google Scholar] [CrossRef] [Green Version]
- Menezes, R.A.; Paz, S.P.A.; Angélica, R.S.; Neves, R.F.; Neumann, R.; Faulstich, F.R.L.; Pergher, S.B.C. Synthesis of ultramarine pigments from Na-A zeolite derived from kaolin waste from the Amazon. Clay Min. 2017, 52, 83–95. [Google Scholar] [CrossRef]
- Silva Filho, S.H.; Bieseki, L.; Maia, A.A.B.; Treichel, H.; Angelica, R.S.; Pergher, S.B.C. Study on the NaOH/metakaolin Ratio and Crystallization Time for Zeolite a Synthesis from Kaolin Using Statistical Design. Mat. Res. 2017, 20, 761–767. [Google Scholar] [CrossRef] [Green Version]
- Behin, J.; Kazemian, H.; Rohani, S. Sonochemical synthesis of zeolite NaP from clinoptilolite. Ultra Sonochem. 2016, 28, 400–408. [Google Scholar] [CrossRef]
- Tatlier, M.; Atalay-Oral, C. Crystallization od Zeolite A Coatings from Natural Zeolite. Mat. Res. 2016, 19, 1469–1477. [Google Scholar] [CrossRef] [Green Version]
- Silva Filho, S.H.; Vinaches, P.; Silva, H.L.G.; Pergher, S.B.C. LTA zeolite synthesis using natural materials and its evaluation by Green Star methodology. SN Appl. Sci. 2020, 2, 344. [Google Scholar] [CrossRef] [Green Version]
- Vinaches, P.; Schwanke, A.J.; Lopes, C.W.; Souza, I.M.S.; Villarroel-Rocha, J.; Sapag, K.; Pergher, S.B.C. Incorporation of Brazilian Diatomite in the Synthesis of An MFI Zeolite. Molecules 2019, 24, 1980. [Google Scholar] [CrossRef] [Green Version]
- Collins, F.; Rozhkovskaya, A.; Outram, J.G.; Millar, G.J. A critical review of waste resources, synthesis, and applications for zeolite LTA. Micro. Meso. Mat. 2019, 291, 109667. [Google Scholar] [CrossRef]
- Silva Filho, S.H.; Vinaches, P.; Pergher, S.B.C. Zeolite synthesis in basic media using expanded perlite and its application in Rhodamine B adsorption. Mat. Lett. 2018, 227, 258–260. [Google Scholar] [CrossRef]
- Oliveira, M.S.M.; Nascimento, R.M.; Pergher, S.B.C. Síntese de zeolita LPM-12 (tipo EDI) utilizanto resíduo do processamento do espodumênio como fonte alternativa de silício e Alumínio. Rev. Persp. 2018, 42, 119–125. [Google Scholar]
- Vinaches, P.; Alves, J.A.B.L.R.; Melo, D.M.A.; Pergher, S.B.C. Raw powder glass as a silica source in the synthesis of colloidal MEL zeolite. Mat. Lett. 2016, 178, 217–220. [Google Scholar] [CrossRef]
- Vinaches, P.; Rebitski, E.P.; Alves, J.A.B.L.R.; Melo, D.M.A.; Pergher, S.B.C. Unconventional silica source employment in zeolite synthesis: Raw powder glass in MFI synthesis case study. Mat. Lett. 2015, 159, 233–236. [Google Scholar] [CrossRef]
- Alves, J.A.B.L.R.; Dantas, E.R.S.; Pergher, S.B.C.; Melo, D.M.A.; Melo, M.A.F. Synthesis of high value-added zeolitic materials using glass powder residue as a silica source. Mat. Res. 2014, 17, 213–218. [Google Scholar] [CrossRef] [Green Version]
- Bieseki, L.; Ribeiro, D.B.; Sobrinho, E.V.; Melo, D.M.A.; Pergher, S.B.C. Síntese de zeólitas utilizando resíduo sílico-aluminoso proveniente do processo de extração de lítio. Cerâmica 2013, 59, 466–472. [Google Scholar] [CrossRef]
- Lima, G.C.C.S.; Mello, M.I.S.; Araujo, A.S.; Pergher, S.B.C. Hydrothermal Synthesis of Silicoaluminophsphate with AEL structure using residue of fluorescent lamps as starting material. Molecules 2021. under revision. [Google Scholar]
- Cruz, T.J.T.; Melo, M.I.S.; Pergher, S. Optimization of Parameters and Methodology for the Synthesis of LTA-Type Zeolite Using Light Coal Ash. Appl. Sci. 2020, 10, 7332. [Google Scholar] [CrossRef]
- Tomaszewska, B.; Kmiecik, E.; Wątor, K.; Tyszer, M. Use of numerical modelling in the prediction of membrane scaling. Reaction between antiscalants and feedwater. Desalination 2018, 427, 27–34. [Google Scholar] [CrossRef]
- Meshram, S.U.; Khandekar, U.R.; Mane, S.M.; Mohan, A. Novel Route of Producing Zeolite A Resin for Quality-Improved Detergents. J. Sufact. Deterg. 2015, 18, 259–266. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, G.; Wang, L.; Li, X.; Luo, Q.; Na, P. Zeolite P synthesis based on fly ash and its removal of Cu (II) and Ni (II) ions. Chin. J. Chem. Eng. 2019, 27, 341–348. [Google Scholar] [CrossRef]
- Shun, K.D.; Lin, L.; Xin, F.J.; Hua, J.Y.; Zhi, L. Preparation of P type molecular sieves from gangue of high iron and high silica content. Bull. Chin. Ceram. Soc. 2013, 32, 1052–1056. [Google Scholar]
- Cardoso, A.M.; Horn, B.M.; Ferret, L.S.; Azevedo, C.M.N.; Pires, M. Integrated synthesis of zeolites 4A and Na-P1 using coal fly ash for application in the formulation of detergents and swine wastewater treatment. J. Haz. Mat. 2015, 287, 69–77. [Google Scholar] [CrossRef]
- Celta Brasil. Available online: www.celtabrasil.com.br (accessed on 10 July 2021).
- IZA-International Zeolite Association. Available online: www.iza-structure.org (accessed on 10 July 2021).
- Giannetto, G.P.; Montes, A.R.; Rodriguíguez, G.F. Zeolitas—Características, Propiedades y Aplicaciones Industriales, 2nd ed.; Editorial Innovación Tecnológica: Caracasm, Venezuela, 2000. [Google Scholar]
- Goel, S.; Zones, S.I.; Iglesia, E. Encapsulation of metal clusters within MFI via interzeollite transformations and direct hydrothetmal ssynthesis and catalitic consequences of theis confinement. JACS 2014, 136, 15280–15290. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.; Li, P.; Zheng, J.; Liu, Y.; Kong, Q.; Tian, H.; Li, R. Zeolite-zeolite composite composed of Y zeolite and single-crystal-like ZEM-5 zeolite: Fabricated by a process like “big fish swallowing little one”. Mater. Chem. Phys. 2017, 194, 49–54. [Google Scholar] [CrossRef]
- Goto, I.; Itakura, M.; Shibata, S.; Honda, K.; Ide, Y.; Sadakane, M.; Sato, T. Transformation of LEV-type zeolite into less dense CHA-type zeolite. Micro. Meso. Mat. 2012, 158, 117–122. [Google Scholar] [CrossRef] [Green Version]
- Maldonano, M.; Oleksiak, M.D.; Chinta, S.; Rimer, J.D. Controlling crystal polymorphism in organic-free synthesis of Na-zeolites. JACS 2013, 135, 2641–2652. [Google Scholar] [CrossRef] [PubMed]
- Itabashi, K.; Kamimura, Y.; Iyoki, K.; Shimojima, A.; Okubo, T. Working hypothesis for broadening framework types zeolites in seed-assisted synthesis without organic strcturure-directing agent. JACS 2012, 134, 11542–11549. [Google Scholar] [CrossRef] [PubMed]
- Isobe, M.; Moteki, T.; Tanagashi, S.; Kimura, R.; Kamimura, Y.; Itabashi, K.; Okubo, T. Plate-like precursors formed in crystallization process of ferrierite drom (Na, K) aluminosilicate system. Micro. Meso. Mat. 2012, 158, 204–208. [Google Scholar] [CrossRef]
- Suhendar, D.; Mukti, R.R. Simple approach in understanding interzeolite transofrmations using ring building units. IOP Conf. Ser. Mat. Sci. Eng. 2018, 349, 012016. [Google Scholar] [CrossRef]
- Davis, O.C.M.E. Hydrothermal conversion of Y-zeolite using alkaline earth cations. Micro. Meso. Mat. 1999, 32, 257–264. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Lima, R.C.F.; Oliveira, D.d.S.; Pergher, S.B.C. Interzeolitic Transformation of Clinoptilolite into GIS and LTA Zeolite. Minerals 2021, 11, 1313. https://doi.org/10.3390/min11121313
de Lima RCF, Oliveira DdS, Pergher SBC. Interzeolitic Transformation of Clinoptilolite into GIS and LTA Zeolite. Minerals. 2021; 11(12):1313. https://doi.org/10.3390/min11121313
Chicago/Turabian Stylede Lima, Renata C. F., Daniele da Silva Oliveira, and Sibele B. C. Pergher. 2021. "Interzeolitic Transformation of Clinoptilolite into GIS and LTA Zeolite" Minerals 11, no. 12: 1313. https://doi.org/10.3390/min11121313
APA Stylede Lima, R. C. F., Oliveira, D. d. S., & Pergher, S. B. C. (2021). Interzeolitic Transformation of Clinoptilolite into GIS and LTA Zeolite. Minerals, 11(12), 1313. https://doi.org/10.3390/min11121313