Beneficiation of Low-Grade Rare Earth Ore from Khalzan Buregtei Deposit (Mongolia) by Magnetic Separation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rare Earth Ore Sample
2.2. Dry High-Intensity Magnetic Separation
2.3. Wet High-Intensity Magnetic Separation
3. Results and Discussion
3.1. Characterization of REE-Bearing Ore of Khalzan Buregtei Deposit, Mongolia
3.2. Dry High-Intensity Magnetic Separation
3.3. Wet High-Intensity Magnetic Separation
3.3.1. Effect of Particle Size
3.3.2. Effect of Feed Flow Rate
3.3.3. Effect of Magnetic Induction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hodgkinson, J.H.; Smith, M.H. Climate Change and Sustainability as Drivers for the next Mining and Metals Boom: The Need for Climate-Smart Mining and Recycling. Resour. Policy 2018, 74, 101205. [Google Scholar] [CrossRef]
- Miah, M.D.; Kabir, M.H.; Koike, M.; Akther, S. Major Climate-Change Issues Covered by the Daily Newspapers of Bangladesh. Environmentalist 2011, 31, 67–73. [Google Scholar] [CrossRef]
- Tabelin, C.B.; Yoo, K.; Li, J. Editorial for Special Issue “Novel and Emerging Strategies for Sustainable Mine Tailings and Acid Mine Drainage Management. Minerals 2021, 11, 902. [Google Scholar] [CrossRef]
- World Meteorological Organization (WMO). State of the Global Climate 2020; WMO: Geneva, Switzerland, 2020; pp. 1–38. [Google Scholar]
- The Paris Agreement. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (accessed on 1 November 2021).
- United Nations Goal 13|Department of Economic and Social Affairs. Available online: https://sdgs.un.org/goals/goal13 (accessed on 1 November 2021).
- Tabelin, C.B.; Park, I.; Phengsaart, T.; Jeon, S.; Villacorte-Tabelin, M.; Alonzo, D.; Yoo, K.; Ito, M.; Hiroyoshi, N. Copper and Critical Metals Production from Porphyry Ores and E-Wastes: A Review of Resource Availability, Processing/Recycling Challenges, Socio-Environmental Aspects, and Sustainability Issues. Resour. Conserv. Recycl. 2021, 170, 105610. [Google Scholar] [CrossRef]
- Hund, K.; La Porta, D.; Fabregas, T.P.; Laing, T.; Drexhage, J. Minerals for Climate Action: The Mineral Intensity of the Clean Energy Transition; The World Bank: Washington, DC, USA, 2020. [Google Scholar]
- Tabelin, C.B.; Dallas, J.; Casanova, S.; Pelech, T.; Bournival, G.; Saydam, S.; Canbulat, I. Towards a Low-Carbon Society: A Review of Lithium Resource Availability, Challenges and Innovations in Mining, Extraction and Recycling, and Future Perspectives. Miner. Eng. 2021, 163, 106743. [Google Scholar] [CrossRef]
- Alves Dias, P.; Bobba, S.; Carrara, S.; Plazzotta, B. The Role of Rare Earth Elements in Wind Energy and Electric Mobility; European Commission: Luxembourg, 2020. [Google Scholar]
- Yoon, H.-S.; Kim, C.-J.; Chung, K.W.; Jeon, S.; Park, I.; Yoo, K.; Jha, M.K. The Effect of Grinding and Roasting Conditions on the Selective Leaching of Nd and Dy from NdFeB Magnet Scraps. Metals 2015, 5, 1306–1314. [Google Scholar] [CrossRef]
- Choubey, P.K.; Singh, N.; Panda, R.; Jyothi, R.K.; Yoo, K.; Park, I.; Jha, M.K. Development of Hydrometallurgical Process for Recovery of Rare Earth Metals (Nd, Pr, and Dy) from Nd-Fe-B Magnets. Metals 2021, 11, 1987. [Google Scholar] [CrossRef]
- Ballinger, B.; Schmeda-Lopez, D.; Kefford, B.; Parkinson, B.; Stringer, M.; Greig, C.; Smart, S. The Vulnerability of Electric-Vehicle and Wind-Turbine Supply Chains to the Supply of Rare-Earth Elements in a 2-Degree Scenario. Sustain. Prod. Consum. 2020, 22, 68–76. [Google Scholar] [CrossRef]
- Alonso, E.; Wallington, T.; Sherman, A.; Everson, M.; Field, F.; Roth, R.; Kirchain, R. An Assessment of the Rare Earth Element Content of Conventional and Electric Vehicles. SAE Int. J. Mater. Manuf. 2012, 5, 473–477. [Google Scholar] [CrossRef]
- Barteková, E. Chapter 10—The Role of Rare Earth Supply Risk in Low-Carbon Technology Innovation. In Rare Earths Industry: Technological, Economic, and Environmental Implications; de Lima, I.B., Filho, W.L., Eds.; Elsevier: Boston, MA, USA, 2016; pp. 153–169. ISBN 978-0-12-802328-0. [Google Scholar]
- Jordens, A.; Cheng, Y.P.; Waters, K.E. A Review of the Beneficiation of Rare Earth Element Bearing Minerals. Miner. Eng. 2013, 41, 97–114. [Google Scholar] [CrossRef]
- Garside, M. Rare Earth Mining—Global Distribution by Country 2020. Available online: https://www.statista.com/statistics/270277/mining-of-rare-earths-by-country/ (accessed on 27 August 2021).
- Muff, R.; Tamiraa, A. Rare Earths of Mongolia: Evaluation of Market Opportunities for the Principal Deposits of Mongolia; Ulaanbaatar/Bundesanstalt für Geowissenschaften und Rohstoffe: Hannover, Germany, 2013; p. 31. [Google Scholar]
- Gerel, O.; Majigsuren, Y.; Munkhtsengel, B. Rare Earth Mineral Deposits. In Mineral Resources of Mongolia; Gerel, O., Pirajno, F., Batkhishig, B., Dostal, J., Eds.; Modern Approaches in Solid Earth Sciences; Springer: Singapore, 2021; pp. 185–210. ISBN 9789811559433. [Google Scholar]
- Gronen, L.H.; Sindern, S.; Katzmarzyk, J.L.; Bormann, U.; Hellmann, A.; Wotruba, H.; Meyer, F.M. Mineralogical and Chemical Characterization of Zr-REE-Nb Ores from Khalzan Buregtei (Mongolia)—Approaches to More Efficient Extraction of Rare Metals from Alkaline Granitoids. Minerals 2019, 9, 217. [Google Scholar] [CrossRef] [Green Version]
- Kempe, U.; Möckel, R.; Graupner, T.; Kynicky, J.; Dombon, E. The Genesis of Zr–Nb–REE Mineralisation at Khalzan Buregte (Western Mongolia) Reconsidered. Ore Geol. Rev. 2015, 64, 602–625. [Google Scholar] [CrossRef]
- Long, K.R. The Future of Rare Earth Elements—Will These High-Tech Industry Elements Continue in Short Supply? U.S. Geological Survey: Reston, VA, USA, 2011; pp. 1–43.
- Rybak, A.; Rybak, A. Characteristics of Some Selected Methods of Rare Earth Elements Recovery from Coal Fly Ashes. Metals 2021, 11, 142. [Google Scholar] [CrossRef]
- Goode, J.R. Rare Earth Elements. In SME Mineral Processing & Extractive Metallurgy Handbook; Society for Mining, Metallurgy & Exploration (SME): Englewood, CO, USA, 2019; Volume 2, pp. 1891–1916. [Google Scholar]
- Abaka-Wood, G.B.; Zanin, M.; Addai-Mensah, J.; Skinner, W. Recovery of Rare Earth Elements Minerals from Iron Oxide–Silicate Rich Tailings—Part 1: Magnetic Separation. Miner. Eng. 2019, 136, 50–61. [Google Scholar] [CrossRef]
- Kovalenko, V.I.; Tsaryeva, G.M.; Goreglyad, A.V.; Yarmolyuk, V.V.; Troitsky, V.A.; Hervig, R.L.; Farmer, G.L. The Peralkaline Granite-Related Khaldzan-Buregtey Rare Metal (Zr, Nb, REE) Deposit, Western Mongolia. Econ. Geol. 1995, 90, 530–547. [Google Scholar] [CrossRef]
- Wills, B.A.; Finch, J.A. Magnetic and Electrical Separation. In Wills’ Mineral Processing Technology; Butterworth Heinemann: Oxford, UK, 2016; pp. 381–408. [Google Scholar]
- Hanchar, J.M.; van Westrenen, W. Rare Earth Element Behavior in Zircon-Melt Systems. Elements 2007, 3, 37–42. [Google Scholar] [CrossRef]
- Burnham, A.D. Key Concepts in Interpreting the Concentrations of the Rare Earth Elements in Zircon. Chem. Geol. 2020, 551, 119765. [Google Scholar] [CrossRef]
- Jeon, S.; Ito, M.; Tabelin, C.B.; Pongsumrankul, R.; Tanaka, S.; Kitajima, N.; Saito, A.; Park, I.; Hiroyoshi, N. A Physical Separation Scheme to Improve Ammonium Thiosulfate Leaching of Gold by Separation of Base Metals in Crushed Mobile Phones. Miner. Eng. 2019, 138, 168–177. [Google Scholar] [CrossRef]
- Tabelin, C.B.; Resabal, V.J.T.; Park, I.; Villanueva, M.G.B.; Choi, S.; Ebio, R.; Cabural, P.J.; Villacorte-Tabelin, M.; Orbecido, A.; Alorro, R.D.; et al. Repurposing of Aluminum Scrap into Magnetic Al0/ZVI Bimetallic Materials: Two-Stage Mechanical-Chemical Synthesis and Characterization of Products. J. Clean. Prod. 2021, 317, 128285. [Google Scholar] [CrossRef]
- Choi, S.; Jeon, S.; Park, I.; Ito, M.; Hiroyoshi, N. Addition of Fe3O4 as Electron Mediator for Enhanced Cementation of Cd2+ and Zn2+ on Aluminum Powder from Sulfate Solutions and Magnetic Separation to Concentrate Cemented Metals from Cementation Products. J. Environ. Chem. Eng. 2021, 9, 106699. [Google Scholar] [CrossRef]
- Svoboda, J. Magnetic Methods for the Treatment of Minerals; Elsevier: Amsterdam, The Netherlands, 1987; pp. 1–235. [Google Scholar]
- Jordens, A.; Marion, C.; Langlois, R.; Grammatikopoulos, T.; Rowson, N.A.; Waters, K.E. Beneficiation of the Nechalacho Rare Earth Deposit. Part 1: Gravity and Magnetic Separation. Miner. Eng. 2016, 99, 111–122. [Google Scholar] [CrossRef]
- Rasool, R.; Lieberwirth, H. A Continuum Based Numerical Modelling Approach for the Simulation of WHIMS. Miner. Eng. 2018, 118, 97–105. [Google Scholar] [CrossRef]
- Jordens, A.; Sheridan, R.S.; Rowson, N.A.; Waters, K.E. Processing a Rare Earth Mineral Deposit Using Gravity and Magnetic Separation. Miner. Eng. 2014, 62, 9–18. [Google Scholar] [CrossRef]
- Hrouda, F.; Chlupacova, M.; Chadima, M. The Use of Magnetic Susceptibility of Rocks in Geological Exploration; Terraplus: Brno, Czech Republic, 2009; pp. 1–27. [Google Scholar]
Non-REE | Content (%) | REE | Content (ppm) |
---|---|---|---|
SiO2 | 69.0 ± 2.2 | La2O3 | 548 ± 184 |
Al2O3 | 16.1 ± 0.8 | CeO2 | 1376 ± 460 |
Fe2O3 | 4.1 ± 0.79 | Eu2O3 | 1004 ± 493 |
K2O | 3.5 ± 0.42 | Gd2O3 | 391 ± 63 |
ZrO2 | 3.6 ± 0.63 | Y2O3 | 1809 ± 339 |
CaO | 1.3 ± 0.12 | Dy2O3 | 525 ± 117 |
Nb2O5 | 0.4 ± 0.11 | Er2O3 | 73 ± 21 |
TiO2 | 0.4 ± 0.07 | Yb2O3 | 181 ± 36 |
Na2O | 0.05 ± 0.12 | Other REEs | 813 ± 282 |
Others | 0.8 ± 0.18 | TREO | 6720 ± 1257 |
Elements | (a) | (b) | (c) | (d) | (e) | |
---|---|---|---|---|---|---|
Non- REE (%) | SiO2 | 66.2 ± 0.1 | 68.6 ± 0.4 | 71.2 ± 0.1 | 75.6 ± 0.2 | 93.9 ± 0.0 |
Al2O3 | 14.4 ± 0.1 | 15.4 ± 0.5 | 18.6 ± 0.1 | 14.3 ± 0.1 | 4.0 ± 0.01 | |
Fe2O3 | 8.2 ± 0.03 | 4.6 ± 0.03 | 1.3 ± 0.01 | 2.0 ± 0.00 | 0.4 ± 0.00 | |
K2O | 2.8 ± 0.12 | 3.1 ± 0.04 | 6.8 ± 0.03 | 2.7 ± 0.10 | 0.8 ± 0.01 | |
ZrO2 | 3.1 ± 0.03 | 5.9 ± 0.09 | 0.9 ± 0.01 | 0.7 ± 0.01 | 0.6 ± 0.00 | |
CaO | 1.6 ± 0.01 | 2.3 ± 0.01 | 0.1 ± 0.01 | 1.1 ± 0.01 | 0.3 ± 0.01 | |
Nb2O5 | 0.4 ± 0.00 | 0.3 ± 0.00 | 0.2 ± 0.00 | 0.2 ± 0.00 | n.d.* | |
REE (ppm) | La2O3 | 150 ± 9 | 240 ± 8 | 140 ± 6 | 160 ± 8 | n.d.* |
CeO2 | 490 ± 38 | 660 ± 17 | 270 ± 15 | 460 ± 7 | 70 ± 8 | |
Nd2O3 | n.d.* | 420 ± 0 | n.d.* | n.d.* | n.d.* | |
Sm2O3 | n.d.* | 280 ± 9 | 510 ± 79 | n.d.* | 50 ± 9 | |
Eu2O3 | 3310 ± 650 | 1360 ± 910 | 420 ± 148 | n.d.* | 130 ± 57 | |
Gd2O3 | 1290 ± 50 | n.d.* | 120 ± 20 | 570 ± 30 | n.d.* | |
Y2O3 | 1960 ± 10 | 2960 ± 40 | 1020 ± 10 | 210 ± 2 | 160 ± 1 | |
Dy2O3 | 1090 ± 92 | 1410 ± 70 | 200 ± 17 | 230 ± 28 | 60 ± 7 | |
Er2O3 | n.d.* | 40 ± 47 | 100 ± 13 | n.d.* | 20 ± 8 | |
Tm2O3 | 230 ± 93 | 460 ± 30 | 150 ± 13 | 60 ± 20 | 40 ± 9 | |
Yb2O3 | 120 ± 50 | 100 ± 18 | 100 ± 4 | n.d.* | 30 ± 6 | |
TREO | 8640 ± 526 | 7930 ± 183 | 3030 ± 213 | 1690 ± 26 | 560 ± 33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, I.; Kanazawa, Y.; Sato, N.; Galtchandmani, P.; Jha, M.K.; Tabelin, C.B.; Jeon, S.; Ito, M.; Hiroyoshi, N. Beneficiation of Low-Grade Rare Earth Ore from Khalzan Buregtei Deposit (Mongolia) by Magnetic Separation. Minerals 2021, 11, 1432. https://doi.org/10.3390/min11121432
Park I, Kanazawa Y, Sato N, Galtchandmani P, Jha MK, Tabelin CB, Jeon S, Ito M, Hiroyoshi N. Beneficiation of Low-Grade Rare Earth Ore from Khalzan Buregtei Deposit (Mongolia) by Magnetic Separation. Minerals. 2021; 11(12):1432. https://doi.org/10.3390/min11121432
Chicago/Turabian StylePark, Ilhwan, Yuki Kanazawa, Naoya Sato, Purevdelger Galtchandmani, Manis Kumar Jha, Carlito Baltazar Tabelin, Sanghee Jeon, Mayumi Ito, and Naoki Hiroyoshi. 2021. "Beneficiation of Low-Grade Rare Earth Ore from Khalzan Buregtei Deposit (Mongolia) by Magnetic Separation" Minerals 11, no. 12: 1432. https://doi.org/10.3390/min11121432
APA StylePark, I., Kanazawa, Y., Sato, N., Galtchandmani, P., Jha, M. K., Tabelin, C. B., Jeon, S., Ito, M., & Hiroyoshi, N. (2021). Beneficiation of Low-Grade Rare Earth Ore from Khalzan Buregtei Deposit (Mongolia) by Magnetic Separation. Minerals, 11(12), 1432. https://doi.org/10.3390/min11121432