Utilization of Metallurgy—Beneficiation Combination Strategy to Decrease TiO2 in Titanomagnetite Concentrate before Smelting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Roasting and Magnetic Separation Tests
2.3. XRD Analysis
2.4. SEM-EDS Measurement
3. Results
3.1. Roasting and Magnetic Separation Tests
3.2. Investigation of Fe-Ti Separation Mechanism
3.2.1. XRD Analysis
3.2.2. SEM-EDS Analysis
3.3. Thermodynamic Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, H.M.; Li, L.X.; Yang, X.Q.; Cheng, Y.B. Types and geological characteristics of iron deposits in China. J. Asian Earth Sci. 2015, 103, 2–22. [Google Scholar] [CrossRef]
- Gao, F.; Olayiwola, A.U.; Liu, B.; Wang, S.; Du, H.; Li, J.; Wang, X.; Chen, D.; Zhang, Y. Review of Vanadium Production Part I: Primary Resources. Miner. Process. Extr. Metall. Rev. 2021, 15, 1–23. [Google Scholar] [CrossRef]
- Lv, X.; Lun, Z.; Yin, J.; Bai, C. Carbothermic reduction of vanadium titanomagnetite by microwave irradiation and smelting behavior. ISIJ Int. 2013, 53, 1115–1119. [Google Scholar] [CrossRef] [Green Version]
- He, S.; Sun, H.; g Tan, D.; Peng, T. Recovery of Titanium Compounds from Ti-enriched Product of Alkali Melting Ti-bearing Blast Furnace Slag by Dilute Sulfuric Acid Leaching. Procedia Environ. Sci. 2016, 31, 977–984. [Google Scholar] [CrossRef] [Green Version]
- Fu, W.-g.; Wen, Y.-c.; Xie, H.-e. Development of Intensified Technologies of Vanadium-Bearing Titanomagnetite Smelting. J. Iron Steel Res. Int. 2011, 18, 7–10. [Google Scholar] [CrossRef]
- Gao, Y.; Bian, L.; Liang, Z. Influence of B2O3 and TiO2 on viscosity of titanium-bearing blast furnace slag. Steel Res. Int. 2015, 86, 386–390. [Google Scholar] [CrossRef]
- Li, W.; Wang, N.; Fu, G.; Chu, M.; Zhu, M. Influence of TiO2 addition on the oxidation induration and reduction behavior of Hongge vanadium titanomagnetite pellets with simulated shaft furnace gases. Powder Technol. 2018, 326, 137–145. [Google Scholar] [CrossRef]
- Li, W.; Fu, G.Q.; Chu, M.S.; Zhu, M.Y. Gas-Based Direct Reduction of Hongge Vanadium Titanomagnetite-Oxidized Pellet and Melting Separation of the Reduced Pellet. Steel Res. Int. 2017, 88, 1–10. [Google Scholar] [CrossRef]
- Sachkov, V.I.; Nefedov, R.A.; Orlov, V.V.; Medvedev, R.O.; Sachkova, A.S. Hydrometallurgical processing technology of titanomagnetite ores. Minerals 2018, 8, 2. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Guo, Y.-f.; Jiang, T.; Chen, F.; Zheng, F.-q.; Tang, M.-j.; Yang, L.-z.; Qiu, G.-z. Appropriate titanium slag composition during smelting of vanadium titanomagnetite metallized pellets. Trans. Nonferrous Met. Soc. China 2018, 28, 2528–2537. [Google Scholar] [CrossRef]
- Zhao, L.S.; Wang, L.N.; Chen, D.S.; Zhao, H.X.; Liu, Y.H.; Qi, T. Behaviors of vanadium and chromium in coal-based direct reduction of high-chromium vanadium-bearing titanomagnetite concentrates followed by magnetic separation. Trans. Nonferrous Met. Soc. China 2015, 25, 1325–1333. [Google Scholar] [CrossRef]
- Samanta, S.; Mukherjee, S.; Dey, R. Upgrading Metals Via Direct Reduction from Poly-metallic Titaniferous Magnetite Ore. JOM 2015, 67, 467–476. [Google Scholar] [CrossRef]
- Liu, X.J.; Chen, D.S.; Chu, J.L.; Wang, W.J.; Li, Y.L.; Qi, T. Recovery of titanium and vanadium from titanium–vanadium slag obtained by direct reduction of titanomagnetite concentrates. Rare Met. 2015, 6, 1–9. [Google Scholar] [CrossRef]
- Wan, J.; Du, H.; Gao, F.; Wang, S.; Gao, M.; Liu, B.; Zhang, Y. Direct Leaching of Vanadium from Vanadium-bearing Steel Slag Using NaOH Solutions: A Case Study. Miner. Process. Extr. Metall. Rev. 2021, 42, 257–267. [Google Scholar] [CrossRef]
- Wen, J.; Jiang, T.; Liu, Y.; Xue, X. Extraction Behavior of Vanadium and Chromium by Calcification Roasting-Acid Leaching from High Chromium Vanadium Slag: Optimization Using Response Surface Methodology. Miner. Process. Extr. Metall. Rev. 2019, 40, 56–66. [Google Scholar] [CrossRef]
- Wang, J.; Wang, W.; Ai, Z.; Li, M.; Li, H.; Peng, W.; Zhao, Y.; Song, S. Adsorption toward Pb(II) occurring on three-dimensional reticular-structured montmorillonite hydrogel surface. Appl. Clay Sci. 2021, 210, 106153. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, M.; Zhou, Y.; Su, Z.; Liu, B.; Li, G.; Jiang, T. Interfacial Interaction between Humic Acid and Vanadium, Titanium-Bearing Magnetite (VTM) Particles. Miner. Process. Extr. Metall. Rev. 2020, 41, 75–84. [Google Scholar] [CrossRef]
- Bose, D.K. Pyrometallurgy of Niobium, Tantalum and Vanadium Development Work at Bhabha Atomic Research Centre. Miner. Process. Extr. Metall. Rev. 1992, 10, 217–237. [Google Scholar] [CrossRef]
- Wang, M.; Huang, S.; Chen, B.; Wang, X. A review of processing technologies for vanadium extraction from stone coal. Miner. Process. Extr. Metall. Trans. Inst. Min. Metall. 2020, 129, 290–298. [Google Scholar] [CrossRef]
- Yu, J.; Han, Y.; Li, Y.; Gao, P. Beneficiation of an iron ore fines by magnetization roasting and magnetic separation. Int. J. Miner. Process. 2017, 168, 102–108. [Google Scholar] [CrossRef]
- Bentli, I.; Erdogan, N.; Elmas, N.; Kaya, M. Magnesite concentration technology and caustic–calcined product from Turkish magnesite middlings by calcination and magnetic separation. Sep. Sci. Technol. 2017, 52, 1129–1142. [Google Scholar] [CrossRef]
- Li, M.; Zheng, S.; Liu, B.; Wang, S.; Dreisinger, D.B.; Zhang, Y.; Du, H.; Zhang, Y. A Clean and Efficient Method for Recovery of Vanadium from Vanadium Slag: Nonsalt Roasting and Ammonium Carbonate Leaching Processes. Miner. Process. Extr. Metall. Rev. 2017, 38, 228–237. [Google Scholar] [CrossRef]
- Li, W.; Fu, G.; Chu, M.; Zhu, M. An effective and cleaner process to recovery iron, titanium, vanadium, and chromium from Hongge vanadium titanomagnetite with hydrogen-rich gases. Ironmak. Steelmak. 2021, 48, 33–39. [Google Scholar] [CrossRef]
- Liu, S.; Wang, W.; Yang, J.; You, J. Beneficiation of a low grade titanomagnetite ore in mining engineering. Adv. Mater. Res. 2012, 577, 187–190. [Google Scholar] [CrossRef]
- Li, X.; Kou, J.; Sun, T.; Guo, X.; Tian, Y. Coal and Coke Based Reduction of Vanadium Titanomagenetite Concentrate by the Addition of Calcium Carbonate. Miner. Process. Extr. Metall. Rev. 2021, 42, 115–122. [Google Scholar] [CrossRef]
- Xiang, J.; Huang, Q.; Lv, W.; Pei, G.; Lv, X.W.; Liu, S. Co-recovery of iron, chromium, and vanadium from vanadium tailings by semi-molten reduction–magnetic separation process. Can. Metall. Q. 2018, 57, 262–273. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, B.; Ma, H.; We, W. Separability of Fe from cyanide tailing by magnetic roasting. Mater. Sci. Forum 2011, 695, 421–424. [Google Scholar] [CrossRef]
- Luo, X.-f.; Dong, H.; Zhang, S.; Liu, Y.-w. Study on the sodium oxidation properties of low-iron vanadium-titanium magnetite with high vanadium and titanium. Energy Sources Part A Recover. Util. Environ. Eff. 2018, 40, 1998–2008. [Google Scholar] [CrossRef]
- Dehghan-Manshadi, A.; Manuel, J.; Hapugoda, S.; Ware, N. Sintering characteristics of titanium containing iron ores. ISIJ Int. 2014, 54, 2189–2195. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.T.; Zhou, M.; Jiang, T.; Wang, Y.J.; Xue, X.X. Effect of basicity on sintering behavior of low-titanium vanadium-titanium magnetite. Trans. Nonferrous Met. Soc. China 2015, 25, 2087–2094. [Google Scholar] [CrossRef]
- Lv, C.; Yang, K.; Wen, S.-m.; Bai, S.-j.; Feng, Q.-c. A New Technique for Preparation of High-Grade Titanium Slag from Titanomagnetite Concentrate by Reduction–Melting–Magnetic Separation Processing. JOM 2017, 69, 1801–1805. [Google Scholar] [CrossRef]
- Cheng, G.J.; Xue, X.X.; Liu, J.X.; Jiang, T.; Duan, P.N. Reduction kinetics and mechanism of pellets prepared from high chromium vanadium–titanium magnetite concentrate. Trans. Inst. Min. Metall. Sect. C Miner. Process. Extr. Metall. 2017, 126, 125–132. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, W.; Xue, Z. Oxidation Kinetics of Vanadium Slag Roasting in the Presence of Calcium Oxide. Miner. Process. Extr. Metall. Rev. 2017, 38, 265–273. [Google Scholar] [CrossRef]
- Li, R.; Liu, T.; Zhang, Y.; Huang, J. Mechanism of novel k2so4/kcl composite roasting additive for strengthening vanadium extraction from vanadium–titanium magnetite concentrate. Minerals 2018, 8, 426. [Google Scholar] [CrossRef] [Green Version]
- Sui, Y.; Guo, Y.; Jiang, T.; Qiu, G.Z. Separation and recovery of iron and titanium from oxidized vanadium titano-magnetite by gas-based reduction roasting and magnetic separation. J. Mater. Res. Technol. 2019, 8, 3036–3043. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, T.; Zhao, H.; Xu, C.; Wu, S. Effect of MgO and CaCO3 as additives on the reduction roasting and magnetic separation of beach titanomagnetite concentrate. ISIJ Int. 2019, 59, 981–987. [Google Scholar] [CrossRef] [Green Version]
- Ding, J. Investigation of thermodynamic equilibrium of MSWI fly ash during high-temperature treatment. Adv. Mater. Res. 2013, 610–613, 1871–1875. [Google Scholar] [CrossRef]
- Arguin, J.P.; Pagé, P.; Barnes, S.J.; Girard, R.; Duran, C. An integrated model for ilmenite, Al-spinel, and corundum exsolutions in titanomagnetite from oxide-rich layers of the Lac Doré complex (Québec, Canada). Minerals 2018, 8, 476. [Google Scholar] [CrossRef] [Green Version]
- Alkynes, T. Influences of ’Iechnological Parameters on Smelting-separation Process for Metallized Pellets of Vanadium-bearing Titanomagnetite Concentrates. J. Iron Steel Res. Int. 2016, 23, 367–370. [Google Scholar] [CrossRef]
- Tang, W.-d.; Xue, X.-x.; Yang, S.-t.; Zhang, L.-h.; Huang, Z. Influence of basicity and temperature on bonding phase strength, microstructure, and mineralogy of high-chromium vanadium–titanium magnetite. Int. J. Miner. Metall. Mater. 2018, 25, 871–880. [Google Scholar] [CrossRef]
Element | Fe | TiO2 | MgO | Al2O3 | SiO2 | CaO |
---|---|---|---|---|---|---|
Content | 54.5 | 13.1 | 2.5 | 3.4 | 3.2 | 1 |
Element | Fe | Recovery | TiO2 | Recovery | SiO2 | Recovery | CaO | Recovery |
---|---|---|---|---|---|---|---|---|
TC | 54.4 | - | 13 | - | 3.1 | - | 1 | - |
Roasted | 49 | - | 11.5 | - | 2.9 | - | 10.5 | - |
Concentrate | 56.6 | 70 | 3 | 15.9 | 1.5 | 19.9 | 6.8 | 17.5 |
Tailing | 37.4 | 30 | 24.6 | 84.1 | 5.2 | 80.2 | 16.4 | 82.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, P.; Sun, Y.; Yang, L.; Xu, R.; Luo, Y.; Wang, X.; Cao, J.; Wang, J. Utilization of Metallurgy—Beneficiation Combination Strategy to Decrease TiO2 in Titanomagnetite Concentrate before Smelting. Minerals 2021, 11, 1419. https://doi.org/10.3390/min11121419
Chen P, Sun Y, Yang L, Xu R, Luo Y, Wang X, Cao J, Wang J. Utilization of Metallurgy—Beneficiation Combination Strategy to Decrease TiO2 in Titanomagnetite Concentrate before Smelting. Minerals. 2021; 11(12):1419. https://doi.org/10.3390/min11121419
Chicago/Turabian StyleChen, Pan, Yameng Sun, Lei Yang, Rui Xu, Yangyong Luo, Xianyun Wang, Jian Cao, and Jinggang Wang. 2021. "Utilization of Metallurgy—Beneficiation Combination Strategy to Decrease TiO2 in Titanomagnetite Concentrate before Smelting" Minerals 11, no. 12: 1419. https://doi.org/10.3390/min11121419
APA StyleChen, P., Sun, Y., Yang, L., Xu, R., Luo, Y., Wang, X., Cao, J., & Wang, J. (2021). Utilization of Metallurgy—Beneficiation Combination Strategy to Decrease TiO2 in Titanomagnetite Concentrate before Smelting. Minerals, 11(12), 1419. https://doi.org/10.3390/min11121419