Study of Thermooxidation of Oil Shale Samples and Basics of Processes for Utilization of Oil Shale Ashes
Abstract
:1. Introduction
- thermooxidative decomposition characteristics of OS samples from different deposits with simultaneous gas phase analysis,
- potential of SO2 uptake by different OS ashes formed at PF and CFBC of Estonian OS with clarifying the effect of pre-treatment of ashes (grinding, hydration) on SO2 binding,
- influence of post-granulation treatment on the physico-mechanical and physico-chemical characteristics of granulated OS ashes with aim of using them for neutralizing acidic soils,
- influence of OS ash additives on the thermal behaviour of blends based on Estonian clays.
2. Materials and Methods
2.1. Methods
2.2. Thermooxidative Decomposition of Oil Shale Samples
2.2.1. Methods
2.2.2. Materials
2.2.3. Material Characterization
2.3. Oil Shale Cyclone Ash in the Binding of Sulphur Dioxide
2.3.1. Materials
2.3.2. Material Characterization
2.3.3. Method
2.4. Influence of Post-Granulation Treatment of Oil Shale Ashes
2.4.1. Materials
2.4.2. Material Characterization
2.4.3. Method
Granulation of Ashes
Lysimetric Test of Samples
2.5. Influence of OS Ash Additives on the Thermal Behaviour of Blends Based on Estonian Clays
2.5.1. Materials
2.5.2. Material Characterization
2.5.3. Methods
3. Results and Discussion
3.1. Thermooxidative Decomposition of Oil Shale Samples
3.1.1. Thermal Analyses
3.1.2. FTIR Analysis
3.2. Oil Shale Cyclone Ash in the Binding of Sulphur Dioxide
Experiments on the TG Equipment
3.3. Influence of Post-Granulation Treatment of Oil Shale Ashes
3.3.1. Compressive Strength of Granules
3.3.2. Results of Lysimetric Tests
3.4. Influence of OS Ash Additives on the Thermal Behaviour of Blends Based on Estonian Clays
Thermal and MS Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CFBC | Circulating fluidized bed combustion |
DeSOx | Semi-dry desulphurization system |
DTA | Differential thermal analysis |
DTG | Differential TG |
EGA | Evolved gas analysis |
EOS | Estonian oil shale |
ESPA | Electrostatic precipitator ash |
FTIR | Fourier transform infrared |
IOS | Israel OS |
JOS | Jordanian OS |
MOS | Moroccan OS |
MS | Mass-spectroscopy |
PF | Pulverized firing |
SSA | Specific surface area |
TG | Thermogravimetry |
XRD | X-ray diffraction |
XRF | X-ray fluorescence |
References
- MacArthur, E. Economic and Business Rationale for an Accelerated Transition. In Towards the Circular Economy; Ellen MacArthur Foundation: Cowes, UK, 2013; Volume 1. [Google Scholar]
- MacArthur, E. Opportunities for the Consumer Goods Sector. In Towards the Circular Economy; Ellen MacArthur Foundation: Cowes, UK, 2013; Volume 2. [Google Scholar]
- MacArthur, E. Accelerating the Scale-Up Across Global Supply Chains. In Towards the Circular Economy; Ellen MacArthur Foundation: Cowes, UK, 2014; Volume 3. [Google Scholar]
- Ghisellini, P.; Cialani, C.; Ulgiati, S. A review on circular economy: The expected transition to a balanced interplay of environmental and economic systems. J. Clean. Prod. 2016, 114, 11–32. [Google Scholar] [CrossRef]
- Singh, J.; Ordoñes, I. Resource recovery from post-consumer waste: Important lessons for the upcoming circular economy. J. Clean. Prod. 2016, 134, 342–353. [Google Scholar] [CrossRef]
- Geissdoerfer, M.; Savaget, P.; Bocken, N.M.P.; Hultink, E.J. The Circular Economy-A new sustainability paradigm? J. Clean. Prod. 2017, 143, 757–768. [Google Scholar] [CrossRef] [Green Version]
- Kuusik, R.; Uibu, M.; Kirsimäe, K. Characterization of oil shale ashes formed at industrial-scale CFBC boilers. Oil Shale 2005, 22, 407–420. [Google Scholar]
- Carangelo, R.M.; Solomon, P.R.; Gerson, D.J. Application of TG-FT-ir to study hydrocarbon structure and kinetics. Fuel 1987, 66, 960–967. [Google Scholar] [CrossRef]
- Zanier, A. Thermogravimetric Fourier transform infrared spectroscopy of hydrocarbon fuel residues. J. Therm. Anal. Cal. 1999, 56, 1389–1396. [Google Scholar] [CrossRef]
- Strezov, V.; Lucas, J.A.; Evans, T.J.; Strezov, L. Effect of heating rate on the thermal properties and devolatilisation of coal. J. Therm. Anal. Cal. 2004, 78, 385–397. [Google Scholar] [CrossRef]
- Bassilakis, R.; Carangelo, R.M.; Wójtowiecz, M.A. TG-FTIR analysis of biomass pyrolysis. Fuel 2001, 80, 1765–1786. [Google Scholar] [CrossRef]
- Pitkänen, I.; Huttunen, J.; Halttunen, H.; Vesterinen, R. Evolved gas analysis of some solid fuels by TG-FTIR. J. Therm. Anal. Cal. 1999, 56, 1253–1259. [Google Scholar] [CrossRef]
- Lu, R.; Purushotama, S.; Yang, X.; Hyatt, J.; Pan, W.P.; Riley, J.T.; Lloyd, W.G. TG/FTIR/MS study of organic compounds evolved during the co-firing of coal and refuse-derived fuels. Fuel Process. Technol. 1999, 59, 35–50. [Google Scholar] [CrossRef]
- Qing, W.; Baizhong, S.; Xiahua, W.; Jingru, B.; Jian, S. Study on combustion characteristics of mixtures of Huadian oil shale and semicoke. Oil Shale 2007, 24, 135–145. [Google Scholar]
- Kaljuvee, T.; Pelt, J.; Radin, M. TG-FTIR study of gaseous compounds evolved at thermooxidation of oil shale. J. Therm. Anal. Cal. 2004, 80, 399–414. [Google Scholar] [CrossRef]
- Kaljuvee, T.; Edro, E.; Kuusik, R. Formation of volatile organic compounds at thermooxidation of solid fossil fuels. Oil Shale 2007, 24, 117–133. [Google Scholar]
- Kaljuvee, T.; Keelman, M.; Trikkel, A.; Petkova, V. TG-FTIR/MS analysis of thermal and kinetic characteristics of some coal samples. J. Therm. Anal. Cal. 2013, 113, 1063–1071. [Google Scholar] [CrossRef]
- Lille, Ü. Current knowledge on the origin and structure of Estonian kukersite kerogen. Oil Shale 2003, 20, 253–263. [Google Scholar]
- Martínez, J.C.; Izquierdo, J.F.; Cunill, F.; Tejero, J.; Querol, J. Reactivity of fly ash and Ca(OH)2 mixture for SO2 removal flue gas. Ind. Eng. Chem. Res. 1991, 30, 2143–2147. [Google Scholar] [CrossRef]
- Fernándes, J.; Renedo, M.J.; Pesquera, A.; Irabien, J.A. Preparation and characterization of fly ash/hydrated lime sorbents for SO2 removal. Powder Technol. 1997, 97, 133–139. [Google Scholar]
- Lin, R.B.; Shih, S.M.; Liu, C.F. Structural properties and reactivity of Ca(OH)2/fly ash sorbents for flue gas desulphurization. Ind. Eng. Chem. Res. 2003, 42, 1350–1356. [Google Scholar] [CrossRef]
- Matsushima, N.; Li, Y.; Nishioka, M.; Sadakata, M. Novel dry-desulphurization process using Ca(OH)2/fly ash sorbent in a circulating fluidized bed. Environ. Sci. Technol. 2004, 38, 6867–6874. [Google Scholar] [CrossRef]
- Lee, K.T.; Mohamed, A.R.; Bhatia, S.; Chu, K.H. Removal of sulfur dioxide by fly ash/CaO/CaSO4 sorbents. Chem. Eng. J. 2005, 114, 171–177. [Google Scholar] [CrossRef]
- Lee, K.T.; Bathia, S.; Mohamed, A.R.; Chu, K.H. Optimazing the specific surface area of fly ashsorbents for flue gas desulphurization. Chemosphere 2006, 62, 89–96. [Google Scholar] [CrossRef]
- Anthony, E.J.; MacKenzie, A.; Trass, O.; Iribarne, A.P.; Iribarne, J.V.; Burwell, S.M. Advanced fluidized bed combustion sorbent reactivation technology. Ind. Eng. Chem. Res. 2003, 42, 1162–1173. [Google Scholar] [CrossRef]
- Trass, O.; Delibas, C.; Anthony, E.J. Efficient reactivation of fluidized bed combustor ashes; test results from a 35 MWt utility boiler. In Proceedings of the 9th International Conference on Circulating Fluidized Beds, CFB-9, Hamburg, Germany, 13–16 May 2008; pp. 869–874. [Google Scholar]
- Kaljuvee, T.; Kuusik, R.; Radin, M.; Bender, V. Carbon dioxide binding in the heterogeneous systems formed at combustion of oil shale: 4. Reactivity of ashes towards acid gases in the system fly ash-flue gases. Oil Shale 2004, 21, 13–26. [Google Scholar]
- Kuusik, R.; Uibu, M.; Toom, M.; Muulmann, M.L.; Kaljuvee, T.; Trikkel, A. Sulphation and carbonization of oil shale CFBC ashes in hetrogeneous systems. Oil Shale 2005, 22, 421–434. [Google Scholar]
- Kaljuvee, T.; Toom, M.; Trikkel, A.; Kuusik, R. Reactivity of oil shale ashes in the binding of SO2. J. Therm. Anal. Cal. 2007, 88, 51–58. [Google Scholar] [CrossRef]
- Trikkel, A.; Keelmann, M.; Kaljuvee, T.; Kuusik, R. CO2 and SO2 uptake by oil shale ashes: Effect of pre-treatment on kinetics. J. Therm. Anal. Cal. 2010, 99, 763–769. [Google Scholar] [CrossRef]
- Kaljuvee, T.; Trass, O.; Pihu, T.; Konist, A.; Kuusik, R. Activation and reactivity of Estonian oil shale cyclone ash towards SO2 binding. J. Therm. Anal. Cal. 2015, 121, 19–28. [Google Scholar] [CrossRef]
- Loide, V. Relieving the calcium deficiency of field soils by means of liming. Agron. Res. 2010, 8, 415–420. [Google Scholar]
- Loide, V. Liming of acidic soils and determination of lime requirement. In Agronomy; Estonian University of Life Science: Jõgeva, Estonia, 2006; pp. 48–51. ISBN -13:978-9985-9751-5-2. [Google Scholar]
- Ferreira, C.; Ribeiro, A.; Ottosen, L. Possible applications for municipal solid waste fly ash. J. Hazard. Mater. 2003, B96, 201–216. [Google Scholar] [CrossRef]
- Rosen, C.J.; Bierman, P.M.; Olson, D. Swiss chard and alfalfa responses to soils amended with municipal solid waste incinerator ash: Growth and elemental composition. J. Agri. Food Chem. 1994, 42, 1361–1368. [Google Scholar] [CrossRef]
- Gajek, F.; Drzas, K. Agricultural usefulness of brown coal fly ash. I. Effectiveness of ash in comparison with limestone and magnesium lime in field experiments. Pamiętnik Puławski 1983, 79, 131–141. [Google Scholar]
- Gajek, F.; Drzas, K. Agricultural usefulness of brown coal fly ash. II. Effectiveness of granulated ash on some soil properties and on plant yields and their chemical composition in pot experiments. Pamiętnik Puławski 1983, 79, 143–157. [Google Scholar]
- Mittra, B.N.; Karmakar, S.; Swain, D.K.; Ghosh, B.C. Fly-ash-a potential source of soil amendment and a component of integrated plant nutrient supply system. Fuel 2005, 84, 1447–1451. [Google Scholar] [CrossRef]
- Jala, S.; Goyal, D. Fly ash as a soil ameliorant for improving crop production-a review. Bioresour. Technol. 2006, 97, 1136–1147. [Google Scholar] [CrossRef]
- Jayasinghe, G.Y.; Tokashiki, Y.; Kitou, M. Evolution of coal fly ash-based synthetic aggregates as a soil ameliorant for the low productive acidic red soil. Water Air Soil Pollut. 2009, 204, 29–41. [Google Scholar] [CrossRef]
- Bardan, S.; Chen, Y.; Dick, W.A. Recycling for sustainability: Plant growth media from coal combustion products, biosolids and compost. Int. J. Civil. Environ. Eng. 2009, 1, 177–183. [Google Scholar]
- Väätäinen, K.; Sirparanta, E.; Räisänen, M.; Tahvanainen, T. The costs and profitability of using granulated wood ash as a forest fertilizer in drained peatland forests. Biomass Bioenergy 2011, 35, 3335–3341. [Google Scholar] [CrossRef]
- Callesen, I.; Ingerslev, M.; Raulund-Rasmussen, K. Dissolution of granulated wood ash examined by in situ incubation: Effects of tree species and soil type. Biomass Bioenery 2007, 31, 693–699. [Google Scholar] [CrossRef]
- Lingling, X.; Wei, G.; Tao, W.; Nanru, Y. Study on fired bricks with replacing clay by fly ash in high volume ratio. Constr. Build. Mater. 2005, 19, 243–247. [Google Scholar] [CrossRef]
- Zimmer, A.; Bergmann, C.P. Fly ash of mineral coal as ceramic tiles raw material. Waste Manag. 2007, 27, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Dana, K.; Dey, J.; Das, S.K. Synergistic effect of fly ash and blast furnace slag on the mechanical strength of traditioanal porcelan tiles. Ceram. Int. 2005, 31, 147–152. [Google Scholar] [CrossRef]
- Sokolar, R.; Smetanova, L. Dry pressed ceramic tiles based on fly ash-clay body: Influence of fly ash granulometry and pentasodium triphosphate addition. Ceram. Int. 2010, 36, 215–221. [Google Scholar] [CrossRef]
- Sokolář, R.; Vodová, L. The effect of fluidized fly ash on the properties of dry pressed ceramic tiles based on fly ash-clay body. Ceram. Int. 2011, 37, 2879–2885. [Google Scholar] [CrossRef]
- Cultrone, G.; Sebastián, E. Fly ash in clayey materials to improve the quality of solid bricks. Constr. Build. Mater. 2009, 23, 1178–1184. [Google Scholar] [CrossRef]
- Húlan, T.; Trník, A.; Kaljuvee, T.; Uibu, M.; Štubňa, I.; Kallavus, U.; Traksmaa, R. The study of firing of a ceramic body made from illite and fluidized bed combustion fly ash. J. Therm. Anal. Calorim. 2017, 127, 79–89. [Google Scholar]
- Haiying, Z.; Youcai, Z.; Jingyu, Q. Study on use MSWI fly ash in ceramic tile. J. Hazard. Mater. 2002, 21, 344–349. [Google Scholar] [CrossRef]
- Eliche-Quesada, D.; Leite-Costa, J. Use of bottom ash from olive pomace combustion in the production of eco-friendly fired clay brick. Waste Manag. 2016, 48, 323–333. [Google Scholar] [CrossRef] [PubMed]
- Faria, K.C.P.; Gurgel, R.F.; Holand, J.N.F. Recycling of sugarcane bagasse ash waste in the production of clay bricks. J. Environ. Manag. 2012, 101, 7–12. [Google Scholar] [CrossRef]
- Marangoni, M.; Ponsot, I.; Kuusik, R.; Bernardo, E. Strong and chemically inert sinter crystallised glass ceramics based on Estonian oil shale. Adv. Appl. Ceram. 2014, 113, 12012–12018. [Google Scholar] [CrossRef]
- Kaljuvee, T.; Štubňa, I.; Somelar, P.; Mikli, V.; Kuusik, R. Thermal behavior of some Estonian clays and their mixtures with oil shale ash additives. J. Therm. Anal. Calorim. 2014, 118, 891–899. [Google Scholar] [CrossRef]
- Kaljuvee, T.; Štubňa, I.; Húlan, T.; Kuusik, R. Heating rate effect on the thermal behavior of some clays and the blends with oil shale ash additives. J. Therm. Anal. Calorim. 2017, 127, 33–45. [Google Scholar] [CrossRef]
- Taylor, J.C. Computer programs for standardless quantitative analysis of minerals using the full powder diffraction profile. Powder Diffr. 1991, 6, 2–9. [Google Scholar] [CrossRef] [Green Version]
- Ward, C.R.; Taylor, J.; Cohen, D.R. Quantitative mineralogy of sandstones by X-ray diffractrometry and normative analysis. J. Sediment. Res. 1999, 69, 1050–1062. [Google Scholar] [CrossRef]
- Kaljuvee, T.; Keelmann, M.; Trikkel, A.; Kuusik, R. Thermooxidative decomposition of oil shales. J. Therm. Anal. Calorim. 2011, 105, 394–403. [Google Scholar] [CrossRef]
- Kaljuvee, T.; Hälvin, H.; Pototski, A.; Kuusik, R. Laboratory scale granulation of oil shale ashes. In Proceedings of the 6th International Granulation Workshop Granulation Conference, Sheffield, UK, 26–28 June 2013; p. 10. [Google Scholar]
- Kaljuvee, T.; Jefimova, J.; Loide, V.; Uibu, M.; Einard, M. Influence of the post-granulation treatment on the thermal behaviour and lechability characteristics of Estonian oil shale ashes. J. Therm. Anal. Calorim. 2018, 132, 47–57. [Google Scholar] [CrossRef]
- Sen Tran, T.; Simard, R.R. Mehlich III-Extractable Elements. In Soil Sampling and Methods of Analysis; Canadian Society of Soil Science; Lewis Publishers: Boca Raton, FL, USA, 1993; pp. 43–49. [Google Scholar]
- Kaljuvee, T.; Štubňa, I.; Húlan, T.; Csáki, Š.; Uibu, M.; Jefimova, J. Influence of waste products from electricity and cement industries on the thermal behaviour of Estonian clay from Kunda deposit. J. Therm. Anal. Calorim. 2019, 138, 2635–2650. [Google Scholar] [CrossRef]
- Xie, W.; Pan, W.P.; Riley, J.T. Interaction between of SO2 and HCl in fluidized bed combustors. Fuel 1999, 78, 1425–1436. [Google Scholar] [CrossRef]
- Liu, K.; Pan, W.P.; Riley, J.T. A study of chlorine behavior in a simulated fluidized bed combustion system. Fuel 2000, 79, 1115–1124. [Google Scholar] [CrossRef]
- Wang, H.; Li, C.; Peng, Z.; Zhang, S. Characterization and thermal behavior of kaolin. J. Therm. Anal. Calorim. 2011, 105, 157–160. [Google Scholar] [CrossRef]
- Frost, R.L.; Vassallo, A.M. The dehydroxylation of kaolinite clay minerals using infrared emission spectroscopy. Clays Clay Miner. 1996, 44, 635–651. [Google Scholar] [CrossRef]
- Aras, A. The change of phase composition in kaolinite-and illite-rich clay-based ceramic bodies. Appl. Clay Sci. 2004, 24, 257–269. [Google Scholar] [CrossRef]
- Fernandez, R.; Martirena, F.; Scrivener, K.L. The origin of the pozzolanic activity of calcined clay minerals: A comparison between kaolinite, illite and montmorillonite. Cem. Concr. Res. 2011, 41, 113–122. [Google Scholar] [CrossRef]
- Dweck, J. Qualitative and quantitative characterization of Brazilian natural and organophilic clays by thermal analysis. J. Therm. Anal. Calorim. 2008, 92, 129–135. [Google Scholar] [CrossRef]
- Paulik, F.; Paulik, J.; Arnold, M. Kinetics and mechanism of decomposition of pyrite under conventional and quasi-isothermal-quasi-isobaric thermoanalytical conditions. J. Therm. Anal. Calorim. 1982, 25, 313–325. [Google Scholar] [CrossRef]
- Pelovski, Y.; Petkova, V. Invesigation on thermal decomposition of pyrite. Part, I. J. Therm. Anal. Calorim. 1999, 56, 5–9. [Google Scholar]
- Trník, A.; Štubňa, I.; Moravčíková, J. Sound velocity of kaolin in the temperature range from 20 °C to 1100 °C. Int. J. Thermophys. 2009, 30, 1323–1328. [Google Scholar] [CrossRef]
- Kaljuvee, T.; Trikkel, A.; Kuusik, R. Decarbonization of natural lime-containing materials and reactivity of calcined products towards SO2 and CO2. J. Therm. Anal. Calorim. 2001, 64, 1229–1240. [Google Scholar] [CrossRef]
- Kaljuvee, T.; Kuusik, R.; Trikkel, A. SO2 binding into the solid phase during thermooxidation of blends based on Estonian oil shale semicoke. J. Therm. Anal. Calorim. 2003, 72, 393–404. [Google Scholar] [CrossRef]
Content, % | EOS I | EOS II | JOS | IOS | MOS | SC |
---|---|---|---|---|---|---|
Organic matter + fixed C | 29.7 | 63.1 | 22.6 | 17.1 | 18.5 | 13.1 |
Ash | 50.5 | 32.1 | 61.9 | 60.3 | 66.4 | 68.8 |
(CO2)M | 19.8 | 5.8 | 15.5 | 22.6 | 15.1 | 18.1 |
Stotal | 1.63 | 1.22 | 3.52 | 2.60 | 1.97 | 2.38 |
Spyr | 1.20 | 0.47 | 0.28 | 0.88 | 0.34 | 0.60 |
Ssulph | 0.10 | 0.04 | 0.12 | 0.32 | 0.10 | 0.44 |
Sorg | 0.33 | 0.71 | 3.12 | 1.40 | 1.53 | 0.74 |
Ssulphide | 0.60 | |||||
N | 0.53 | 0.09 | 0.42 | 0.39 | 0.50 | 0.52 |
H | 3.00 | 5.96 | 2.24 | 1.46 | 1.65 | 1.21 |
C | 28.3 | 48.5 | 22.2 | 17.1 | 16.3 | 17.9 |
(H/C)mole total | 1.27 | 1.47 | 1.21 | 1.02 | 1.21 | 0.81 |
Gross calorific value, MJkg−1 | 10.24 | 22.43 | 8.14 | 4.90 | 6.11 | 4.12 |
Item Samples | CaO total | CaO free | MgO | SiO2 | Al2O3 | Fe2O3 | SO3 total | K2O | Na2O | LOI | CTC/CTIC | Corg * | BET SSA, m2g−1 | Porosity, mm3g−1 | dmean, µm |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Arumetsa clay | 1.5 | 2.7 | 56.5 | 18.4 | 6.8 | 0.08 | 4.5 | 0.58 | 6.9 | 0.39/0.07 | 0.32 | 44.71 | 77.63 | 12.7 | |
Kunda clay | 0.4 | 2.3 | 61.4 | 17.8 | 5.9 | 1.68 | 6.0 | 0.08 | 4.8 | 0.23/0.02 | 0.21 | 30.86 | 51.87 | 15.1 | |
Illitic clay | 0.3 | 1.2 | 57.0 | 25.0 | 1.9 | 0.08 | 8.5 | 0.02 | 7.0 | 0.06/0 | 48.79 | 82.14 | 17.3 | ||
CFBC/ESPA | 30.7 | 9.0 | 4.5 | 34.4 | 8.6 | 4.2 | 4.4 | 4.5 | 0.19 | 5.6 | 1.13/1.13 | 3.67 | 5.94 | 32.5 | |
PF/CA | 51.6 | 22.7 | 4.9 | 24.5 | 6.4 | 3.9 | 3.4 | 2.0 | 0.14 | 1.5 | 1.42/1.42 | 0.91 | 1.69 | 55.8 | |
PF/DeSOx | 36.3 | 7.9 | 4.7 | 28.5 | 7.3 | 3.6 | 9.3 | 3.6 | 0.32 | 6.7 | 1.01/1.01 | 1.43 | 3.84 | 49.6 | |
CFBC/Auvere FA | 37.3 | 12.0 | 2.4 | 24.0 | 11.0 | 5.4 | 3.6 | 3.9 | 0.11 | 9.4 | 1.45/1.38 | 0.07 | 4.75 | 8.93 | 42.0 |
Name | Wavenumber/cm−1 |
---|---|
H2O | 3900–3500, 1900–1200 |
CO2 | 2400–2250, 2380, 678 |
CO | 2250–2050, 2177, 2114 |
HCl | 3000–2700 |
NH3 | 967, 932 |
COS | 2075, 2053 |
HCN | 713 |
methane | 3017, 1307 |
ethane | 2970, 1457 |
ethylene | 2650, 950 |
methanol | 1060, 1035, 1008 |
ethanol | 1244, 1052 |
p-xylene | 1512, 793 |
chlorobenzene | 1474, 742 |
C-H stretching vibration | 3100–2700 (adjacent to double bonds, aromatic rings; aliphatic hydrocarbons) |
C=O stretching vibration | 1850–1600 (ketone, acid, aldehyde) |
C=C stretching vibration | 1600–1450 (aromatic compounds) |
C-H bending vibration | 1500–1300 (saturated aliphatic hydrocarbons) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaljuvee, T.; Uibu, M.; Yörük, C.R.; Einard, M.; Trikkel, A.; Kuusik, R.; Trass, O.; Štubňa, I.; Húlan, T.; Loide, V.; et al. Study of Thermooxidation of Oil Shale Samples and Basics of Processes for Utilization of Oil Shale Ashes. Minerals 2021, 11, 193. https://doi.org/10.3390/min11020193
Kaljuvee T, Uibu M, Yörük CR, Einard M, Trikkel A, Kuusik R, Trass O, Štubňa I, Húlan T, Loide V, et al. Study of Thermooxidation of Oil Shale Samples and Basics of Processes for Utilization of Oil Shale Ashes. Minerals. 2021; 11(2):193. https://doi.org/10.3390/min11020193
Chicago/Turabian StyleKaljuvee, Tiit, Mai Uibu, Can Rüstü Yörük, Marve Einard, Andres Trikkel, Rein Kuusik, Olev Trass, Igor Štubňa, Tomáš Húlan, Valli Loide, and et al. 2021. "Study of Thermooxidation of Oil Shale Samples and Basics of Processes for Utilization of Oil Shale Ashes" Minerals 11, no. 2: 193. https://doi.org/10.3390/min11020193
APA StyleKaljuvee, T., Uibu, M., Yörük, C. R., Einard, M., Trikkel, A., Kuusik, R., Trass, O., Štubňa, I., Húlan, T., Loide, V., & Jefimova, J. (2021). Study of Thermooxidation of Oil Shale Samples and Basics of Processes for Utilization of Oil Shale Ashes. Minerals, 11(2), 193. https://doi.org/10.3390/min11020193