Geochemistry of Basalts from Southwest Indian Ridge 64° E: Implications for the Mantle Heterogeneity East of the Melville Transform
Abstract
:1. Introduction
2. Geological Setting
3. Sampling and Petrography
4. Analytical Methods
5. Results
5.1. Major Elements
5.2. Trace Elements
5.3. Sr–Nd–Pb Isotope
6. Discussion
6.1. Fractional Crystallization
6.2. Mantle Melting
6.3. Constraining Mantle Heterogeneity
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dick, H.J.B.; Lin, J.; Schouten, H. An ultraslow-spreading class of ocean ridge. Nature 2003, 426, 405–412. [Google Scholar] [CrossRef]
- Royer, J.-Y.P.; Philippe, B.H.; Scotese, W.; Christopher, R. Evolution of the Southwest Indian Ridge from the Late Cretaceous (anomaly 34) to the Middle Eocene (anomaly 20). Tectonophysics 1988, 155, 235–260. [Google Scholar] [CrossRef]
- Searle, R.C.; Bralee, A.V. Asymmetric generation of oceanic crust at the ultra-slow spreading Southwest Indian Ridge, 64° E. Geochem. Geophys. Geosyst. 2007, 8. [Google Scholar] [CrossRef] [Green Version]
- Cannat, M.; Rommevaux-Jestin, C.; Fujimoto, H. Melt supply variations to a magma-poor ultra-slow spreading ridge (Southwest Indian Ridge 61° to 69° E). Geochem. Geophys. Geosyst. 2003, 4. [Google Scholar] [CrossRef]
- Sauter, D.; Cannat, M.; Roumejon, S.; Andreani, M.; Birot, D.; Bronner, A.; Brunelli, D.; Carlut, J.; Delacour, A.; Guyader, V.; et al. Continuous exhumation of mantle-derived rocks at the Southwest Indian Ridge for 11 million years. Nat. Geosci. 2013, 6, 314–320. [Google Scholar] [CrossRef] [Green Version]
- Meyzen, C.M.; Toplis, M.J.; Humler, E.; Ludden, J.N.; Mevel, C. A discontinuity in mantle composition beneath the southwest Indian ridge. Nature 2003, 421, 731–733. [Google Scholar] [CrossRef]
- Seyler, M.; Cannat, M.; Mevel, C. Evidence for major-element heterogeneity in the mantle source of abyssal peridotites from the Southwest Indian Ridge (52° to 68° E). Geochem. Geophys. Geosyst. 2003, 4. [Google Scholar] [CrossRef] [Green Version]
- Font, L.; Murton, B.J.; Roberts, S.; Tindle, A.G. Variations in melt productivity and melting conditions along SWIR (70–49° E): Evidence from olivine-hosted and plagioclase-hosted melt inclusions. J. Petrol. 2007, 48, 1471–1494. [Google Scholar] [CrossRef] [Green Version]
- Paquet, M.; Cannat, M.; Brunelli, D.; Hamelin, C.; Humler, E. Effect of melt/mantle interactions on MORB chemistry at the easternmost Southwest Indian Ridge (61°–67° E). Geochem. Geophys. Geosyst. 2016, 17, 4605–4640. [Google Scholar] [CrossRef] [Green Version]
- Cannat, M.; Rommevaux-Jestin, C.; Sauter, D.; Deplus, C.; Mendel, V. Formation of the axial relief at the very slow spreading Southwest Indian Ridge (49° to 69° E). J. Geophys. Res. 1999, 104, 22825–22843. [Google Scholar] [CrossRef]
- Francis, T.J.G.; Raitt, R.W. Seismic refraction measurements in the southern Indian Ocean. J. Geophys. Res. 1967, 72, 3015–3041. [Google Scholar] [CrossRef]
- Minshull, T.A.; White, R.S. Thin Crust on the Flanks of the Slow-Spreading Southwest Indian Ridge. Geophys. J. Int. 1996, 125, 139–148. [Google Scholar] [CrossRef]
- Muller, M.R.; Minshull, T.A.; White, R.S. Segmentation and melt supply at the Southwest Indian Ridge. Geology 1999, 27, 867–870. [Google Scholar] [CrossRef]
- Meyzen, C.M.; Ludden, J.N.; Humler, E.; Luais, B.; Toplis, M.J.; Mével, C.; Storey, M. New insights into the origin and distribution of the DUPAL isotope anomaly in the Indian Ocean mantle from MORB of the Southwest Indian Ridge. Geochem. Geophys. Geosyst. 2005, 6. [Google Scholar] [CrossRef]
- Michard, A.; Montigny, R.; Schlich, R. Geochemistry of the mantle beneath the Rodriguez Triple Junction and the South-East Indian Ridge. Earth Planet. Sci. Lett. 1986, 78, 1–114. [Google Scholar] [CrossRef] [Green Version]
- Price, R.C.; Kennedy, A.K.; Riggs-Sneeringer, M.; Frey, F.A. Geochemistry of basalts from the Indian ocean triple junction: Implications for the generation and evolution of Indian Ocean ridge basalts. Earth Planet. Sci. Lett. 1986, 78, 379–396. [Google Scholar] [CrossRef]
- Mahoney, J.J.; Natland, J.H.; White, W.M.; Poreda, R.; Bloomer, S.H.; Fisher, R.L.; Baxter, A.N. Isotopic and geochemical provinces of the western Indian Ocean spreading centers. J. Geophys. Res. 1989, 94, 4033–4052. [Google Scholar] [CrossRef]
- Mahoney, J.J.; le Roex, A.P.; Peng, Z.; Fisher, R.L.; Natland, J.H. Southwestern limits of Indian Ocean Ridge mantle and the origin of low 206Pb/204Pb mid-ocean ridge basalts: Isotope systematics of the Southwest Indian Ridge (17°–50° E). J. Geophys. Res. 1992, 97, 19771–19790. [Google Scholar] [CrossRef]
- Dupré, B.; Allégre, C.J. Pb-Sr isotope variation in Indian Ocean basalts and mixing phenomena. Nature 1983, 303, 142–146. [Google Scholar] [CrossRef]
- Hart, S.R. A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature 1984, 309, 753–757. [Google Scholar] [CrossRef]
- Sauter, D.; Carton, H.; Mendel, V.; Munschy, M.; Rommevaux-Jestin, C.; Schott, J.J.; Whitechurch, H. Ridge segmentation and the magnetic structure of the Southwest Indian Ridge (at 50°30′ E, 55°30′ E and 66°20′ E): Implications for magmatic processes at ultraslow-spreading centers. Geochem. Geophys. Geosyst. 2004, 5, 374–378. [Google Scholar] [CrossRef]
- Sauter, D.; Mendel, V.; Rommevaux-Jestin, C.; Parson, L.M.; Fujimoto, H.; Mevel, C.; Cannat, M.; Tamaki, K. Focused magmatism versus amagmatic spreading along the ultra-slow spreading Southwest Indian Ridge: Evidence from TOBI side scan sonar imagery. Geochem. Geophys. Geosyst. 2004, 5. [Google Scholar] [CrossRef]
- Seyler, M.; Brunelli, D.; Toplis, M.J.; Mével, C. Multiscale chemical heterogeneities beneath the eastern Southwest Indian Ridge (52°–68° E): Trace element compositions of along-axis dredged peridotites. Geochem. Geophys. Geosyst. 2011, 12. [Google Scholar] [CrossRef]
- Chen, J.; Tao, C.; Liang, J.; Liao, S.; Dong, C.; Li, H.; Li, W.; Wang, Y.; Yue, X.; He, Y. Newly discovered hydrothermal fields along the ultraslow-spreading Southwest Indian Ridge around 63° E. Acta Oceanol. Sin. 2018, 37, 61–67. [Google Scholar] [CrossRef]
- Mendel, V.; Sauter, D.; Parson, L.; Vanney, J.R. Segmentation and morphotectonic variations along a super slow-spreading center: The Southwest Indian Ridge (57°–70° E). Mar. Geophys. Res. 1997, 19, 505–533. [Google Scholar] [CrossRef]
- Li, W.; Tao, C.H.; Zhang, W. Melt Inclusions in Plagioclase Macrocrysts at Mount Jourdanne, Southwest Indian Ridge (~64° E): Implications for an Enriched Mantle Source and Shallow Magmatic Processes. Minerals 2019, 9, 493. [Google Scholar] [CrossRef] [Green Version]
- Sauter, D.; Parson, L.; Mendel, V.; Rommevaux-Jestin, C.; Gomez, O.; Briais, A.; Mevel, C.; Tamaki, K.; Team, F.S. TOBI sidescan sonar imagery of the very slow-spreading Southwest Indian Ridge: Evidence for along-axis magma distribution. Earth Planet. Sci. Lett. 2002, 202, 511–512. [Google Scholar] [CrossRef]
- Ding, T.; Tao, C.; Dias, G.A.; Liang, J.; Huang, H. Sulfur isotopic compositions of sulfides along the southwest indian ridge: Implications for mineralization in ultramafic rocks. Miner. Depos. 2020. [Google Scholar] [CrossRef]
- Yang, A.Y.; Zhao, T.P.; Zhou, M.F.; Deng, X.G. Isotopically enriched N-MORB-a new geochemical signature of off-axis plume-ridge interaction: A case study at 50°28’E, Southwest Indian Ridge. J. Geophys. Res. 2017, 122, 191–213. [Google Scholar] [CrossRef]
- Sun, S.-S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. 1989, 42. [Google Scholar] [CrossRef]
- Roex, A.P.L.; Dick, H.J.B.; Watkins, R.T. Petrogenesis of anomalous K-enriched MORB from the Southwest Indian Ridge: 11°53′ E to 14°38′ E. Contrib. Mineral. Petrol. 1992, 110, 253–268. [Google Scholar] [CrossRef]
- Shimizu, K.; Ito, M.; Chang, Q.; Miyazaki, T.; Kimura, J.I. Identifying volatile mantle trend with the water–fluorine–cerium systematics of basaltic glass. Chem. Geol. 2019, 522, 283–294. [Google Scholar] [CrossRef]
- Bown, J.W.; White, R.S. Variation with spreading rate of oceanic crustal thickness and geochemistry. Earth Planet. Sci. Lett. 1994, 121, 435–439. [Google Scholar] [CrossRef]
- Standish, J.J.; Dick, H.J.B.; Michael, P.J.; Melson, W.G.; O’Hearn, T. MORB generation beneath the ultraslow spreading Southwest Indian Ridge (9–25° E): Major element chemistry and the importance of process versus source. Geochem. Geophys. Geosyst. 2008, 9. [Google Scholar] [CrossRef] [Green Version]
- Le Roex, A.P.; Dick, J.B.H.; Fisher, L.R. Petrology and Geochemistry of MORB from 25° E to 46° E along the Southwest Indian Ridge: Evidence for Contrasting Styles of Mantle Enrichment. J. Petrol. 1989, 30, 947–986. [Google Scholar] [CrossRef]
- Hemming, S.R.; Mclennan, S.M. Pb isotope compositions of modern deep sea turbidites. Earth Planet. Sci. Lett. 2001, 184, 489–503. [Google Scholar] [CrossRef]
- Blundy, J.D.; Robinson, J.A.C.; Wood, B.J. Heavy REE are compatible in clinopyroxene on the spinel lherzolite solidus. Earth Planet. Sci. Lett. 1998, 160, 493–504. [Google Scholar] [CrossRef]
- Pandey, S.K.; Pal, S.; Shrivastava, J.P.; Roonwal, G.S. Trace elements geochemistry and petrogenesis of basalt from the southern part of the East Pacific Rise. J. Geol. Soc. India 2013, 81, 91–100. [Google Scholar] [CrossRef]
- Li, J.; Jian, H.; Chen, Y.J.; Singh, S.C.; Ruan, A.; Qiu, X. Seismic observation of an extremely magmatic accretion at the ultraslow spreading southwest indian ridge. Geophys. Res. Lett. 2015, 42, 2656–2663. [Google Scholar] [CrossRef]
- Niu, X.; Ruan, A.; Li, J.; Minshull, T.A.; Sauter, D.; Wu, Z. Along-axis variation in crustal thickness at the ultraslow spreading southwest indian ridge (50° E) from a wide-angle seismic experiment. Geochem. Geophys. Geosyst. 2015, 16, 468–485. [Google Scholar] [CrossRef] [Green Version]
- Jian, H.; Singh, S.C.; Chen, Y.J.; Li, J. Evidence of an axial magma chamber beneath the ultraslow-spreading southwest indian ridge. Geology 2017, 45, G38356.1. [Google Scholar] [CrossRef]
- Gale, A.; Langmuir, C.H.; Dalton, C.A. The Global Systematics of Ocean Ridge Basalts and their Origin. J. Petrol. 2014, 55, 1051–1082. [Google Scholar] [CrossRef] [Green Version]
- Cannat, M.; Sauter, D.; Bezos, A.; Meyzen, C.; Humler, E.; Le Rigoleur, M. Spreading rate, spreading obliquity, and melt supply at the ultraslow spreading Southwest Indian Ridge. Geochem. Geophys. Geosyst. 2008, 9. [Google Scholar] [CrossRef]
- Pearce, J.A.; Norry, M.J. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contrib. Mineral. Petrol. 1979, 69, 33–47. [Google Scholar] [CrossRef]
- Hirschmann, M.; Stolper, E. A possible role for garnet pyroxenite in the origin of the ’garnet signature’ in MORB. Contrib. Mineral. Petrol. 1996, 124, 185–208. [Google Scholar] [CrossRef]
- Sobolev, A.V.; Hofmann, A.W.; Kuzmin, D.V.; Yaxley, G.M.; Arndt, N.T.; Chung, S.L.; Danyushevsky, L.V.; Elliott, T.; Frey, F.A.; Garcia, M.O.; et al. The amount of recycled crust in sources of mantle-derived melts. Science 2007, 316, 412–417. [Google Scholar] [CrossRef]
- Le Roux, P.J.; le Roex, A.P.; Schilling, J.G.; Shimizu, N.; Perkins, W.W.; Pearce, N.J.G. Mantle heterogeneity beneath the southern Mid-Atlantic Ridge: Trace element evidence for contamination of ambient asthenospheric mantle. Earth Planet. Sci. Lett. 2002, 203, 479–498. [Google Scholar] [CrossRef]
- Zhang, G.; Zong, C.; Yin, X.; Li, H. Geochemical constraints on a mixed pyroxenite-peridotite source for East Pacific Rise basalts. Chem. Geol. 2012, 330–331, 176–187. [Google Scholar] [CrossRef]
- Paquet, M.; Cédric, H.; Moreira, M.; Cannat, M. The isotopic (He, Ne, Sr, Nd, Hf, Pb) signature in the indian mantle over 8.8 Ma. Chem. Geol. 2020, 550, 119741. [Google Scholar] [CrossRef]
- Nauret, F.; Abouchami, W.; Galer, S.J.G.; Hofmann, A.W.; Hémond, C.; Chauvel, C. Correlated trace element-Pb isotope enrichments in Indian MORB along 18–20° S, Central Indian Ridge. Earth Planet. Sci. Lett. 2006, 245, 137–152. [Google Scholar] [CrossRef]
- Escrig, S.; Capmas, F.; Dupre, B.; Allegre, C. Osmium isotopic constraints on the nature of the dupal anomaly from indian mid-ocean-ridge basalts. Nature 2004, 431, 59–63. [Google Scholar] [CrossRef]
- Ray, D.; Misra, S.; Banerjee, R. Geochemical variability of MORBs along slow to intermediate spreading Carlsberg—Central Indian Ridge, Indian Ocean. J. Asian Earth Sci. 2013, S70–S71, 125–141. [Google Scholar] [CrossRef]
- Cohen, R.S.; O’Nions, R.K. The lead, neodymium and strontium isotopic structure of ocean ridge basalts. J. Petrol. 1982, 23, 299–324. [Google Scholar] [CrossRef]
- Rehkämper, M.; Hofmann, A.W. Recycled ocean crust and sediment in Indian Ocean MORB. Earth Planet. Sci. Lett. 1997, 147, 93–106. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Goldstein, S.L. The Pb isotopic compositions of lower crustal xenoliths and the evolution of lower crustal Pb. Earth Planet. Sci. Lett. 1990, 36, 203–225. [Google Scholar] [CrossRef]
- Chen, W.; Arculus, R.J. Geochemical and isotopic characteristics of lower crustal xenoliths, San Francisco Volcanic Field, Arizona, USA. Lithos 1995, 36, 203–225. [Google Scholar] [CrossRef]
- Armienti, P.; Gasperini, D. Do We Really Need Mantle Components to Define Mantle Composition? J. Petrol. 2007, 4, 693–709. [Google Scholar] [CrossRef]
- Hanan, B.B.; Graham, D.W. Lead and Helium Isotope Evidence from Oceanic Basalts for a Common Deep Source of Mantle Plumes. Science 1996, 272, 991–995. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Hékinian, R. Ridge suction drives plume-ridge interactions. In Oceanic Hotspots; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Norton, I.O.; Sclater, J.G. A model for the evolution of the Indian Ocean and the break up of Gondwanaland. J. Geophys. Res. 1979, 84, 6803–6830. [Google Scholar] [CrossRef]
- Kamanetsky, V.S.; Mass, R.; Sushchevskaya, N.M.; Norman, M.D.; Cartwright, I.; Peyve, A.A. Remnants of Gondwana continental lithosphere in oceanic upper mantle: Evidence from the South Atlantic Ridge. Geology 2001, 29, 243–246. [Google Scholar] [CrossRef]
- Weis, D.; Ingle, S.; Damasceno, D.; Frey, F.A.; Nicolaysen, K.; Barling, J. Leg 183 Shipboard Scientific Party. Origin of continental components in Indian Ocean basalts: Evidence from Elan Bank (Kerguelen Plateau, ODP Leg 183, Site 1137). Geology 2001, 29, 147–150. [Google Scholar] [CrossRef]
Samples | 87-S01 | 87-S02 | 87-S03 | 87-S06 | DUF0107-016 * | DUF0107-016-002-001 * | DUF107-016 VRAC * | DUF107-016-001-001 * | DUF107-016-002-001 * | DUF107-016-002-003 * | DUF107-016-003-001 * |
---|---|---|---|---|---|---|---|---|---|---|---|
Longitude (° E) | 63.927 | 63.923 | 63.926 | 63.9267 | 63.91 | 63.91 | 63.91 | 63.91 | 63.91 | 63.91 | 63.91 |
Latitude (°S) | 27.8511 | 27.8512 | 27.8511 | 27.8508 | −27.85 | −27.85 | −27.85 | −27.85 | −27.85 | −27.85 | −27.85 |
Depth (m) | −2839 | −2762 | −2762 | −2816 | −2800 | −2800 | −2800 | −2800 | −2800 | −2800 | −2800 |
SiO2 | 50.90 | 51.12 | 50.74 | 50.57 | 51.44 | 51.88 | 50.92 | 50.95 | 51.28 | 51.34 | 51.34 |
TiO2 | 1.23 | 1.18 | 1.14 | 1.22 | 1.24 | 1.38 | 1.25 | 1.15 | 1.29 | 1.25 | 1.32 |
Al2O3 | 16.94 | 17.33 | 17.96 | 17.20 | 16.93 | 16.78 | 16.79 | 17.01 | 17.01 | 17.04 | 17.13 |
Fe2O3 | 7.95 | 7.80 | 7.32 | 7.84 | 7.38 | 7.73 | 7.48 | 7.88 | 7.95 | 8.01 | 7.89 |
MnO | 0.14 | 0.13 | 0.13 | 0.13 | 0.15 | 0.14 | 0.15 | 0.12 | 0.15 | 0.11 | 0.08 |
MgO | 7.26 | 7.16 | 6.73 | 6.99 | 7.91 | 7.54 | 7.92 | 7.79 | 7.37 | 7.51 | 7.46 |
CaO | 10.84 | 10.79 | 11.05 | 10.88 | 10.64 | 10.64 | 10.82 | 11.35 | 10.9 | 10.94 | 10.87 |
K2O | 0.27 | 0.19 | 0.20 | 0.27 | 0.19 | 0.24 | 0.2 | 0.12 | 0.19 | 0.19 | 0.19 |
Na2O | 3.92 | 3.86 | 3.91 | 3.86 | 3.95 | 4.03 | 4 | 3.63 | 3.86 | 3.77 | 3.81 |
P2O5 | 0.14 | 0.13 | 0.14 | 0.14 | 0.15 | 0.22 | 0.16 | 0.13 | 0.14 | 0.14 | 0.16 |
LOI | 0.40 | −0.40 | −0.20 | 0.00 | - | - | - | - | - | - | - |
Total | 100.01 | 99.29 | 99.11 | 99.11 | 99.98 | 100.58 | 99.69 | 100.13 | 100.14 | 100.3 | 100.25 |
Mg# | 61.98 | 62.13 | 61.94 | 61.93 | 65.57 | 63.41 | 65.29 | 63.72 | 62.22 | 62.49 | 62.68 |
Samples | 87-S01 | 87-S02 | 87-S03 | 87-S06 | DUF107-016-001-001 * | DUF107-016-002-003 * | DUF107-016-003-001 * |
---|---|---|---|---|---|---|---|
Sc | 35.2 | 34.2 | 32.5 | 34.3 | - | 38.6 | - |
V | 199 | 192 | 185 | 197 | 213 | 228.9 | 300.6 |
Cr | 202 | 205 | 192 | 182 | 334.5 | 357.7 | 298 |
Co | 109.5 | 232 | 154.5 | 99.2 | 37.7 | 39.8 | 41 |
Ni | 93 | 88.5 | 85.8 | 84.4 | 99.4 | 105.1 | 111.3 |
Cu | 61.5 | 76.5 | 60.4 | 53.5 | 84 | 77.2 | 63.9 |
Zn | 55 | 54 | 51 | 55 | 71.95 | 62.34 | 89.81 |
Rb | 1 | 0.6 | 0.5 | 2.1 | 1.84 | 1.84 | 1.14 |
Sr | 203 | 214 | 225 | 208 | 222.99 | 221.13 | 145.85 |
Y | 24.3 | 22.6 | 21.9 | 24 | 25.4 | 32.44 | 35.78 |
Zr | 117.5 | 107 | 106.5 | 114.5 | 109.46 | 98.69 | 126.38 |
Nb | 3.6 | 4.4 | 3.3 | 3.8 | 2.9 | 3.21 | 3.54 |
Ba | 19.9 | 20.4 | 20.1 | 19.8 | 20.5 | 20.1 | 13.43 |
Hf | 2.4 | 2.2 | 2.2 | 2.4 | 2.18 | 2.22 | 3.19 |
Ta | 0.65 | 2.66 | 0.83 | 1.19 | 0.23 | 0.21 | 0.29 |
Th | 0.3 | 0.3 | 0.26 | 0.27 | 0.23 | 0.23 | 0.18 |
U | 0.12 | 0.13 | 0.1 | 0.1 | - | 0.08 | 0.1 |
La | 4.4 | 3.8 | 3.7 | 4.6 | 4.79 | 4.72 | 4.71 |
Ce | 14 | 11.5 | 11.1 | 14.5 | 14.29 | 13.83 | 13.86 |
Pr | 1.93 | 1.9 | 1.87 | 1.87 | 2.2 | 2.03 | 2.27 |
Nd | 9.4 | 9.6 | 9.5 | 9.3 | 11.59 | 10.23 | 11.97 |
Sm | 2.89 | 2.73 | 2.83 | 2.9 | 3.21 | 2.98 | 3.86 |
Eu | 1.06 | 1.11 | 1.14 | 1.11 | 1.11 | 1.14 | 1.48 |
Gd | 3.62 | 3.7 | 3.4 | 3.38 | 3.36 | 4.05 | 5.18 |
Tb | 0.62 | 0.63 | 0.65 | 0.65 | 0.64 | 0.73 | 0.86 |
Dy | 4.26 | 4.18 | 4.01 | 3.95 | 4.1 | 4.59 | 6.01 |
Ho | 0.93 | 0.84 | 0.89 | 0.88 | 0.9 | 0.97 | 1.24 |
Er | 2.37 | 2.41 | 2.46 | 2.41 | 2.48 | 2.8 | 3.41 |
Tm | 0.36 | 0.36 | 0.36 | 0.37 | 0.39 | 0.43 | 0.55 |
Yb | 2.46 | 2.37 | 2.37 | 2.18 | 2.49 | 2.73 | 3.47 |
Lu | 0.33 | 0.31 | 0.33 | 0.33 | 0.37 | 0.41 | 0.53 |
ΣREE | 48.63 | 45.44 | 44.61 | 48.43 | 51.92 | 51.64 | 59.4 |
(La/Sm)N | 0.95 | 0.84 | 0.81 | 1.00 | 0.96 | 1.02 | 0.79 |
(La/Yb)N | 1.32 | 1.14 | 1.11 | 1.34 | 1.38 | 1.24 | 0.97 |
Samples | 87Sr/86Sr | 143Nd/144Nd | 206Pb/204Pb | 207Pb/204Pb | 208Pb/204Pb |
---|---|---|---|---|---|
87-S01 | 0.702906 | 0.513107 | 17.9287 | 15.5404 | 38.0601 |
87-S02 | 0.702784 | 0.513079 | 17.8708 | 15.515 | 37.9912 |
87-S03 | 0.703510 | 0.512998 | 17.8936 | 15.5454 | 37.9913 |
87-S06 | 0.702857 | 0.513073 | 17.9028 | 15.5436 | 37.9753 |
DUF0107-016 [9] | 0.702777 | 0.51307 | 17.8 | 15.43 | 37.63 |
DUF0107-016-001-001 [9] | 0.702777 | 0.513077 | 17.8 | 15.44 | 37.65 |
DUF0107-016-003-001 [9] | 0.702777 | 0.513079 | 17.82 | 15.44 | 37.68 |
DY0115-017-005A [26] | 0.702949 | 0.513057 | 18.001 | 15.615 | 38.067 |
DY0115-019-007 [26] | 0.702942 | 0.513061 | 17.793 | 15.424 | 37.612 |
SHK0446-001 [32] | 0.702751 | 0.513076 | 17.7921 | 15.4389 | 37.6525 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Z.; Tao, C.; Liang, J.; Liao, S.; Li, W.; Zhang, G.; Cao, Z. Geochemistry of Basalts from Southwest Indian Ridge 64° E: Implications for the Mantle Heterogeneity East of the Melville Transform. Minerals 2021, 11, 175. https://doi.org/10.3390/min11020175
Dong Z, Tao C, Liang J, Liao S, Li W, Zhang G, Cao Z. Geochemistry of Basalts from Southwest Indian Ridge 64° E: Implications for the Mantle Heterogeneity East of the Melville Transform. Minerals. 2021; 11(2):175. https://doi.org/10.3390/min11020175
Chicago/Turabian StyleDong, Zhen, Chunhui Tao, Jin Liang, Shili Liao, Wei Li, Guoyin Zhang, and Zhimin Cao. 2021. "Geochemistry of Basalts from Southwest Indian Ridge 64° E: Implications for the Mantle Heterogeneity East of the Melville Transform" Minerals 11, no. 2: 175. https://doi.org/10.3390/min11020175
APA StyleDong, Z., Tao, C., Liang, J., Liao, S., Li, W., Zhang, G., & Cao, Z. (2021). Geochemistry of Basalts from Southwest Indian Ridge 64° E: Implications for the Mantle Heterogeneity East of the Melville Transform. Minerals, 11(2), 175. https://doi.org/10.3390/min11020175