Bio-Organic Mineral Fertilizer for Sustainable Agriculture: Current Trends and Future Perspectives
Abstract
:1. Introduction
2. BOMFs: A Current Need
3. Sources, Production Methods and Comparison of Usage Costs
4. Ecological Effects of BOMFs
4.1. Impacted Microbial Functions and Plant Growth Promotion
4.2. Restoration of Soil Fertility and Organic Carbon
4.3. Remediation of Degraded Soils: Cultivation of Specific (Resilient) Crops
5. Conclusions and Prospects
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Osman, K.T. Soil resources and soil degradation. In Soil Degradation, Conservation and Remediation; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–43. [Google Scholar]
- Lin, W.W.; Lin, M.; Zhou, H.; Wu, H.; Li, Z.W.; Lin, W.X. The effects of chemical and organic fertilizer usage on rhizosphere soil in tea orchards. PLoS ONE 2019, 14, e0217018. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Sun, Q.; Yuan, H.; Lian, B.A. Practical soil management to improve soil quality by applying mineral organic fertilizer. Acta Geochim. 2017, 36, 198–204. [Google Scholar] [CrossRef]
- Xiao, L.; Sun, Q.; Yuan, H.; Li, X.; Chu, Y.; Ruan, Y.; Lian, B. A feasible way to increase carbon sequestration by adding dolomite and K-feldspar to soil. Cogent Geosci. 2016, 2, 1205324. [Google Scholar] [CrossRef]
- Sun, Q.; Ruan, Y.; Chen, P.; Wang, S.; Liu, X.; Lian, B. Effects of mineral-organic fertilizer on the biomass of green Chinese cabbage and potential carbon sequestration ability in karst areas of Southwest China. Acta Geochim. 2019, 38, 430–439. [Google Scholar] [CrossRef]
- Slessarev, E.W.; Chadwick, O.A.; Sokol, N.W.; Nuccio, E.E.; Pett-Ridge, J. Rock weathering controls the potential for soil carbon storage at a continental scale. Biogeochemistry. 2021. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, R.; He, L.; Sheng, X. Location-related differences in weathering behaviors and populations of culturable rock-weathering bacteria along a hillside of a rock mountain. Microb. Ecol. 2017, 73, 838–849. [Google Scholar] [CrossRef]
- Yang, X.; Lian, B.; Zhu, X.L.; An, Y.L.; Chen, J.; Zhu, L.J. Effects of adding potassium-bearing mineral powder on nitrogen, potassium and potassium contents of chicken manure compost. Earth Environ. 2012, 40, 286–292. [Google Scholar]
- Ditta, A.; Muhammad, J.; Imtiaz, M.; Mehmood, S.; Qian, Z.; Tu, S. Application of rock phosphate enriched composts increases nodulation, growth and yield of chickpea. Int. J. Recycl. Org. Waste Agric. 2018, 7, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Niamat, B.; Naveed, M.; Ahmad, Z.; Yaseen, M.; Ditta, A.; Mustafa, A.; Xu, M. Calcium-enriched animal manure alleviates the adverse effects of salt stress on growth, physiology and nutrients homeostasis of Zea mays L. Plants 2019, 8, 480. [Google Scholar] [CrossRef] [Green Version]
- Masruroh, A.; Minardi, S. Rock phosphate, zeolite and quail manure to enhance potassium uptake and yield of soybean on alfisols. Asian J. Soil Sci. Plant Nutr. 2019, 5, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Liu, X.M.; Zhang, L.; Xie, Y.H.; Cai, X.L.; Wang, S.J.; Lian, B. Effects of short-term application of chemical and organic fertilizers on bacterial diversity of cornfield soil in a karst area. J. Soil Sci. Plant Nutr. 2020, 20, 2048–2058. [Google Scholar] [CrossRef]
- Thorley, R.M.S.; Taylor, L.L.; Banwart, S.A.; Leake, J.R.; Beerling, D.J. The role of forest trees and their mycorrhizal fungi in carbonate rock wearthering and its significance for global carbon cycling. Plant Cell Environ. 2015, 38, 1947–1961. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Zhu, Y.; Wang, Z.; Zhang, H.; Chen, M.; Chen, Y.; Liu, B. Effects of a novel bio-organic fertilizer on the composition of rhizobacterial communities and bacterial wilt outbreak in a continuously mono-cropped tomato field. Appl. Soil Ecol. 2020, 156, 103717. [Google Scholar] [CrossRef]
- Han, Y.; Feng, G.; Swaney, D.P.; Dentener, F.; Koeble, R.; Ouyang, Y.; Gao, W. Global and regional estimation of net anthropogenic nitrogen inputs (NANI). Geoderma 2020, 361, 114066. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. Available online: http://fenix.fao.org/faostat/internal/en/#data (accessed on 18 October 2021).
- Chianu, J.N.; Mairura, F. Mineral fertilizers in the farming systems of sub-Saharan Africa—A review. Agron. Sustain. Dev. 2012, 32, 545–566. [Google Scholar] [CrossRef] [Green Version]
- Geisseler, D.; Scow, K.M. Long-term effects of mineral fertilizers on soil microorganisms—A review. Soil Biol. Biochem. 2014, 75, 54–63. [Google Scholar] [CrossRef]
- Lambrecht, I.; Vanlauwe, B.; Merckx, R.; Maertens, M. Understanding the process of agricultural technology adoption: Mineral fertilizer in eastern DR Congo. World Dev. 2014, 59, 132–146. [Google Scholar] [CrossRef]
- Egodawatta, W.C.P.; Sangakkara, U.R.; Stamp, P. Impact of green manure and mineral fertilizer inputs on soil organic matter and crop productivity in a sloping landscape of Sri Lanka. Field Crop. Res. 2012, 129, 21–27. [Google Scholar] [CrossRef]
- Du, N.X.T. Effects of green manures during fallow on moisture and nutrients of soil and winter wheat yield on the Loss Plateau of China. Emir. J. Food Agric. 2017, 29, 978–987. [Google Scholar]
- Flores-Félix, J.D.; Menéndez, E.; Rivas, R.; de la Encarnación Velázquez, M. Future perspective in organic farming fertilization: Management and product. In Organic Farming; Woodhead Publishing: Sawston, UK, 2018; pp. 269–315. [Google Scholar]
- Zhu, B.; Wang, T.; You, X.; Gao, M.R. Nutrient release from weathering of purplish rocks in the Sichuan Basin, China. Pedosphere 2008, 18, 257–264. [Google Scholar] [CrossRef]
- Bieluczyk, W.; Piccolo, M.; Pereira, M.G. Integrated farming systems influence soil organic matter dynamics in southeastern Brazil. Geoderma 2020, 371, 114368. [Google Scholar] [CrossRef]
- Bronick, C.J.; Lal, R. Soil structure and management: A review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Lian, B.; Chen, Y.; Zhu, L.; Yang, R. Effect of microbial weathering on carbonate rocks. Earth Sci. Front. 2008, 15, 90–99. [Google Scholar] [CrossRef]
- Yang, Y.; Syed, S.; Mao, S.; Li, Q.; Ge, F.; Lian, B.; Lu, C.M. Bio-organic–mineral fertilizer can remediate chemical fertilizer-oversupplied soil: Purslane planting as an example. J. Soil Sci. Plant Nutr. 2020, 20, 892–900. [Google Scholar] [CrossRef]
- Li, M.; Li, Q.; Yun, J.; Yang, X.; Wang, X.; Lian, B.; Lu, C.M. Bio-organic-mineral fertilizer can improve soil quality and promote the growth and quality of water spinach. Can. J. Soil Sci. 2017, 97, 552–560. [Google Scholar] [CrossRef] [Green Version]
- Li, R.Y.; Pang, Z.Q.; Zhou, Y.M.; Fyumah, N.; Hu, C.H.; Lin, W.X.; Yuan, Z.N. Metagenomic analysis exploring taxonomic and functional diversity of soil microbial communities in sugarcane fields applied with organic fertilizer. BioMed Res. Int. 2020, 2020, 9381506. [Google Scholar] [CrossRef]
- Sindhu, S.S.; Parmar, P.; Phour, M.; Sehrawat, A. Potassium-solubilizing microorganisms (KSMs) and its effect on plant growth improvement. In Potassium Solubilizing Microorganisms for Sustainable Agriculture; Springer: Berlin/Heidelberg, Germany, 2016; pp. 171–185. [Google Scholar]
- Etesami, H.; Emami, S.; Alikhani, H.A. Potassium solubilizing bacteria (KSB): Mechanisms, promotion of plant growth, and future prospects-A review. J. Soil Sci. Plant Nutr. 2017, 17, 897–911. [Google Scholar] [CrossRef]
- Ribeiro, I.D.A.; Volpiano, C.G.; Vargas, L.K.; Granada, C.E.; Lisboa, B.B.; Passaglia, L.M.P. Use of mineral weathering bacteria to enhance nutrient availability in crops: A review. Front. Plant Sci. 2020, 11, 590774. [Google Scholar] [CrossRef]
- Berde, C.V.; Gawde, S.S.; Berde, V.B. Potassium solubilization: Mechanism and functional impact on plant growth. In Soil Microbiomes for Sustainable Agriculture; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Goswami, D.; Parmar, S.; Vaghela, H.; Dhandhukia, P.; Thakker, J.N. Describing Paenibacillus mucilaginosus strain N3 as an efficient plant growth promoting rhizobacteria (PGPR). Cogent Food Agric. 2015, 1, 1000714. [Google Scholar] [CrossRef]
- Wang, P.; Wu, S.H.; Wen, M.X.; Wang, Y.; Wu, Q.S. Effects of combined inoculation with rhizophagus intraradices and Paenibacillus mucilaginosus on plant growth, root morphology, and physiological status of trifoliate orange (Poncirus trifoliata L. Raf.) seedlings under different levels of phosphorus. Sci. Hortic. 2016, 205, 97–105. [Google Scholar] [CrossRef]
- Chen, Y.H.; Yang, X.Z.; Li, Z.; An, X.H.; Ma, R.P.; Li, Y.Q.; Cheng, C.G. Efficiency of potassium-solubilizing paenibacillus mucilaginosus for the growth of apple seedling. J. Integr. Agric. 2020, 19, 2458–2469. [Google Scholar] [CrossRef]
- Basak, B.B. Recycling of waste biomass and mineral powder for preparation of potassium-enriched compost. J. Mater. Cycles Waste Manag. 2018, 20, 1409–1415. [Google Scholar] [CrossRef]
- Basak, B.B.; Maity, A.; Biswas, D.R. Cycling of natural sources of phosphorus and potassium for environmental sustainability. Biogeochemical Cycles: Ecological Drivers and Environmental Impact; Advancing Earth and Space Science: Washington, DC, USA, 2020; pp. 285–299. [Google Scholar]
- Yu, X.D.; Wang, B.; Lian, B. Effect of organic fermentative fertilizer made from potassium-bearing rocks in the growth of amaranth mangostanus. Soil Fertil. Sci. China. 2011, 2, 61–64. [Google Scholar]
- Chen, P.; Ruan, Y.L.; Wang, S.J.; Liu, X.M.; Lian, B. Effects of organic mineral fertiliser on heavy metal migration and potential carbon sink in soils in a karst region. Acta Geochim. 2017, 36, 539–543. [Google Scholar] [CrossRef]
- Belov, S.V.; Danyleiko, Y.K.; Glinushkin, A.P.; Kalinitchenko, V.P.; Egorov, A.V.; Sidorov, V.A.; Izmailov, A.Y. An activated potassium phosphate fertilizer solution for stimulating the growth of agricultural plants. Front. Phys. 2021, 8, 618320. [Google Scholar] [CrossRef]
- Zoca, S.M.; Penn, C. An important tool with no instruction manual: A review of gypsum use in agriculture. Adv. Agron. 2017, 144, 1–44. [Google Scholar]
- Noordin, W.D.; Zulkefly, S.; Shamshuddin, J.; Hanafi, M.M. Improving soil chemical properties and growth performance of Hevea brasiliensis through basalt application. Int. Proc. IRC 2017, 2017, 308–323. [Google Scholar] [CrossRef]
- Sheldrick, W.; Syers, J.K.; Lingard, J. Contribution of livestock excreta to nutrient balances. Nutr. Cycl. Agroecosyst. 2003, 66, 119–131. [Google Scholar] [CrossRef]
- Manyuchi, M.M.; Phiri, A.; Muredzi, P.; Chitambwe, T. Comparison of vermicompost and vermiwash bio-fertilizers from vermicomposting waste corn pulp. Int. J. Biol. Biomol. Agric. Food Biotechnol. Eng. 2013, 7, 389–392. [Google Scholar]
- Liu, H.T.; Chen, T.B.; Zhen, T.D.; Gao, D.; Lei, M. Comparative analysis of energy consumption, input cost and environmental benefit of organic fertilizer and chemical fertilizer production—take sludge composting to produce organic fertilizer as an example. Ecol. Environ. Sci. 2010, 19, 1000–1003. [Google Scholar]
- Nacke, H.; Junior, G.; Schwantes, J.R.; Nava, L. Productivity and yield components of corn fertilized with different sources and levels of zinc. Span. J. Rural Dev. 2011, 2, 71–79. [Google Scholar] [CrossRef]
- Vezzani, F.M.; Anderson, C.; Meenken, E.; Gillespie, R.; Peterson, M.; Beare, M.H. The importance of plants to development and maintenance of soil structure, microbial communities and ecosystem functions. Soil Tillage Res. 2018, 175, 139–149. [Google Scholar] [CrossRef]
- Lazcano, C.; Gómez-Brandón, M.; Revilla, P.; Domínguez, J. Short-term effects of organic and inorganic fertilizers on soil microbial community structure and function. Biol. Fertil. Soils 2013, 49, 723–733. [Google Scholar] [CrossRef]
- Huang, P.; Zhang, J.B.; Xin, X.L.; Zhu, A.N.; Zhang, C.Z.; Zhu, Q.G.; Wu, S.J. Proton accumulation accelerated by heavy chemical nitrogen fertilization and its long-term impact on acidifying rate in a typical arable soil in the Huang-Huai-Hai Plain. J. Integr. Agric. 2015, 14, 148–157. [Google Scholar] [CrossRef]
- Zamanian, K.; Zarebanadkouki, M.; Kuzyakov, Y. Nitrogen fertilization raises CO2 efflux from inorganic carbon: A global assessment. Glob. Chang. Biol. 2018, 24, 2810–2817. [Google Scholar] [CrossRef]
- Raza, S.; Miao, N.; Wang, P.; Ju, X.; Chen, Z.; Zhou, J.; Kuzyakov, Y. Dramatic loss of inorganic carbon by nitrogen-induced soil acidification in Chinese croplands. Glob. Chang. Biol. 2020, 26, 3738–3751. [Google Scholar] [CrossRef]
- Datta, S.P.; Rattan, R.K.; Chandra, S. Labile soil organic carbon, soil fertility, and crop productivity as influenced by manure and mineral fertilizers in the tropics. J. Plant Nutr. Soil Sci. 2010, 173, 715–726. [Google Scholar] [CrossRef]
- Shen, Z.; Ruan, Y.; Chao, X.; Zhang, J.; Li, R.; Shen, Q. Rhizosphere microbial community manipulated by 2 years of consecutive biofertilizer application associated with banana fusarium wilt disease suppression. Biol. Fertil. Soils 2015, 51, 553–562. [Google Scholar] [CrossRef]
- Verma, R.; Maurya, B.R.; Meena, V.S.; Dotaniya, M.L.; Deewan, P. Microbial dynamics as influenced by bio-organics and mineral fertilizer in alluvium soil of Varanasi, India. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 1516–1524. [Google Scholar] [CrossRef] [Green Version]
- Verma, R.; Maurya, B.R.; Meena, V.S.; Dotaniya, M.L.; Deewan, P.; Jajoria, M. Enhancing production potential of cabbage and improves soil fertility status of Indo-Gangetic Plain through application of bio-organics and mineral fertilizer. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 301–309. [Google Scholar]
- Mahajan, S.; Kanwar, S.S.; Sharma, S.P. Long-term effect of mineral fertilizers and amendments on microbial dynamics in an alfisol of Western Himalayas. Indian J. Microbiol. 2007, 47, 86–89. [Google Scholar] [CrossRef] [Green Version]
- Diacono, M.; Montemurro, F. Long-term effects of organic amendments on soil fertility—A review. Agron. Sustain. Dev. 2010, 30, 401–422. [Google Scholar] [CrossRef] [Green Version]
- Huang, N.; Wang, W.W.; Yao, Y.L.; Zhu, F.X.; Wang, W.P.; Chang, X.J. The influence of different concentrations of bio-organic fertilizer on cucumber fusarium wilt and soil microflora alterations. PLoS ONE 2017, 12, e0171490. [Google Scholar] [CrossRef]
- Yang, W.H.; Chang, J.; Wang, S.S.; Zhou, B.Q.; Mao, Y.L.; Rensing, C.; Xing, S.H. Influence of biochar and biochar-based fertilizer on yield, quality of tea and microbial community in an acid tea orchard soil. Appl. Soil Ecol. 2021, 166, 104005. [Google Scholar] [CrossRef]
Different Distinguishing Components | BOMFs | Conventional Fertilizer |
---|---|---|
Mineral source (P, K, Ca, B, Mg, etc.) | Natural | Chemical |
Mineral (dust or powder) | ✓ | x |
Microbial agents | ✓ | x |
Plant growth-promoting microbes | ✓ | x |
Plant protecting microbes | ✓ | x |
Organic carbon | Natural (agri. waste) | x |
Nitrogen source | Natural (animal waste) | Chemical (urea) |
Inorganic additives | xx | Chemical additives (P, K, etc.) |
Negative impact environment | x | ✓ |
Known CO2 sequestration potential | ✓ | x |
Positively influences soil parameters | ✓ | x |
Ingredient/Component | Major Nutrients | Nutrient Availability |
---|---|---|
Mineral | ||
| Phosphorous (P2O5) 16–17% | Slow |
| Potassium (K2O) 2–12% | Very slow |
| Sulphur (CaSO4 12–16%) | Slow |
| Iron (FeO 5–14%) and magnesium (MgO 5–12%) | Slow |
| Calcium (CaO ~12%) Magnesium (MgO ~20%) | Very slow |
Bio-organics | ||
| Nitrogen (~14%), potassium (~20%), and Phosphorous (~25%) | Quick |
| Potassium, nitrogen, and phosphorous | Quick |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Syed, S.; Wang, X.; Prasad, T.N.V.K.V.; Lian, B. Bio-Organic Mineral Fertilizer for Sustainable Agriculture: Current Trends and Future Perspectives. Minerals 2021, 11, 1336. https://doi.org/10.3390/min11121336
Syed S, Wang X, Prasad TNVKV, Lian B. Bio-Organic Mineral Fertilizer for Sustainable Agriculture: Current Trends and Future Perspectives. Minerals. 2021; 11(12):1336. https://doi.org/10.3390/min11121336
Chicago/Turabian StyleSyed, Shameer, Xingxing Wang, Tollamadugu N.V.K.V. Prasad, and Bin Lian. 2021. "Bio-Organic Mineral Fertilizer for Sustainable Agriculture: Current Trends and Future Perspectives" Minerals 11, no. 12: 1336. https://doi.org/10.3390/min11121336
APA StyleSyed, S., Wang, X., Prasad, T. N. V. K. V., & Lian, B. (2021). Bio-Organic Mineral Fertilizer for Sustainable Agriculture: Current Trends and Future Perspectives. Minerals, 11(12), 1336. https://doi.org/10.3390/min11121336