Paleoproterozoic Pt-Pd Fedorovo-Pansky and Cu-Ni-Cr Monchegorsk Ore Complexes: Age, Metamorphism, and Crustal Contamination According to Sm-Nd Data
Abstract
:1. Introduction
2. Geological Setting
2.1. The Fedorovo-Pansky Layered Complex
- Marginal zone (50–100 m) of plagioclase-amphibole schists with relicts of norite and gabbronorite, which are referred to as chilled margin rocks.
- Taxitic zone (30–300 m), which contains an ore-bearing gabbronoritic matrix and early xenoliths of norite and pyroxenite. Syngenetic ores are represented by Cu and Ni sulfides with Pt, Pd, and Au.
- Norite zone (50–200 m) with cumulus interlayers of harzburgite and pyroxenite that include an intergranular injection Cu-Ni-PGE mineralization in the lower part. The rocks of this zone are enriched in chromium (up to 1000 ppm), and contain chromite.
- Main Gabbronorite zone (about 1000 m) is a thickly layered “stratified” rock series with a 40–80 m thinly layered lower horizon (LLH) in the upper part. LLH consists of contrasting alteration of gabbronorite, norite, pyroxenite, and interlayers of leucocratic gabbro and anorthosites. LLH contains a reef-type PGE deposit poor in base-metal sulfides. The upper-layered horizon (ULH) is positioned between the lower and upper Gabbro zones. ULH consists of olivine-bearing troctolite, norite, gabbronorite, and anorthosite. The U-Pb age of the ULH rocks on zircon and baddeleyite is 2447 ± 12 Ma [24]. It is the youngest age among those obtained for the Fedorovo-Pansky Complex rocks [24,35]. Yet, recent analyses based on studies of a drill sample from boreholes and the U-Pb study of zircons using the SHRIMP-II allowed determining a more ancient age of the ULH anorthosites, i.e., 2509.4 ± 6.2 Ma [46].
2.2. Monchegorsk Complex of Layered Intrusions
3. Samples and Methods
3.1. Sm-Nd Analytical Methods
3.2. Samples for Sm-Nd Analyses
3.2.1. Fedorovo-Pansky Complex
3.2.2. Monchegorsk Complex
4. Results and Discussion
4.1. Western Block, Kievey Deposit
4.2. Fedorova Tundra
4.3. Metamorphic Hydrothermal Events (Western Pansky Deposits)
4.4. Monchetundra Intrusion
4.5. Monchepluton
4.6. Metamorphic Events (Monchetundra Intrusion)
4.7. Magma Sources and Crustal Contamination
5. Conclusions
- We obtained reliable data regarding the age and isotope characteristics of the two largest ore complexes of the northeastern Baltic Shield, i.e., the Cu-Ni-Cr Monchegorsk complex and the Pt-Pd Fedorovo-Pansky complex.
- Injection of additional magma batches within the studied complexes occurred at an age of 2.45 Ga. The age of platiniferous reef harzburgites of the Sopcha Horizon 330 (2451 ± 64 Ma) and close Sm-Nd age of the ULH anorthosites of the Western Pansky massif (2447 ± 34 Ma) are consistent with their formation, i.e., the injection of additional batches of crust-contaminated magma.
- Rejuvenated Sm-Nd age values are obtained for the PGE-bearing plagioclasites from the Vurechuayvench deposit and norites from the Nyud-II deposit. The values indicate a considerable influence of hydrothermal metasomatic transformations on the platiniferous ore genesis. Close age values are also obtained for the PGE-bearing gabbronorites and gabbro from the Western Pansky massif, i.e., 2473 ± 30 Ma and 2470 ± 39 Ma, respectively.
- Ore genesis of the layered complexes is greatly influenced by the injections of additional magma batches and the hydrothermal metasomatic transformations. The defined formation stages of the largest Paleoproterozoic layered complexes in the northeastern Baltic Shield are also found elsewhere including the Canadian Shield. The metamorphic transformations leading to the formation of redeposited ores at the age of 2.0–1.9 Ga coincided with the beginning of the Svecofennian events, widely presented on the Fennoscandian shield.
- The interaction model of parental melt of layered intrusions and crustal matter indicates a small contamination level. However, the crustal contamination increases considerably on the margins of the Monchetundra massif because of the active interaction of parental magmas and host rock.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karykowski, B.T.; Maier, W.D.; Groshev, N.Y.; Barnes, S.-J.; Pripachkin, P.V.; McDonald, I.; Savard, D. Critical controls on the formation of contact-style PGE-Ni-Cu mineralization: Evidence from the Paleoproterozoic Monchegorsk Complex, Kola region, Russia. Econ. Geol. 2018, 113, 911–935. [Google Scholar] [CrossRef]
- Maier, W.D.; Hanski, E.J. Layered mafic-ultramafic intrusions of Fennoscandia: Europe’s treasure chest of magmatic metal deposits. Elements 2017, 13, 415–420. [Google Scholar] [CrossRef] [Green Version]
- Nerovich, L.I.; Bayanova, T.B.; Serov, P.A.; Elizarov, D.V. Magmatic sources of dikes and veins in the Moncha Tundra Massif, Baltic Shield: Isotopic-geochronologic and geochemical evidence. Geochem. Int. 2014, 52, 548–566. [Google Scholar] [CrossRef]
- Sharkov, E.V.; Chistyakov, A.V. Geological and petrological aspects of Ni-Cu-PGE mineralization in the Early Paleoproterozoic Monchegorsk layered mafic-ultramafic complex, Kola Peninsula. Geol. Ore Depos. 2014, 56, 147–168. [Google Scholar] [CrossRef]
- Yang, S.H.; Hanski, E.; Li, C.; Maier, W.D.; Huhma, H.; Mokrushin, A.V.; Latypov, R.; Lahaye, Y.; O’Brien, H.; Qu, W.-J. Mantle source of the 2.44–2.50-Ga mantle plume-related magmatism in the Fennoscandian Shield: Evidence from Os, Nd and Sr isotope compositions of the Monchepluton and Kemi intrusions. Miner. Depos. 2016, 51, 1055–1073. [Google Scholar] [CrossRef]
- Hanski, E.; Huhma, H.; Smolkin, V.F.; Vaasjoki, M. The age of the ferropicritic volcanics and comagmatic Ni-bearing intrusions at Pechenga, Kola Peninsula, USSR. Bull. Geol. Soc. Finl. 1990, 62, 123–133. [Google Scholar] [CrossRef]
- Sharkov, E.V.; Smolkin, V.F. The Early Proterozoic Pechenga-Varzuga Belt: A case history of Precambrian back-arc spreading. Precambrian Res. 1997, 82, 133–151. [Google Scholar] [CrossRef]
- Walker, R.J.; Morgan, J.W.; Hanski, E.J.; Smolkin, V.F. Re-Os systematics of early Proterozoic ferropicrites, Pechenga complex, NW Russia: Evidence for ancient 187Os-enriched plumes. Geochim. Cosmochim. Acta 1997, 61, 3145–3160. [Google Scholar] [CrossRef]
- Neradovsky, Y.N.; Alekseeva, S.A.; Chernousenko, E.V. Mineralogy and process properties of Kolvitsky titanomagnetite ore. IOP Conf. Ser. Earth Environ. Sci. 2019, 262, 012050. [Google Scholar] [CrossRef]
- Voitekhovskii, Y.L.; Neradovskii, Y.N.; Grishin, N.N.; Rakitina, E.Y.; Kasikov, A.G. The Kolvitskoe deposit (geology, material composition of ores). Vestn. MGTU 2014, 17, 271–278. [Google Scholar]
- Serov, P.A. Pt-bearing Fedorovo-Pansky Layered Complex (Kola Peninsula): Sm-Nd geochronology and Nd-Sr characteristics. IOP Conf. Ser. Earth Environ. Sci. 2020, 539, 012166. [Google Scholar] [CrossRef]
- Baynova, T.; Ludden, J.; Mitrovanov, F. Timing and duration of Paleoproterozoic ore-bearing layered intrusions of the Baltic Shield: Metallogenic, petrological and geodynamic implications. In Paleoproterozoic Supercontinents and Global Evolution; Reddy, S.M., Mazumder, R., Evans, D.A., Collins, A.S., Eds.; Geological Society of London: London, UK, 2009; Volume 323, pp. 165–198. [Google Scholar]
- Mitrofanov, F.P.; Bayanova, T.B.; Ludden, J.N.; Korchagin, A.U.; Chashchin, V.V.; Nerovich, L.I.; Serov, P.A.; Mitrofanov, A.F.; Zhirov, D.V. Origin and Exploration of the Kola PGE-bearing Province: New Constraints from Geochronology. In Ore Deposits: Origin, Exploration, and Exploitation; Geophysical Monograph Series; Sophie Decree, S., Robb, L., Eds.; Wiley: Hoboken, NJ, USA, 2019; pp. 3–36. [Google Scholar]
- Mitrofanov, F.; Golubev, A. Russian Fennoscandian metallogeny. In Abstracts of the 33 IGC; Norwegian Academy of Science and Letters: Oslo, Norway, 2008. [Google Scholar]
- Schissel, D.; Tsvetkov, A.A.; Mitrofanov, F.P.; Korchagin, A.U. Basal Platinum-Group Element Mineralization in the Fedorov Pansky Layered Mafic Intrusion, Kola Peninsula, Russia. Econ. Geol. 2002, 97, 1657–1677. [Google Scholar] [CrossRef]
- Amelin, Y.V.; Heaman, L.M.; Semenov, V.S. U-Pb geochronology of layered mafic intrusions in the eastern Baltic Shield: Implications for the timing and duration of Paleoproterozoic continental rifting. Precambrian Res. 1995, 75, 31–46. [Google Scholar] [CrossRef]
- Huhma, H.; Clift, R.A.; Perttunen, V.; Sakko, M. Sm-Nd and Pb isotopic study of mafic rocks associated with early Proterozoic continental rifting: The Perapohja schist belt in northern Finland. Contrib. Mineral. Petrol. 1990, 104, 369–379. [Google Scholar] [CrossRef]
- Halkoaho, T.; Alapieti, T.T.; Lahtinen, J.J. The Sompujarvi PGE mineralization in the Penikat layered intrusion. In Proceedings of the 5th International Platinum Symposium: Guide to the Post-Symposium Field Trip, Helsinki, Finland, 4–11 August 1989; Volume 29, pp. 71–92. [Google Scholar]
- Halkoaho, T.A.A.; Alapieti, T.T.; Lahtinen, J.J. The Sompujarvi PGE Reef in the Penikat layered intrusion, Northern Finland. Miner. Pet. 1990, 42, 39–55. [Google Scholar] [CrossRef]
- Hanski, E.; Walker, R.J.; Huhma, H.; Suominen, I. The Os and Nd isotopic systematics of c. 2.44 Ga Akanvaara and Koitelainen mafic layered intrusions in northern Finland. Precambrian Res. 2001, 109, 73–102. [Google Scholar] [CrossRef]
- Iljina, M.; Maier, W.D.; Karinen, T. PGE-(Cu-Ni) deposits of the Tornio-Näränkävaara belt of intrusions (Portimo, Penikat and Koillismaa). In Mineral Deposits of Finland; Maier, W.D., Lahtinen, R., O’Brien, H., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 133–164. [Google Scholar]
- Smith, W.D.; Maier, W.D. The geotectonic setting, age and mineral deposit inventory of global layered intrusions. Earth-Sci. Rev. 2021, 220, 103736. [Google Scholar] [CrossRef]
- Balashov, Y.A.; Bayanova, T.B.; Mitrofanov, F.P. Isotope data on the age and genesis of layered basic-ultrabasic intrusions in the Kola Peninsula and northern Karelia, northeastern Baltic Shield. Precambrian Res. 1993, 64, 197–205. [Google Scholar] [CrossRef]
- Bayanova, T.B. Age of Reference Geological Complexes of the Kola Region and the Duration of Igneous Processes; Nauka: Saint Petersburg, Russia, 2004; p. 174. (In Russian) [Google Scholar]
- Bayanova, T.B. Baddeleyite: A promising geochronometer for alkaline and basic magmatism. Petrology 2006, 14, 187–200. [Google Scholar] [CrossRef]
- Serov, P.A.; Nitkina, E.A.; Bayanova, T.B.; Mitrofanov, F.P. Comparison of new U-Pb and Sm-Nd isotope data on rocks of the early barren phase and basal ore-bearing rocks in the PGE-bearing Fedorovo-Pana layered massif, Kola Peninsula. Dokl. Earth Sci. 2007, 416, 1125–1127. [Google Scholar] [CrossRef]
- Huhma, H.; Mutanen, N.; Hanski, E. Sm-Nd isotopic evidence for contrasting sources of the prolonged Paleoproterozoic mafic-ultramafic magmatism in Central Finnish Lapland. In Proceedings of the IGCP Project 336 Symposium, Rovaniemi, Finland, 21–23 August 1996; Volume 33, pp. 57–58. [Google Scholar]
- Mitrofanov, F.P.; Balagansky, V.V.; Balashov, Y.A.; Gannibal, L.F.; Dokuchaeva, V.S.; Nerovich, L.I.; Radchenko, M.K.; Ryungenen, G.I. U-Pb age for gabbro-anorthosite of the Kola Peninsula. Dokl. Earth Sci. 1993, 331, 95–98. [Google Scholar]
- Peltonen, P.; Brugmann, G. Origin of layered continental mantle (Karelian craton, Finland): Geochemical and Re-Os isotope constraints. Lithos 2006, 89, 405–423. [Google Scholar] [CrossRef]
- Puchtel, I.S.; Brugmann, G.E.; Hofmann, A.W.; Kulikov, V.S.; Kulikova, V.V. Os isotope systematics of komatiitic basalts from the Vetreny belt, Baltic Shield: Evidence for a chondritic source of the 2.45 Ga plume. Contrib. Mineral. Petrol. 2001, 140, 588–599. [Google Scholar] [CrossRef]
- Serov, P.A.; Ekimova, N.A.; Bayanova, T.B.; Mitrofanov, F.P. Sulfide minerals as new geochronometers during Sm-Nd dating of the ore genesis for layered mafic and ultramafic intrusions. Lithosphere 2014, 4, 11–21. [Google Scholar]
- Sharkov, E.V. Petrology of Layered Intrusions; Nauka: Saint Petersburg, Russia, 1980; p. 183. (In Russian) [Google Scholar]
- Vogel, D.C.; Vuollo, J.I.; Alapieti, T.T.; James, R.S. Tectonic, stratigraphic and geochemical comparison between ca. 2500–2440 Ma mafic igneous events in the Canadian and Fennoscandian Shields. Precambrian Res. 1998, 92, 89–116. [Google Scholar] [CrossRef]
- Bayanova, T.; Korchagin, A.; Mitrofanov, A.; Serov, P.; Ekimova, N.; Nitkina, E.; Kamensky, I.; Elizarov, D.; Huber, M. Long-lived mantle plume and polyphase evolution of Palaeoproterozoic PGE intrusions in the Fennoscandian Shield. Minerals 2019, 9, 59. [Google Scholar] [CrossRef] [Green Version]
- Bayanova, T.; Mitrofanov, F.; Serov, P.; Nerovich, L.; Yekimova, N.; Nitkina, E.; Kamensky, I. Layered PGE Paleoproterozoic (LIP) Intrusions in the N-E Part of the Fennoscandian Shield—Isotope Nd-Sr and 3He/4He Data, Summarizing U-Pb Ages (on Baddeleyite and Zircon), Sm-Nd Data (on Rock-Forming and Sulphide Minerals), Duration and Mineralization. In Geochronology—Methods and Case Studies; Morner, N.-A., Ed.; Intech: London, UK, 2014; pp. 143–193. [Google Scholar]
- Bayanova, T.B.; Rundkvist, T.V.; Serov, P.A.; Korchagin, A.U.; Karpov, S.M. The Palaeoproterozoic Fedorovo-Pansky layered PGE Complex of the northeastern Baltic Shield, Arctic Region: New U-Pb (Baddeleyite) and Sm-Nd (Sulfide) data. Dokl. Earth Sci. 2017, 472, 1–5. [Google Scholar] [CrossRef]
- Chashchin, V.V.; Bayanova, T.B.; Mitrofanov, F.P.; Serov, P.A. Low-sulfide PGE ores in Palaeoproterozoic Monchegorsk Pluton and massifs of its southern framing, Kola Peninsula, Russia: Geological characteristic and isotope geochronological evidence of polychronous ore-magmatic systems. Geol. Ore Depos. 2016, 58, 37–57. [Google Scholar] [CrossRef]
- Ernst, R.E. Large Igneous Provinces; Cambridge University Press: Cambridge, UK, 2014; p. 653. [Google Scholar]
- Alapieti, T.; Filen, B.; Lahtinen, J.; Lavrov, M.; Smolkin, V.; Voitsekhovsky, S. Early Proterozoic layered intrusions in the northeastern part of the Fennoscandian Shield. Miner. Pet. 1990, 42, 1–22. [Google Scholar] [CrossRef]
- Melezhik, V.A.; Hanski, E.J. The Pechenga Greenstone Belt. In Reading the Archive of Earth’s Oxygenation, Volume 1: The Palaeoproterozoic of Fennoscandia as Context for the Fennoscandian Arctic Russia—Drilling Early Earth Project, Frontiers in Earth Sciences; Melezhik, V.A., Prave, A.R., Fallick, A.E., Kump, L.R., Strauss, H., Lepland, A., Hanski, E.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 289–385. [Google Scholar]
- Mitrofanov, F.P.; Bayanova, T.B.; Korchagin, A.U.; Groshev, N.Y.; Malitch, K.N.; Zhirov, D.V.; Mitrofanov, A.F. East Scandinavian and Noril’sk plume mafic large igneous provinces of Pd-Pt ores: Geological and metallogenic comparison. Geol. Ore Depos. 2013, 55, 305–319. [Google Scholar] [CrossRef]
- Mints, M.V. 3D model of deep structure of the Early Precambrian crust in the East European Craton and paleogeodynamic implications. Geotectonics 2011, 45, 267–290. [Google Scholar] [CrossRef]
- Mitrofanov, F.P. New Types of Mineral Raw Materials in the Kola Province: Discoveries and Perspectives. In Smirnovsky Collection of Works; VINITI RAS: Moscow, Russia, 2005; pp. 39–53. [Google Scholar]
- Sharkov, E.V. Formation of Layered Intrusions and Related Mineralization; Scientific World: Moscow, Russia, 2006. [Google Scholar]
- Zozulya, D.R.; Bayanova, T.B.; Eby, G.N. Geology and Age of the Late Archean Keivy Alkaline Province, Northeastern Baltic Shield. J. Geol. 2005, 113, 601–608. [Google Scholar] [CrossRef]
- Groshev, N.; Karykowski, B. The Main Anorthosite Layer of the West-Pana Intrusion, Kola Region: Geology and U-Pb Age Dating. Minerals 2019, 9, 71. [Google Scholar] [CrossRef] [Green Version]
- Grokhovskaya, T.L.; Ivanchenko, V.N.; Karimova, O.V.; Griboedova, I.G.; Samoshnikova, L.A. Geology, mineralogy, and genesis of PGE mineralization in the South Sopcha massif, Monchegorsk complex, Russia. Geol. Ore Depos. 2012, 54, 347–369. [Google Scholar] [CrossRef]
- Kozlov, E.K. Natural Series of Nickel-Bearing Rocks and Their Metallogeny; Nauka: Leningrad, Russia, 1973. [Google Scholar]
- Smolkin, V.F.; Mitrofanov, F.P. Layered Intrusions of the Monchegorsk Ore District: Petrology, Mineralization, and Deep Structure; Mitrofanov, F.P., Smolkin, V.F., Eds.; Kola Science Center RAS: Apatity, Russia, 2004. [Google Scholar]
- Raczek, I.; Jochum, K.P.; Hofmann, A.W. Neodymium and strontium isotope data for USGS reference materials BCR-1, BCR-2, BHV O-1, BHVO-2, AGV-1, AGV-2, GSP-1, GSP-2 and Eight MPI-DING refer ence glasses. Geostand. Geoanal. Res. 2003, 27, 173–179. [Google Scholar] [CrossRef]
- Tanaka, T.; Togashi, S.; Kamioka, H.; Amakawa, H.; Kagami, H.; Hamamoto, T.; Yuhara, M.; Orihashi, Y.; Yoneda, S.; Shimizu, H.; et al. JNdi-1: A neodymium isotopic reference in consistency with LaJolla neodymium. Chem. Geol. 2000, 168, 279–281. [Google Scholar] [CrossRef]
- Ludwig, K.R. Isoplot 3.75. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronol. Cent. Spec. Publ. 2012, 4, 71. [Google Scholar]
- Bouvier, A.; Vervoort, J.D.; Patchett, P.J. The Lu-Hf and Sm-Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett. 2008, 273, 48–57. [Google Scholar] [CrossRef]
- Goldstein, S.J.; Jacobsen, S.B. Nd and Sr isotopic systematics of river water suspended material: Implications for crustal evolution Steven. Earth Planet. Sci. Lett. 1988, 87, 249–265. [Google Scholar] [CrossRef]
- Nitkina, E.A. U-Pb zircon dating of rocks of the platiniferous Fedorova-Pana Layered Massif, Kola Peninsula. Dokl. Earth Sci. 2006, 408, 551–554. [Google Scholar] [CrossRef]
- Dodson, M.H. Closure temperature in cooling geochronological and petrological systems. Contrib. Mineral. Petrol. 1973, 40, 259–274. [Google Scholar] [CrossRef]
- Hensen, B.J.; Zhou, B.O. Retention of isotopic memory in garnets partially broken down during an overprinting granulite-facies metamorphism: Implications for the Sm-Nd closure temperature. Geology 1995, 23, 225–228. [Google Scholar] [CrossRef]
- Mezger, K.; Essene, E.J.; Halliday, A.N. Closure temperatures of the Sm-Nd system in metamorphic garnets. Earth Planet. Sci. Lett. 1992, 113, 397–409. [Google Scholar] [CrossRef] [Green Version]
- Groshev, N.Y.; Nitkina, E.A.; Mitrofanov, F.P. Two-phase mechanism of the formation of platinum-metal basites of the Fedorova Tundra intrusion on the Kola Peninsula: New data on geology and isotope geochronology. Dokl. Earth Sci. 2009, 427, 1012–1016. [Google Scholar] [CrossRef]
- Korchagin, A.U.; Goncharov, Y.V.; Subbotin, V.V.; Groshev, N.Y.; Gabov, D.A.; Ivanov, A.N.; Savchenko, Y.E. Geology and Composition of the Ores of the Low-Sulfide North Kamennik PGE Deposit in the West-Pana Intrusion. Ores Met. 2016, 1, 42–51. (In Russian) [Google Scholar]
- Chistyakova, S.; Latypov, R.; Zaccarini, F. Chromitite Dykes in the Monchegorsk Layered Intrusion, Russia: In Situ Crystallization from Chromite-Saturated Magma Flowing in Conduits. J. Petrol. 2015, 56, 2395–2424. [Google Scholar] [CrossRef] [Green Version]
- Latypov, R.; Costin, G.; Chistyakova, S.; Hunt, E.J.; Mukherjee, R.; Naldrett, T. Platinum-bearing chromite layers are caused by pressure reduction during magma ascent. Nat. Commun. 2018, 9, 462. [Google Scholar] [CrossRef]
- Chashchin, V.V.; Bayanova, T.B.; Yelizarova, I.R.; Serov, P.A. The Volch’etundrovsky Massif of the autonomous anorthosite complex of the Main Range, the Kola Peninsula: Geological, petrogeochemical, and isotope-geochronological studies. Petrology 2012, 20, 467–490. [Google Scholar] [CrossRef]
- Kunakkuzin, E.; Borisenko, E.; Nerovich, L.; Serov, P.; Bayanova, T. The Origin and Evolution of Ore-Bearing Rocks in the Loypishnun Deposit (Monchetundra Massif, NE Fennoscandian Shield): Isotope Nd-Sr and REE Geochemical Data. Minerals 2020, 10, 286. [Google Scholar] [CrossRef] [Green Version]
- Sharkov, E.V.; Smol’kin, V.F.; Belyatskii, V.B.; Chistyakov, A.V.; Fedotov, Z.A. Age of the Moncha Tundra fault, Kola Peninsula: Evidence from the Sm-Nd and Rb-Sr isotopic systematics of metamorphic assemblages. Geochem. Int. 2006, 44, 317–326. [Google Scholar] [CrossRef]
- Ernst, R.E.; Jowitt, S.M. Large igneous provinces (LIPs) and metallogeny. Tecton. Metallog. Discov. N. Am. Cordill. Similar Accretionary Settings 2013, 17, 17–51. [Google Scholar]
- Steshenko, E.N.; Bayanova, T.B.; Serov, P.A. The Paleoproterozoic Kandalaksha-Kolvitsa Gabbro-Anorthosite Complex (Fennoscandian Shield): New U-Pb, Sm-Nd, and Nd-Sr (ID-TIMS) Isotope Data on the Age of Formation, Metamorphism, and Geochemical Features of Zircon (LA-ICP-MS). Minerals 2020, 10, 254. [Google Scholar] [CrossRef] [Green Version]
- Jahn, B.M.; Wu, F.; Chen, B. Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes 2000, 23, 82–92. [Google Scholar] [CrossRef] [Green Version]
- Timmerman, M.J.; Daly, J.S. Sm-Nd evidence for late Archaean crust formation in the Lapland-Kola Mobile Belt, Kola Peninsula, Russia and Norway. Precambrian Res. 1995, 72, 97–107. [Google Scholar] [CrossRef]
- Amelin, Y.V.; Semenov, V.S. Nd and Sr isotopic geochemistry of mafic layered intrusions in the eastern Baltic shield: Implications for the evolution of Paleoproterozoic continental mafic magmas. Contrib. Mineral. Petrol. 1996, 124, 255–272. [Google Scholar] [CrossRef]
- Puchtel, I.S.; Zhuravlev, D.Z.; Kulikova, V.V.; Samsonov, A.V.; Simon, A.K. Komatiites of the Vodlozero Block, Baltic Shield. Dokl. USSR Acad. Sci. 1991, 317, 167–172. [Google Scholar]
- Wedepohl, H.K. The composition of the continental crust. Geochim. Cosmochim. Acta 1995, 59, 1217–1232. [Google Scholar] [CrossRef]
Sample | Concentrations ppm | Isotopic Ratios | TDM, Ma | εNd(T) | ||
---|---|---|---|---|---|---|
Sm | Nd | 147Sm/144Nd | 143Nd/144Nd | |||
Fedorova Tundra norite (F-2) | ||||||
WR | 0.423 | 1.662 | 0.1537 | 0.511807 ± 20 | 3393 | −2.6 |
Pl | 0.413 | 2.88 | 0.0865 | 0.510709 ± 14 | ||
Cpx | 1.777 | 5.73 | 0.1876 | 0.512381 ± 8 | ||
Opx | 0.125 | 0.325 | 0.2323 | 0.513085 ± 10 | ||
Fedorova Tundra orthopyroxenite (F-3) | ||||||
WR | 0.318 | 1.166 | 0.1648 | 0.512196 ± 12 | 2964 | +1.7 |
Opx | 0.139 | 0.376 | 0.2228 | 0.513172 ± 17 | ||
Cpx | 2.21 | 7.67 | 0.1745 | 0.512349 ± 16 | ||
Pl | 0.257 | 1.615 | 0.0961 | 0.511071 ± 29 | ||
Gabbro of Fedorova Tundra block (F-4) | ||||||
WR | 0.629 | 2.80 | 0.1357 | 0.511548 ± 8 | 3115 | −1.6 |
Opx | 0.233 | 0.721 | 0.1951 | 0.512555 ± 15 | ||
Cpx | 0.826 | 2.28 | 0.2187 | 0.512947 ± 16 | ||
Pl | 0.239 | 1.772 | 0.0815 | 0.510677 ± 14 | ||
Ol | 0.512 | 1.937 | 0.1109 | 0.511141 ± 29 | ||
Gabbronorite (SN-1) | ||||||
WR | 0.303 | 1.429 | 0.1281 | 0.511377 ± 19 | 3141 | −2.7 |
Pl | 0.144 | 0.984 | 0.0885 | 0.510739 ± 11 | ||
Cpx | 1.478 | 4.43 | 0.2015 | 0.512598 ± 9 | ||
Opx | 0.200 | 0.553 | 0.2183 | 0.512870 ± 11 | ||
Marginal Zone norite (SN-6) | ||||||
WR | 0.311 | 1.575 | 0.1003 | 0.511039 ± 10 | 2824 | −0.5 |
Cpx | 2.42 | 8.84 | 0.1657 | 0.512119 ± 20 | ||
Pl | 0.252 | 1.829 | 0.0833 | 0.510790 ± 29 | ||
Opx | 0.182 | 0.672 | 0.1641 | 0.512027 ± 20 | ||
Gabbronorite of Malaya Pana (MP-1) | ||||||
WR | 1.044 | 4.99 | 0.1263 | 0.511441 ± 10 | 2967 | −1.0 |
Po | 0.029 | 0.151 | 0.1144 | 0.511217 ± 21 | ||
Pn | 0.008 | 0.044 | 0.1160 | 0.511259 ± 23 | ||
Pl-2 | 0.398 | 2.247 | 0.0977 | 0.510957 ± 19 | ||
Pl-1 | 0.325 | 2.302 | 0.0853 | 0.510738 ± 17 | ||
Opx + Cpx | 4.75 | 16.44 | 0.1747 | 0.512203 ± 7 | ||
Cpx + Opx | 2.54 | 9.34 | 0.1641 | 0.512033 ± 9 | ||
Ccp + Pn | 0.022 | 0.122 | 0.1106 | 0.511143 ± 20 | ||
Ore-bearing gabbronorite of Kievey (FPM-1) | ||||||
WR | 0.560 | 3.12 | 0.1096 | 0.511125 ± 14 | 2951 | −1.8 |
Po | 0.030 | 0.181 | 0.1050 | 0.511044 ± 26 | ||
Pn + Py + Ccp | 0.429 | 1.662 | 0.1521 | 0.511821 ± 23 | ||
Ccp | 0.053 | 0.251 | 0.1086 | 0.511132 ± 20 | ||
Cpx | 0.855 | 4.92 | 0.1733 | 0.512174 ± 14 | ||
Opx | 1.144 | 5.07 | 0.1802 | 0.512290 ± 11 | ||
Pl | 0.212 | 0.955 | 0.0844 | 0.510722 ± 17 | ||
Ore-bearing gabbronorite of Kievey (H-08-01) | ||||||
WR | 0.999 | 4.75 | 0.1271 | 0.511353 ± 17 | 3146 | −3.0 |
Cpx + Opx | 1.312 | 4.66 | 0.1702 | 0.512055 ± 17 | ||
Opx | 0.158 | 0.467 | 0.2047 | 0.512625 ± 22 | ||
Cpx | 8.33 | 30.8 | 0.1634 | 0.511954 ± 17 | ||
Ap | 194.2 | 972.4 | 0.1207 | 0.511248 ± 15 | ||
Pl | 0.145 | 0.914 | 0.0961 | 0.510855 ± 14 | ||
Ore-bearing gabbro of Kievey (H-08-02) | ||||||
WR | 1.019 | 5.03 | 0.1224 | 0.511355 ± 21 | 2982 | −1.5 |
Ap | 156.5 | 753.7 | 0.1255 | 0.511385 ± 19 | ||
Amf | 0.888 | 4.692 | 0.1145 | 0.511239 ± 17 | ||
Cpx | 7.35 | 26.1 | 0.1700 | 0.512139 ± 16 | ||
Pl | 0.206 | 1.423 | 0.0874 | 0.510792 ± 14 | ||
Gabbronorite of ULH (H-08-04) | ||||||
WR | 0.409 | 1.462 | 0.1011 | 0.510879 ± 17 | 3058 | −3.9 |
Cpx | 1.072 | 3.31 | 0.1957 | 0.512441 ± 14 | ||
Cpx + Opx | 0.299 | 0.908 | 0.1992 | 0.512473 ± 22 | ||
Opx | 0.095 | 0.262 | 0.2193 | 0.512801 ± 20 | ||
Pl | 0.130 | 0.889 | 0.0885 | 0.510655 ± 19 | ||
Anorthosite of ULH (H-08-05) | ||||||
WR | 0.271 | 1.176 | 0.1393 | 0.511613 ± 17 | 3133 | −2.1 |
Pl | 0.107 | 0.719 | 0.0901 | 0.510833 ± 21 | ||
Opx | 0.921 | 2.94 | 0.1896 | 0.512436 ± 13 | ||
Cpx | 0.801 | 2.99 | 0.1618 | 0.511978 ± 11 | ||
Fedorova Tundra pyroxenite (FT-1) | ||||||
WR | 0.252 | 0.972 | 0.1367 | 0.511608 ± 11 | 3038 | −1.0 |
Opx + Cpx | 0.155 | 0.522 | 0.1679 | 0.512129 ± 13 | ||
Opx | 0.139 | 0.482 | 0.1740 | 0.512237 ± 19 | ||
Cpx | 3.79 | 14.47 | 0.1582 | 0.511968 ± 17 | ||
Pl | 0.200 | 1.510 | 0.0800 | 0.510695 ± 16 | ||
Fedorova Tundra gabbronorite (FT-2) | ||||||
WR | 0.663 | 2.70 | 0.1417 | 0.511775 ± 16 | 2899 | +0.8 |
Sulf | 0.400 | 0.267 | 0.0897 | 0.510942 ± 18 | ||
Pl | 0.179 | 1.279 | 0.0846 | 0.510845 ± 18 | ||
Cpx | 2.43 | 8.49 | 0.1730 | 0.512295 ± 14 | ||
Opx | 0.230 | 0.697 | 0.1996 | 0.512744 ± 19 | ||
Fedorova Tundra olivine gabbronorite (FT-3) | ||||||
WR | 1.105 | 4.76 | 0.1402 | 0.511672 ± 14 | 3051 | −0.8 |
Pl | 0.330 | 1.927 | 0.1034 | 0.511275 ± 15 | ||
Ol | 0.114 | 0.539 | 0.1276 | 0.511471 ± 16 | ||
Opx | 1.125 | 3.161 | 0.2151 | 0.512913 ± 13 | ||
Fedorova Tundra gabbro (BGF-616) | ||||||
WR | 1.31 | 5.77 | 0.1377 | 0.511727 ± 18 | 2843 | +1.1 |
Py + Pn | 0.08 | 0.45 | 0.1089 | 0.511251 ± 20 | ||
Pn | 1.35 | 7.34 | 0.1108 | 0.511283 ± 17 | ||
Pl | 1.04 | 8.31 | 0.0757 | 0.510707 ± 14 | ||
Ccp | 0.10 | 0.60 | 0.1046 | 0.511165 ± 19 | ||
Py | 0.15 | 0.91 | 0.1008 | 0.511130 ± 22 | ||
Gabbronorite, below LLH | ||||||
WR | 0.642 | 3.35 | 0.1159 | 0.511244 ± 12 | 2957 | −1.3 |
Zo | 0.221 | 1.859 | 0.0718 | 0.510672 ± 21 | ||
Ap | 64.2 | 307.1 | 0.1209 | 0.511297 ± 6 | ||
Ore-bearing gabbronorite, LLH | ||||||
WR | 0.936 | 4.38 | 0.1292 | 0.511484 ± 15 | 2992 | −1.0 |
Ap-1 | 149.9 | 623.3 | 0.1454 | 0.511697 ± 5 | ||
Ap-2 | 58.9 | 294.4 | 0.1209 | 0.511362 ± 6 |
Sample | Concentrations, ppm | Ratios | TDM, Ma | εNd(T) | ||
---|---|---|---|---|---|---|
Sm | Nd | 147Sm/144Nd | 143Nd/144Nd ± 2σ | |||
Orthopyroxenites, Nyud-II, B65/111 | ||||||
WR | 0.456 | 2.06 | 0.1333 | 0.511530 ± 14 | 3056 | −1.2 |
Sulf | 3.39 | 19.63 | 0.1043 | 0.511059 ± 11 | ||
Opx-1 | 0.039 | 0.176 | 0.1355 | 0.511599 ± 42 | ||
Pl | 0.466 | 5.33 | 0.0528 | 0.510218 ± 15 | ||
Opx-2 | 0.318 | 1.226 | 0.1569 | 0.511961 ± 34 | ||
Ap | 158.3 | 874 | 0.1094 | 0.510780 ± 13 | ||
Ore-bearing norites, Nyud-II, B66/111 | ||||||
Py | 0.029 | 0.168 | 0.1058 | 0.511086 ± 13 | ||
Ccp | 0.082 | 0.556 | 0.0895 | 0.510842 ± 72 | ||
Opx | 1.660 | 5.69 | 0.1763 | 0.511975 ± 16 | ||
Pl | 0.272 | 2.25 | 0.0731 | 0.510656 ± 14 | ||
Ap | 282 | 772 | 0.1148 | 0.511176 ± 7 | ||
Harzburgite, ore-bed “330”, Sopcha, B70/111 | ||||||
WR | 0.043 | 0.149 | 0.1656 | 0.511813 ± 25 | --- | −6.3 |
Ol | 0.028 | 0.144 | 0.1119 | 0.510982 ± 43 | ||
Sulf | 0.034 | 0.188 | 0.1106 | 0.510934 ± 36 | ||
Opx | 0.055 | 0.160 | 0.2064 | 0.512499 ± 33 | ||
Plagioclasite with sulfides, Vurechuayvench, B58/111 | ||||||
WR | 0.971 | 4.62 | 0.1271 | 0.511408 ± 7 | 3051 | −2.4 |
Pn | 0.109 | 0.350 | 0.1884 | 0.512382 ± 18 | ||
Sulf | 0.031 | 0.116 | 0.1603 | 0.511880 ± 87 | ||
Gabbronorite, Moroshkovoe Ozero, B61/111 | ||||||
WR | 0.611 | 2.95 | 0.1251 | 0.511387 ± 13 | 3017 | −1.7 |
Pl | 0.285 | 1.868 | 0.0921 | 0.510867 ± 18 | ||
Opx | 0.247 | 0.699 | 0.2136 | 0.512842 ± 45 | ||
Opx + Cpx | 0.899 | 2.98 | 0.1821 | 0.512331 ± 18 | ||
Ap | 74.6 | 339.5 | 0.1328 | 0.511514 ± 4 | ||
Ru | 0.834 | 5.12 | 0.0986 | 0.511307 ± 9 | ||
Gabbronorite, Poaz, 409 | ||||||
WR | 0.897 | 4.41 | 0.1229 | 0.511339 ± 9 | 3073 | −2.4 |
Opx | 0.734 | 3.07 | 0.1444 | 0.511674 ± 21 | ||
Cpx | 0.613 | 1.851 | 0.2000 | 0.512595 ± 36 | ||
Pl | 0.135 | 0.861 | 0.0948 | 0.510876 ± 14 | ||
Cpx + Opx | 0.903 | 3.06 | 0.1785 | 0.512258 ± 20 | ||
Orthopyroxenite, Nittis-Pentlandite Gorge, MT-3 | ||||||
WR | 0.245 | 1.055 | 0.1403 | 0.511815 ± 9 | 2762 | +1.7 |
Sulf | 0.020 | 0.090 | 0.1337 | 0.511703 ± 15 | ||
Pl | 0.596 | 4.94 | 0.0730 | 0.510736 ± 12 | ||
Opx | 0.156 | 0.499 | 0.1892 | 0.512594 ± 15 | ||
Opx + Ol | 0.119 | 0.371 | 0.1934 | 0.512704 ± 25 | ||
Monchetundra metaolivinite, MT-65 | ||||||
WR | 0.081 | 0.316 | 0.1546 | 0.511963 ± 19 | --- | −1.5 |
Ol + Opx | 0.058 | 0.263 | 0.1323 | 0.511642 ± 24 | ||
Pl | 0.565 | 4.57 | 0.0747 | 0.510831 ± 24 | ||
Opx | 0.547 | 1.982 | 0.1670 | 0.512152 ± 7 | ||
Ol | 0.015 | 0.093 | 0.0988 | 0.511183 ± 20 | ||
Pentlandite Gorge orthopyroxenite, P-1/109 | ||||||
WR | 0.678 | 2.090 | 0.1762 | 0.512377 ± 19 | 3130 | +1.3 |
Po | 0.018 | 0.095 | 0.1171 | 0.511381 ± 59 | ||
Sulf | 0.032 | 0.123 | 0.1561 | 0.512015 ± 43 | ||
Cpx | 1.048 | 3.230 | 0.1961 | 0.512687 ± 33 | ||
Opx + Cpx | 1.095 | 3.37 | 0.1902 | 0.512586 ± 16 | ||
Pl | 0.090 | 0.523 | 0.1036 | 0.511171 ± 26 | ||
Monchetundra trachitoid gabbronorite, B19/111 | ||||||
WR | 0.462 | 1.715 | 0.1628 | 0.511989 ± 18 | 3285 | −1.6 |
Pl-1 | 0.439 | 2.95 | 0.0902 | 0.510801 ± 10 | ||
Pl-2 | 0.516 | 3.43 | 0.0911 | 0.510823 ± 20 | ||
Cpx | 2.94 | 9.54 | 0.1862 | 0.512392 ± 13 | ||
Opx | 0.231 | 0.674 | 0.2071 | 0.512723 ± 24 | ||
Monchetundra trachitoid leucogabbronorite, B20/111 | ||||||
WR | 0.870 | 3.65 | 0.1441 | 0.511894 ± 7 | 2742 | −1.7 |
Pl-1 | 0.221 | 1.227 | 0.1087 | 0.511323 ± 26 | ||
Pl-2 | 0.144 | 0.885 | 0.0987 | 0.511164 ± 33 | ||
Opx | 0.330 | 1.143 | 0.1744 | 0.512403 ± 32 | ||
Cpx | 3.62 | 12.49 | 0.1750 | 0.512413 ± 9 | ||
Dunite, Dunite block (Sopcheozero Deposit), 404 | ||||||
WR | 0.622 | 0.912 | 0.1243 | 0.511563 ± 33 | 2696 | +2.5 |
Cpx | 2.95 | 9.93 | 0.1797 | 0.512466 ± 14 | ||
Opx + Cpx | 2.45 | 8.43 | 0.1756 | 0.512422 ± 11 | ||
Ol | 0.025 | 0.156 | 0.0971 | 0.511119 ± 34 | ||
Chr | 2.74 | 18.23 | 0.1118 | 0.511361 ± 10 | ||
Chromitite, Dunite block (Sopcheozero Deposit), 405 | ||||||
WR | 3.08 | 21.5 | 0.0867 | 0.510977 ± 12 | 2598 | +2.9 |
Pl | 0.325 | 3.05 | 0.0644 | 0.510635 ± 15 | ||
Ol | 0.092 | 0.357 | 0.0691 | 0.510689 ± 17 | ||
Ol + Cpx | 0.298 | 1.202 | 0.1497 | 0.512018 ± 11 | ||
Chr | 2.87 | 18.04 | 0.0914 | 0.511053 ± 16 | ||
Monchetundra leucogabbronorite, 1/106 | ||||||
Pl | 1.647 | 9.11 | 0.1093 | 0.511355 ± 25 | ||
Gr | 1.174 | 4.24 | 0.1672 | 0.512132 ± 23 | ||
Ilm | 0.609 | 3.23 | 0.1139 | 0.511430 ± 25 | ||
Monchetundra gabbronorite, 7/106 | ||||||
Pl | 0.016 | 0.092 | 0.1051 | 0.511028 ± 56 | ||
Ilm + Gr | 0.035 | 0.156 | 0.1352 | 0.511435 ± 46 | ||
Gr | 0.040 | 0.129 | 0.1886 | 0.512138 ± 13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serov, P.A. Paleoproterozoic Pt-Pd Fedorovo-Pansky and Cu-Ni-Cr Monchegorsk Ore Complexes: Age, Metamorphism, and Crustal Contamination According to Sm-Nd Data. Minerals 2021, 11, 1410. https://doi.org/10.3390/min11121410
Serov PA. Paleoproterozoic Pt-Pd Fedorovo-Pansky and Cu-Ni-Cr Monchegorsk Ore Complexes: Age, Metamorphism, and Crustal Contamination According to Sm-Nd Data. Minerals. 2021; 11(12):1410. https://doi.org/10.3390/min11121410
Chicago/Turabian StyleSerov, Pavel A. 2021. "Paleoproterozoic Pt-Pd Fedorovo-Pansky and Cu-Ni-Cr Monchegorsk Ore Complexes: Age, Metamorphism, and Crustal Contamination According to Sm-Nd Data" Minerals 11, no. 12: 1410. https://doi.org/10.3390/min11121410
APA StyleSerov, P. A. (2021). Paleoproterozoic Pt-Pd Fedorovo-Pansky and Cu-Ni-Cr Monchegorsk Ore Complexes: Age, Metamorphism, and Crustal Contamination According to Sm-Nd Data. Minerals, 11(12), 1410. https://doi.org/10.3390/min11121410