Reconstruction of Hydrothermal Processes in the Cyprus Type Fe-Cu-Zn Deposits of the Italian Northern Apennines: Results of Combined Fluid Inclusion Microthermometry, SEM-CL Imaging and Trace Element Analyses by LA-ICP-MS
Abstract
:1. Introduction
2. Geological Background
3. Materials and Methods
4. Results
4.1. Petrography of Veins and SEM-CL Properties of Vein Filling Quartz
- The crystallization of CL-bright grey early quartz (Qtz 1) was interrupted by CL-dark quartz microfracturing, now restricted to the core of the crystals;
- The formation of euhedral growth zones still belonging to the early quartz (Qtz 1) generation;
- The precipitation of medium grained Qtz 2;
- The deposition of fine grained interstitial and microbreccia vein filling quartz (Qtz 3);
- CL-dark/bright quartz in microfractures that cross-cut all quartz generations (Qtz 1–3) and crystal boundaries.
4.2. Trace Element Contents in Quartz
4.3. Fluid Inclusion Petrography, Microthermometry and Raman Spectroscopy
5. Discussion
5.1. Characteristics of Hydrothermal Processes on the Basis of Fluid Inclusion Data
5.2. Constraints on the Hydrothermal Conditions from Trace Element Fingerprints and CL Behavior of Quartz
5.3. A Generalized Model for the Submarine Hydrothermal Processes in the VMS Stockwork Deposits of the Northern Apennines
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
BOCCASSUOLO | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ppm | det. lim. | Qtz 1: CL-Bright Inner Core (n = 9) | Qtz 1: CL-Bright Euhedral Growth Zones (n = 7) | Qtz 1: CL-Grey Euhedral Growth Zones (n = 2) | Qtz 1: CL-Dark Euhedral Growth Zones (n = 8) | Qtz 1: CL-Mottled Outer Zone (n = 9) | |||||||||||||||
7Li | 15 | 79 | 23 | 46 | 120 | 87 | 28 | 50 | 132 | 51 | 55 | 37 | 14 | 20 | 61 | 41 | 23 | 24 | 92 | ||
23Na | 6 | 67 | 34 | 27 | 105 | 89 | 64 | 10 | 181 | 25 | 14 | 67 | 50 | 9 | 125 | 19 | 13 | 8 | 48 | ||
27Al | 10 | 834 | 367 | 408 | 1309 | 767 | 446 | 206 | 1526 | 383 | 450 | 223 | 159 | 49 | 483 | 42 | 29 | 11 | 85 | ||
31P | 17 | 33 | 7 | 21 | 42 | 35 | 14 | 22 | 66 | 32 | 34 | 35 | 8 | 17 | 42 | 30 | 8 | 21 | 40 | ||
39K | 16 | 66 | 32 | 26 | 124 | 151 | 104 | 94 | 360 | 28 | b.d.l. | 65 | 38 | 30 | 138 | 22 | 0 | 22 | 23 | ||
mean | st.dev. | min | max | mean | st.dev. | min | max | an 1 | an 2 | mean | st.dev. | min | max | mean | st.dev. | min | max | ||||
CAMPEGLI | |||||||||||||||||||||
ppm | det. lim. | Qtz 1: CL-bright crystals (n = 7) | CL-dark microfractures in Qtz 1 (n = 2) | Qtz 3: CL-grey matrix (n = 5) | |||||||||||||||||
7Li | 15 | 38 | 17 | 29 | 76 | 32 | b.d.l. | 63 | 20 | 49 | 77 | ||||||||||
23Na | 6 | 72 | 23 | 46 | 110 | 113 | 130 | 10 | 2 | 7 | 12 | ||||||||||
27Al | 10 | 583 | 164 | 416 | 802 | 950 | 1168 | 22 | 12 | 12 | 43 | ||||||||||
31P | 17 | 59 | 22 | 43 | 105 | 57 | 59 | 71 | 34 | 40 | 127 | ||||||||||
39K | 16 | 112 | 45 | 44 | 162 | 352 | 482 | 30 | 5 | 24 | 34 | ||||||||||
mean | st.dev. | min | max | an 1 | an 2 | mean | st.dev. | min | max |
Bargone | Boccassuolo * | Campegli | Reppia | Vigonzano | |||
---|---|---|---|---|---|---|---|
Coarse grained quartz (Qtz 1) | Th (°C) (core) | min | 170 | 170 | 150 | 290 | |
max | 270 | 225 | 205 | 330 | |||
mean | 207 | 187 | 158 | 312 | |||
Th (°C) (rim) | min | 135 | 125 | 120 | 260 | ||
max | 180 | 180 | 160 | 310 | |||
mean | 155 | 138 | 142 | 285 | |||
Salinity (NaCl equiv. wt%) | range | 2.6–5.7 | 2.6–4.7 | 3.1–3.9 | 7.2–9.3 | ||
Methane content (mol/kg) | range | x | 0.13–0.22 | x | x | ||
n | 53 | 58 | 70 | 18 | |||
Coarse and medium grained quartz (Qtz 1–2) | Th (°C) (core) | min | 250 | ||||
max | 360 | ||||||
mean | 299 | ||||||
Th (°C) (rim) | min | 150 | |||||
max | 280 | ||||||
mean | 215 | ||||||
Salinity (NaCl equiv. wt%) | range | 3.3–8.3 | |||||
Methane content (mol/kg) | range | 0.19–0.26 | |||||
n | 98 | ||||||
Medium grained quartz (Qtz 2) | Th (°C) | min | 110 | 122 | |||
max | 158 | 171 | |||||
mean | 132 | 146 | |||||
Salinity (NaCl equiv. wt%) | range | 3.1–4.7 | |||||
Methane content (mol/kg) | range | x | 0.22–0.33 | ||||
n | 9 | 41 | |||||
Fine grained quartz (Qtz 3) | Th (°C) | min | 107 | 80 | 50 | ||
max | 118 | 160 | 125 | ||||
mean | 112 | 102 | 97 | ||||
Methane content (mol/kg) | ? | x | ? | ||||
n | 3 | 15 | 5 | ||||
Calcite | Th (°C) | min | 110 | 60 | 132 | ||
max | 135 | 160 | 169 | ||||
mean | 116 | 89 | 147 | ||||
Salinity (NaCl equiv. wt%) | range | 3.1–6.6 | |||||
Methane content (mol/kg) | ? | x | x | ||||
n | 13 | 35 | 6 |
References
- Rona, P.A. Hydrothermal mineralization at seafloor spreading centres. Earth Sci. Rev. 1984, 20, 1–104. [Google Scholar] [CrossRef]
- Herzig, P.M.; Hannington, M.D. Polymetallic massive sulphides at the modern seafloor: A review. Ore Geol. Rev. 1995, 10, 95–115. [Google Scholar] [CrossRef]
- Hannington, M.D.; de Ronde, C.E.J.; Petersen, S. Sea-floor tectonics and submarine hydrothermal systems. In Economic Geology100th Anniversary Volume; Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., Richards, J.P., Eds.; Society of Economic Geologists: Littleton, CO, USA, 2005; pp. 111–141. [Google Scholar]
- Galley, A.G.; Hannington, M.; Jonasson, I. Volcanogenic massive sulphide deposits. In Mineral Deposits of Canada—A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geo Logical Provinces, and Exploration Methods; Goodfellow, W.D., Ed.; Special Publication 5; Geological Association of Canada, Mineral Deposits Division: St. John’s, NL, Canada, 2007; pp. 141–161. [Google Scholar]
- Pirajno, F. Hydrothermal Processes and Mineral Systems; Springer: East Perth, Australia, 2009; 1250p. [Google Scholar]
- Shanks, W.C.P. Volcanogenic Massive Sulfide Occurrence Model; Thurston, R., Ed.; Geological Survey Scientific Investigations Report 2010–5070–C; U. S. Geological Survey: Reston, VA, USA, 2012; Part III; 345p.
- Nehlig, P. Salinity of oceanic hydrothermal fluids: A fluid inclusion study. Earth Planet. Sci. Let. 1991, 102, 310–325. [Google Scholar] [CrossRef]
- Foustoukos, D.I.; Seyfried, W.E. Fluid phase separation processes in submarine hydrothermal systems. Rev. Min. Geochem. 2007, 65, 213–239. [Google Scholar] [CrossRef]
- Zengqian, H.; Zaw, K.; Xiaoming, Q.; Qingtong, Y.; Jinjie, Y.; Mingji, X.; Deming, F.; Xianke, Y. Origin of the Gacun Volcanic-Hosted Massive Sulfide Deposit in Sichuan, China: Fluid Inclusion and Oxygen Isotope Evidence. Econ. Geol. 2001, 96, 1491–1512. [Google Scholar] [CrossRef]
- Tornos, F. Environment of formation and styles of volcanogenic massive sulphides: The Iberian Pyrite Belt. Ore Geol. Rev. 2006, 28, 259–307. [Google Scholar] [CrossRef]
- Ohmoto, H. Formation of volcanogenic massive sulphide deposits: The Kuroko perspective. Ore Geol. Rev. 1996, 10, 135–177. [Google Scholar] [CrossRef]
- Bodnar, R.J.; Lecumberry-Sanchez, P.; Moncada, D.; Steele-MacInnis, M. Fluid inclusions in hydrothermal ore deposits. In Treatise on Geochemistry, 2nd ed.; Turekian, K.K., Holland, H.D., Eds.; Elsevier Ltd.: Oxford, UK, 2014; Chapter: 13; pp. 119–142. [Google Scholar]
- Wilkinson, J.J. Fluid inclusions in hydrothermal ore deposits. Lithos 2001, 55, 229–272. [Google Scholar] [CrossRef]
- Götze, J.; Plötze, M.; Habermann, D. Cathodoluminescence (CL) of quartz: Origin, spectral characteristics and practical applications. Min. Petr. 2001, 71, 225–250. [Google Scholar] [CrossRef]
- Boggs, S.; Krinsley, D. Application of Cathodoluminescence Imaging to the Study of Sedimentary Rocks; Cambridge University Press: Cambridge, UK, 2006; 146p. [Google Scholar]
- Götze, J.; Möckel, R. Quartz: Deposits. In Mineralogy and Analytics; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Boiron, M.C.; Essarraj, S.; Sellier, E.; Cathelineau, M.; Lespinasse, M.; Poty, B. Identification of fluid inclusions in relation to their host microstructural domains in quartz by cathodoluminescence. Geochim. Cosmochim. Acta 1992, 56, 175–185. [Google Scholar] [CrossRef]
- Batkhishig, B.; Bignall, G.; Tsuchiya, N. Hydrothermal Quartz Vein Formation, Revealed by Coupled SEM-CL Imaging and Fluid Inclusion Microthermometry: Shuteen Complex, South Gobi, Mongolia. Res. Geol. 2005, 55, 1–8. [Google Scholar] [CrossRef]
- Rusk, B.; Reed, M. Scanning electron microscope–cathodoluminescence analysis of quartz reveals complex growth histories in veins from the Butte porphyry copper deposit, Montana. Geology 2002, 30, 727–730. [Google Scholar] [CrossRef]
- Rusk, B.; Reed, M.; Krinsley, D.; Bignall, G.; Tsuchjya, N. Natural and Synthetic Quartz Growth and Dissolution Revealed by Scanning Electron Microscope Cathodoluminescence. In Proceedings of the 14th International Conference on the Properties of Water and Steam, Kyoto, Japan, 29 August–3 September 2004; pp. 296–302. [Google Scholar]
- Rusk, B.G.; Reed, M.H.; Dilles, J.H.; Kent, A., Jr. Intensity of quartz cathodoluminescence and trace-element content in quartz from the porphyry copper deposit at Butte, Montana. Am. Min. 2006, 91, 1300–1312. [Google Scholar] [CrossRef]
- Rusk, B.G.; Lowers, H.A.; Reed, M.H. Trace elements in hydrothermal quartz: Relationships to cathodoluminescent textures and insights into vein formation. Geology 2008, 36, 547–550. [Google Scholar] [CrossRef]
- Rusk, B.G.; König, A.; Lowers, H.A. Visualizing trace element distribution in quartz using cathodoluminescence, electron microprobe, and laser ablation-inductively coupled plasma-mass spectrometry. Am. Min. 2011, 96, 703–708. [Google Scholar] [CrossRef]
- Rusk, B. Cathodoluminescent Textures and Trace Elements in Hydrothermal Quartz. In Quartz: Deposits, Mineralogy and Analytics; Götze, J., Möckel, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 307–329. [Google Scholar]
- Vasyukova, O.; Kamenetsky, V.S.; Goemann, K.; Davidson, P. Diversity of primary CL textures in quartz from porphyry environments: Implication for origin of quartz eyes. Contrib. Min. Petr. 2013, 166, 1253–1268. [Google Scholar] [CrossRef]
- Tomé, C.M.; Tornos, F. SEM-CL Analysis of Hydrothermal Quartz: Case Histories in Fe-Cu(Au) Deposits. Rev. Soc. Española Mineral. 2009, 11, 179–180. [Google Scholar]
- Frelinger, S.N.; Ledwina, M.D.; Kyle, J.R.; Zhao, D. Scanning electron microscopy cathodoluminescence of quartz: Principles, techniques and applications in ore geology. Ore Geol. Rev. 2015, 65, 840–852. [Google Scholar] [CrossRef]
- Van den Kerkhof, A.; Sosa, G.M.; Oberthür, T.; Melcher, F.; Fusswinkel, T.; Kronz, A.; Simon, K.; Dunkl, I. The hydrothermal Waterberg platinum deposit, Mookgophong (Naboomspruit), South Africa. Part II: Quartz chemistry, fluid inclusions and geochronology. Min. Mag. 2018, 82, 751–778. [Google Scholar] [CrossRef]
- Müller, A.; Wiedenbeck, M.; Van Den Kerkhof, A.M.; Kronz, A.; Simon, K. Trace elements in quartz—a combined electron microprobe, secondary ion mass spectrometry, laser-ablation ICP-MS, and cathodoluminescence study. Eur. J. Min. 2003, 15, 747–763. [Google Scholar] [CrossRef]
- Maggi, R.; Pearce, M. Mid fourth-millennium copper mining in Liguria, north-west Italy: The earliest known copper mines in Western Europe. Antiquity 2005, 79, 66–77. [Google Scholar] [CrossRef]
- Ferrario, A.; Garuti, G. Copper deposits in the basal breccias and volcano–sedimentary sequences of the Eastern Ligurian ophiolites (Italy). Min. Dep. 1980, 15, 291–303. [Google Scholar] [CrossRef] [Green Version]
- Bertolani, M. I giacimenti cupriferi nelle ofioliti di Sestri Levante (Liguria). Period. Mineral. 1952, 21, 149–170. [Google Scholar]
- Garuti, G.; Zaccarini, F. Minerals of Au, Ag and U in volcanic-rock-associated massive sulphide deposits of the Northern Apennine ophiolite, Italy. Can. Min. 2005, 43, 935–950. [Google Scholar] [CrossRef]
- Garuti, G.; Bartoli, O.; Scacchetti, M.; Zaccarini, F. Geological setting and structural styles of Volcanic Massive Sulphide deposits in the Northern Apennines (Italy): Evidence for seafloor and sub-seafloor hydrothermal activity in unconventional ophiolites of the Mesozoic Tethys. Boletín Soc. Geológica Mex. 2008, 60, 121–145. [Google Scholar] [CrossRef]
- Garuti GAlfonso, P.; Zaccarini, F.; Proenza, J.A. Sulfur-isotope variations in sulphide minerals from massive sulphide deposits of the Northern Apennine ophiolites: Inorganic and biogenic constraints. Ofioliti 2009, 34, 43–62. [Google Scholar]
- Garuti, G.; Zaccarini, F.; Scacchetti, M.; Bartoli, O. The Pb-rich sulphide veins in the Boccassuolo ophiolite: Implications for the evolution of hydrothermal activity across the ocean-continent transition in the Ligurian Tethys (Northern-Apennine, Italy). Lithos 2011, 124, 243–254. [Google Scholar] [CrossRef]
- Zaccarini, F.; Garuti, G. Mineralogy and composition of VMS deposits of northern Apennine ophiolites, Italy: Evidence for the influence of country rock type on ore composition. Min. Petr. 2008, 94, 61. [Google Scholar] [CrossRef]
- Kiss, G.B. Fluid inclusion study of the Boccassuolo VMS-related stockwork deposit (Northern Apennine ophiolites, Italy). Geol. Croat. 2015, 68, 285–302. [Google Scholar] [CrossRef] [Green Version]
- Cortesogno, L.; Giannelli, G.; Piccardo, G.B. Petrogenesis and metamorphic evolution of the ophiolitic mafi c rocks (Northern Apennine and Tuscany. Boll. Della Soc. Geol. Ital. 1975, 94, 291–327. [Google Scholar]
- Abbate, E.; Bortolotti, V.; Principi, G. Apennine ophiolites: A peculiar oceanic crust. In Tethyan Ophiolites; Rocci, G., Ed.; Tethyan Ophiolites, Ofioliti Special Issue; 1980; Volume 1, pp. 59–96. [Google Scholar]
- Piccardo, G.B.; Rampone, E.; Romairone, A. Formation and composition of the oceanic lithosphere of the Ligurian Tethys: Inferences from the Ligurian ophiolites. Ofioliti 2002, 27, 145–161. [Google Scholar]
- Barrett, T.J. Review of stratigraphic aspects of the ophiolitic rocks and pelagic sediments of the Vara complex, North Apennines, Italy. Ofioliti 1982, 7, 3–46. [Google Scholar]
- Galli, M.; Penco, A.M. Le miniere di rame e di manganese della Liguria orientale. Atti Accad. Lig. Sci. Lett. 1996, 53, 215–247. [Google Scholar]
- Hall, D.L.; Sterner, S.M.; Bodnar, R.J. Freezing point depression of NaCl-KCl-H2O solutions. Econ. Geol. 1988, 83, 197–202. [Google Scholar] [CrossRef]
- Sun, Q.; Zhao, L.; Li, N.; Liu, J. Raman spectroscopic study for the determination of Cl− concentration (molarity scale) in aqueous solutions: Application to fluid inclusions. Chem. Geol. 2010, 272, 55–61. [Google Scholar] [CrossRef]
- Guillaume, D.; Teinturier, S.; Dubessy, J.; Pironon, J. Calibration of methane analysis by Raman spectroscopy in H2O–NaCl–CH4 fluid inclusions. Chem. Geol. 2003, 194, 41–49. [Google Scholar] [CrossRef]
- Barton, P.B.; Bethke, P.M. Chalcopyrite disease in sphalerite: Pathology and epidemiology. Am. Min. 1987, 72, 451–467. [Google Scholar]
- Duan, Z.; Mao, S. A thermodynamic model for calculating methane solubility, density and gas phase composition of methane-bearing aqueous fluids from 273 to 523 K and from 1 to 2000 bar. Geochim. Cosmochim. Acta 2006, 70, 3369–3386. [Google Scholar] [CrossRef]
- Baele, J.-M.; Decrée, S.; Rusk, B. Cathodoluminescence applied to ore geology and exploration. In Ore deposits–Origin, Exploration and Exploitation; Decrée, S., Robb, L., Eds.; Geophysical Monographs; Americal Geophysical Union and John Wiley and Sons Inc: Washington, DC, USA, 2019; Volume 242, pp. 133–162. [Google Scholar]
- Etiope, G.; Schoell, M. Abiotic gas: Atypical but not rare. Elements 2014, 10, 291–296. [Google Scholar] [CrossRef]
- Dalmazzone, D.; Clausse, D.; Dalmazzone, C.; Herzhaft, B. The stability of methane hydrates in highly concentrated electrolyte solutions by differential scanning calorimetry and theoretical computation. Am. Min. 2004, 89, 1183–1191. [Google Scholar] [CrossRef]
- Barton, P.B.; Skinner, B.J. Sulfide mineral stabilities. In Geochemistry of Hydrothermal Ore Deposits, 1st ed.; Barnes, H.L., Ed.; Holt, Rinehart & Winston: New York, NY, USA, 1967; pp. 236–333. [Google Scholar]
- Barnes, H.L. Hydrothermal processes. Geochem. Perspect. 2015, 4, 1–91. [Google Scholar] [CrossRef] [Green Version]
- Steele-Macinnis, M.; Han, L.; Lowell, R.P.; Rimstidt, J.D.; Bodnar, R.J. Quartz precipitation and fluid inclusion characteristics in sub-seafloor hydrothermal systems associated with volcanogenic massive sulphide deposits. Centr. Eur. J. Geosci. 2012, 4, 275–286. [Google Scholar]
Locality | Setting | Sulfide Assemblage | Gangue Minerals | Accessory Minerals |
---|---|---|---|---|
Bargone | Stockwork in gabbro | Pyrite, chalcopyrite (sphalerite) | Quartz, prehnite (calcite, chlorite) | Bornite, covellite, Mn minerals |
Boccassuolo | Stockwork in basalt | Pyrite, chalcopyrite, sphalerite | Quartz, calcite, chlorite, epidote, titanite | Galena, rutile, zircon |
Campegli | Stockwork in gabbro | Pyrite, chalcopyrite (sphalerite) | Quartz, chlorite, epidote (pumpellyite) | Monazite, other REE minerals |
Reppia | Stockwork in basalt | Pyrite, chalcopyrite | Quartz | Limonite |
Vigonzano | Stockwork in serpentinite | Pyrite, chalcopyrite, pyrrhotite | Quartz, calcite, chlorite, siderite, epidote, titanite, prehnite | Marcasite, millerite, chromite, magnetite, hematite, zircon, serpentine |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
B. Kiss, G.; Bendő, Z.; Garuti, G.; Zaccarini, F.; Király, E.; Molnár, F. Reconstruction of Hydrothermal Processes in the Cyprus Type Fe-Cu-Zn Deposits of the Italian Northern Apennines: Results of Combined Fluid Inclusion Microthermometry, SEM-CL Imaging and Trace Element Analyses by LA-ICP-MS. Minerals 2021, 11, 165. https://doi.org/10.3390/min11020165
B. Kiss G, Bendő Z, Garuti G, Zaccarini F, Király E, Molnár F. Reconstruction of Hydrothermal Processes in the Cyprus Type Fe-Cu-Zn Deposits of the Italian Northern Apennines: Results of Combined Fluid Inclusion Microthermometry, SEM-CL Imaging and Trace Element Analyses by LA-ICP-MS. Minerals. 2021; 11(2):165. https://doi.org/10.3390/min11020165
Chicago/Turabian StyleB. Kiss, Gabriella, Zsolt Bendő, Giorgio Garuti, Federica Zaccarini, Edit Király, and Ferenc Molnár. 2021. "Reconstruction of Hydrothermal Processes in the Cyprus Type Fe-Cu-Zn Deposits of the Italian Northern Apennines: Results of Combined Fluid Inclusion Microthermometry, SEM-CL Imaging and Trace Element Analyses by LA-ICP-MS" Minerals 11, no. 2: 165. https://doi.org/10.3390/min11020165
APA StyleB. Kiss, G., Bendő, Z., Garuti, G., Zaccarini, F., Király, E., & Molnár, F. (2021). Reconstruction of Hydrothermal Processes in the Cyprus Type Fe-Cu-Zn Deposits of the Italian Northern Apennines: Results of Combined Fluid Inclusion Microthermometry, SEM-CL Imaging and Trace Element Analyses by LA-ICP-MS. Minerals, 11(2), 165. https://doi.org/10.3390/min11020165