Decomposition and Flammability of Polyimide Graphene Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Poly(Amic Acid)–Nano-Graphene Sheets Mixture (PAA-NGS)
2.3. Fabrication of Polyimide-Nano Graphene Sheets Films (PI-NGS)
2.4. Thermogravimetric Analysis
2.5. Raman Spectroscopy
2.6. Scanning Electron Microscopy
3. Results and Discussion
3.1. Raman Spectroscopy
3.2. Scanning Electron Microscopy with EDAX
3.3. Thermogravimetric Analysis
3.4. Activation Energy of Imidization and Decomposition of Polyimide
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Koo, M.; Bae, J.-S.; Shim, S.E.; Kim, D.; Nam, D.-G.; Lee, J.-W.; Lee, G.-W.; Yeum, J.H.; Oh, W. Thermo-dependent characteristics of polyimide–graphene composites. Colloid Polym. Sci. 2011, 289, 1503–1509. [Google Scholar] [CrossRef]
- Banerjee, S.; Madhra, M.K.; Salunke, A.K.; Maier, G. Synthesis and properties of fluorinated polyimides. 1. Derived from novel 4,4?-bis(aminophenoxy)-3,3?-trifluoromethyl terphenyl. J. Polym. Sci. Part A Polym. Chem. 2002, 40, 1016–1027. [Google Scholar] [CrossRef]
- Qu, W.-L.; Ko, T.-M. Studies of dielectric characteristics and surface energies of spin-coated polyimide films. J. Appl. Polym. Sci. 2001, 82, 1642–1652. [Google Scholar] [CrossRef]
- Liu, M.; Jia, Z.; Jia, D.; Zhou, C. Recent advance in research on halloysite nanotubes-polymer nanocomposite. Prog. Polym. Sci. 2014, 39, 1498–1525. [Google Scholar] [CrossRef]
- Xiao, S.; Che, L.; Li, X.; Wang, Y. A novel fabrication process of MEMS devices on polyimide flexible substrates. Microelectron. Eng. 2008, 85, 452–457. [Google Scholar] [CrossRef]
- Morgan, A.B.; Putthanarat, S. Use of inorganic materials to enhance thermal stability and flammability behavior of a polyimide. Polym. Degrad. Stab. 2011, 96, 23–32. [Google Scholar] [CrossRef]
- Schoeppner, G.; Tandon, G.P.; Pochiraju, K.V. Predicting thermooxidative degradation and performance of high-temperature polymer matrix composites. In Multiscale Modeling and Simulation of Composite Materials and Structures; Springer: Boston, MA, USA, 2008; pp. 359–462. [Google Scholar] [CrossRef]
- Pochiraju, K.V.; Tandon, G.P. Modeling Thermo-Oxidative Layer Growth in High-Temperature Resins. J. Eng. Mater. Technol. Trans. ASME 2005, 128, 107–116. [Google Scholar] [CrossRef]
- Putthanarat, S.; Tandon, G.P.; Schoeppner, G. Influence of aging temperature, time, and environment on thermo-oxidative behavior of PMR-15: Nanomechanical characterization. J. Mater. Sci. 2008, 43, 6714–6723. [Google Scholar] [CrossRef]
- Pielichowski, K.; Pielichowska, K. Polymer Nanocomposites. In Handbook of Thermal Analysis and Calorimetry; Elsevier: Amsterdam, The Netherlands, 2018; pp. 431–485. [Google Scholar] [CrossRef]
- Hu, K.; Kulkarni, D.D.; Choi, I.; Tsukruk, V.V. Graphene-polymer nanocomposites for structural and functional applications. Prog. Polym. Sci. 2014, 39, 1934–1972. [Google Scholar] [CrossRef]
- Ko, H.; Jiang, C.; Shulha, H.; Tsukruk, V.V. Carbon Nanotube Arrays Encapsulated into Freely Suspended Flexible Films. Chem. Mater. 2005, 17, 2490–2493. [Google Scholar] [CrossRef]
- CaraDonna, A.; Badini, C.; Padovano, E.; Pietroluongo, M. Electrical and Thermal Conductivity of Epoxy-Carbon Filler Composites Processed by Calendaring. Materials 2019, 12, 1522. [Google Scholar] [CrossRef] [Green Version]
- Kovtyukhova, N.I.; Martin, B.R.; Mbindyo, J.K.N.; Smith, P.A.; Razavi, B.; Mayer, T.S.; Mallouk, T.E. Layer-by-Layer Assembly of Rectifying Junctions in and on Metal Nanowires. J. Phys. Chem. B 2001, 105, 8762–8769. [Google Scholar] [CrossRef]
- Morgan, A.B. Flame retarded polymer layered silicate nanocomposites: A review of commercial and open literature systems. Polym. Adv. Technol. 2006, 17, 206–217. [Google Scholar] [CrossRef]
- Gilman, J.W. Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites. Appl. Clay Sci. 1999, 15, 31–49. [Google Scholar] [CrossRef]
- Morgan, A.B.; Harris, R.H.; Kashiwagi, T.; Chyall, L.J.; Gilman, J.W. Flammability of polystyrene layered silicate (clay) nanocomposites: Carbonaceous char formation. Fire Mater. 2002, 26, 247–253. [Google Scholar] [CrossRef]
- Muraleedharan, K.; Alikutty, P.; Mujeeb, V.M.A.; Sarada, K. Kinetic Studies on the Thermal Dehydration and Degradation of Chitosan and Citralidene Chitosan. J. Polym. Environ. 2014, 23, 1–10. [Google Scholar] [CrossRef]
- Masikhwa, T.M.; Madito, M.J.; Bello, A.; Dangbegnon, J.K.; Manyala, N. High performance asymmetric supercapacitor based on molybdenum disulphide/graphene foam and activated carbon from expanded graphite. J. Colloid Interface Sci. 2017, 488, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Tsai, M.-H.; Tseng, I.-H.; Liao, Y.-F.; Chiang, J.-C. Transparent polyimide nanocomposites with improved moisture barrier using graphene. Polym. Int. 2012, 62, 1302–1309. [Google Scholar] [CrossRef]
- Aboulkas, A.; El Harfi, K.; El Bouadili, A. Thermal degradation behaviors of polyethylene and polypropylene. Part I: Pyrolysis kinetics and mechanisms. Energy Convers. Manag. 2010, 51, 1363–1369. [Google Scholar] [CrossRef]
- Liu, F.; Wang, M.; Chen, Y.; Gao, J. Thermal stability of graphene in inert atmosphere at high temperature. J. Solid State Chem. 2019, 276, 100–103. [Google Scholar] [CrossRef]
- Al-Ajaj, I.A.; Kareem, A.A. Synthesis and characterization of polyimide thin films obtained by thermal evaporation and solid state reaction. Mater. Sci. 2016, 34, 132–136. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.-K.; Liu, F.-F.; Li, G.-M.; Zhang, E.-S.; Xue, Y.-H.; Dong, Z.-X.; Qiu, X.; Ji, X. Comparison of different methods for determining the imidization degree of polyimide fibers. Chin. J. Polym. Sci. 2015, 34, 209–220. [Google Scholar] [CrossRef]
- Cella, J.A. Degradation and stability of polyimides. Polym. Degrad. Stab. 1992, 36, 99–110. [Google Scholar] [CrossRef]
- Pyun, E.; Mathisen, R.J.; Sung, C.S.P. Kinetics and Mechanisms for Thermal Imidization of a Polyamic Acid Studied by Ultraviolet—Visible Spectroscopy. Macromolecules 1989, 22, 1174–1183. [Google Scholar] [CrossRef]
- Adamczak, A.D.; Spriggs, A.A.; Fitch, D.M.; Awad, W.; Wilkie, C.A.; Grunlan, J.C. Thermal degradation of high-temperature fluorinated polyimide and its carbon fiber composite. J. Appl. Polym. Sci. 2010, 115, 2254–2261. [Google Scholar] [CrossRef] [Green Version]
- Van Krevelen, D. Some basic aspects of flame resistance of polymeric materials. Polymer 1975, 16, 615–620. [Google Scholar] [CrossRef]
- Tseng, I.-H.; Liao, Y.-F.; Chiang, J.-C.; Tsai, M.-H. Transparent polyimide/graphene oxide nanocomposite with improved moisture barrier property. Mater. Chem. Phys. 2012, 136, 247–253. [Google Scholar] [CrossRef]
- Kurańska, M.; Prociak, A.; Cabulis, U.; Kirpļuks, M.; Ryszkowska, J.L.; Auguścik, M. Innovative porous polyurethane-polyisocyanurate foams based on rapeseed oil and modified with expandable graphite. Ind. Crop. Prod. 2017, 95, 316–323. [Google Scholar] [CrossRef]
- Levchik, S.V. Introduction to Flame Retardancy and Polymer Flammability. In Flame Retardant Polymer Nanocomposites; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006; pp. 1–29. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.-C.; Jung, J.-W.; Choi, J.-Y.; Chung, C.-M. Kinetic study of low-temperature imidization of poly(amic acid)s and preparation of colorless, transparent polyimide films. J. Polym. Sci. Part A Polym. Chem. 2015, 54, 1593–1602. [Google Scholar] [CrossRef]
- Lauver, R.W. Kinetics of imidization and crosslinking in PMR polyimide resin. J. Polym. Sci. Polym. Chem. Ed. 1979, 17, 2529–2539. [Google Scholar] [CrossRef] [Green Version]
- Iroh, J.O.; Jordan, K. Rate of imidization of polymerizable reaction mixtures: PMR-15. J. Appl. Polym. Sci. 1997, 66, 2529–2538. [Google Scholar] [CrossRef]
Average Lateral Dimension (µm) | Thickness (nm) | Oxygen Content (%) | Specific Surface Area (m2/g) | Density (g/cm3) | Carbon (wt. %) | Hydrogen (wt.%) | Nitrogen (wt.%) | Oxygen (wt.%) |
---|---|---|---|---|---|---|---|---|
7 | 70–100 | <1 | 10–15 | 0.1–0.3 | ≥97 | ≤1 | ≤0.5 | ≤2 |
Sample | Tmax (°C) | Area under Curve (%) |
---|---|---|
Neat PI | 592 | 58.7 |
PINGS-10 | 573 | 35.4 |
PINGS-30 | 561 | 30.8 |
PINGS-50 | 548 | 18.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akinyi, C.; Longun, J.; Chen, S.; Iroh, J.O. Decomposition and Flammability of Polyimide Graphene Composites. Minerals 2021, 11, 168. https://doi.org/10.3390/min11020168
Akinyi C, Longun J, Chen S, Iroh JO. Decomposition and Flammability of Polyimide Graphene Composites. Minerals. 2021; 11(2):168. https://doi.org/10.3390/min11020168
Chicago/Turabian StyleAkinyi, Caroline, Jimmy Longun, Siqi Chen, and Jude O. Iroh. 2021. "Decomposition and Flammability of Polyimide Graphene Composites" Minerals 11, no. 2: 168. https://doi.org/10.3390/min11020168
APA StyleAkinyi, C., Longun, J., Chen, S., & Iroh, J. O. (2021). Decomposition and Flammability of Polyimide Graphene Composites. Minerals, 11(2), 168. https://doi.org/10.3390/min11020168