Deformation Microstructures of Phyllite in Gunsan, Korea, and Implications for Seismic Anisotropy in Continental Crust
Abstract
:1. Introduction
2. Geological Setting and Outcrop Description
3. Methods
4. Results
4.1. Sample Description and Microstructures
4.2. LPO and Fabric Strength of Minerals
4.2.1. LPO of Muscovite and Chlorite
4.2.2. LPO of Quartz
4.2.3. LPO of Albite
4.3. Seismic Anisotropies of Phyllite Samples
5. Discussion
5.1. LPO Development of Minerals
5.2. Implications for Seismic Anisotropy in Continental Crust
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kern, H.; Wenk, H.R. Fabric-related velocity anisotropy and shear wave splitting in rocks from the Santa Rosa mylonite zone, California. J. Geophys. Res. 1990, 95. [Google Scholar] [CrossRef]
- Mainprice, D.; Ildefonse, B. Seismic Anisotropy of Subduction Zone Minerals–Contribution of Hydrous Phases. In Subduction Zone Geodynamics; Lallemand, S., Funiciello, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 63–84. [Google Scholar]
- Ozacar, A.A.; Zandt, G. Crustal structure and seismic anisotropy near the San Andreas Fault at Parkfield, California. Geophys. J. Int. 2009, 178, 1098–1104. [Google Scholar] [CrossRef] [Green Version]
- Bonnin, M.; Barruol, G.; Bokelmann, G.H.R. Upper mantle deformation beneath the North American–Pacific plate boundary in California from SKS splitting. J. Geophys. Res. 2010, 115, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, G.E.; Butler, R.W.H.; Casey, M.; Tatham, D.J.; Mainprice, D. Constraints on the seismic properties of the middle and lower continental crust. In Deformation Mechanisms, Rheology and Tectonics: Microstructures, Mechanics and Anisotropy; Prior, D.J., Rutter, E.H., Tatham, D.J., Eds.; Geological Society: London, UK, 2011; Volume 360, pp. 7–32. [Google Scholar]
- Long, M.D.; Silver, P.G. Shear wave splitting and mantle anisotropy: Measurements, interpretations, and new directions. Surv. Geophys. 2009, 30, 407–461. [Google Scholar] [CrossRef] [Green Version]
- Long, M.D.; Wirth, E.A. Mantle flow in subduction systems: The mantle wedge flow field and implications for wedge processes. J. Geophys. Res. Solid Earth 2013, 118, 583–606. [Google Scholar] [CrossRef]
- Castellanos, J.; Perry-Houts, J.; Clayton, R.; Kim, Y.; Stanciu, A.C.; Niday, B.; Humphreys, E. Seismic anisotropy reveals crustal flow driven by mantle vertical loading in the Pacific NW. Sci. Adv. 2020, 6, eabb0476. [Google Scholar] [CrossRef] [PubMed]
- Ozacar, A.A.; Zandt, G. Crustal seismic anisotropy in central Tibet: Implications for deformational style and flow in the crust. Geophys. Res. Lett. 2004, 31, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Kong, F.; Wu, J.; Liu, K.H.; Gao, S.S. Crustal anisotropy and ductile flow beneath the eastern Tibetan Plateau and adjacent areas. Earth Planet. Sci. Lett. 2016, 442, 72–79. [Google Scholar] [CrossRef] [Green Version]
- Agius, M.R.; Lebedev, S. Complex, multilayered azimuthal anisotropy beneath Tibet: Evidence for co-existing channel flow and pure-shear crustal thickening. Geophys. J. Int. 2017, 210, 1823–1844. [Google Scholar] [CrossRef] [Green Version]
- Brocher, T.M.; Christensen, N.I. Seismic anisotropy due to preferred mineral orientation observed in shallow crustal rocks in southern Alaska. Geology 1990, 18, 737–740. [Google Scholar] [CrossRef]
- Huang, Z.; Zhao, D.; Wang, L. Shear wave anisotropy in the crust, mantle wedge, and subducting Pacific slab under northeast Japan. Geochem. Geophys. Geosyst. 2011, 12, 1–17. [Google Scholar] [CrossRef]
- Crampin, S. Geological and industrial implications of extensive-dilatancy anisotropy. Nature 1987, 328, 491–496. [Google Scholar] [CrossRef]
- Ji, S.; Shao, T.; Michibayashi, K.; Long, C.; Wang, Q.; Kondo, Y.; Zhao, W.; Wang, H.; Salisbury, M.H. A new calibration of seismic velocities, anisotropy, fabrics, and elastic moduli of amphibole-rich rocks. J. Geophys. Res. Solid Earth 2013, 118, 4699–4728. [Google Scholar] [CrossRef]
- Hefny, M.; Zappone, A.; Makhloufi, Y.; de Haller, A.; Moscariello, A. A laboratory approach for the calibration of seismic data in the western part of the Swiss Molasse Basin: The case history of well Humilly-2 (France) in the Geneva area. Swiss J. Geosci. 2020, 113, 1–30. [Google Scholar] [CrossRef]
- Almqvist, B.S.G.; Mainprice, D. Seismic properties and anisotropy of the continental crust: Predictions based on mineral texture and rock microstructure. Rev. Geophys. 2017, 55, 367–433. [Google Scholar] [CrossRef] [Green Version]
- Bianchi, I.; Bokelmann, G. Probing crustal anisotropy by receiver functions at the deep continental drilling site KTB in Southern Germany. Geophys. Prospect. 2019, 67, 2450–2464. [Google Scholar] [CrossRef]
- Brownlee, S.J.; Schulte-Pelkum, V.; Raju, A.; Mahan, K.; Condit, C.; Orlandini, O.F. Characteristics of deep crustal seismic anisotropy from a compilation of rock elasticity tensors and their expression in receiver functions. Tectonics 2017, 36, 1835–1857. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, G.E.; Butler, R.W.H.; Casey, M.; Mainprice, D. Mica, deformation fabrics and the seismic properties of the continental crust. Earth Planet. Sci. Lett. 2009, 288, 320–328. [Google Scholar] [CrossRef]
- Brownlee, S.J.; Hacker, B.R.; Salisbury, M.; Seward, G.; Little, T.A.; Baldwin, S.L.; Abers, G.A. Predicted velocity and density structure of the exhuming Papua New Guinea ultrahigh-pressure terrane. J. Geophys. Res. 2011, 116, B08206. [Google Scholar] [CrossRef]
- Ji, S.; Shao, T.; Michibayashi, K.; Oya, S.; Satsukawa, T.; Wang, Q.; Zhao, W.; Salisbury, M.H. Magnitude and symmetry of seismic anisotropy in mica- and amphibole-bearing metamorphic rocks and implications for tectonic interpretation of seismic data from the southeast Tibetan Plateau. J. Geophys. Res. Solid Earth 2016, 3782–3803. [Google Scholar] [CrossRef] [Green Version]
- Wenk, H.R.; Vasin, R.N.; Kern, H.; Matthies, S.; Vogel, S.C.; Ivankina, T.I. Revisiting elastic anisotropy of biotite gneiss from the Outokumpu scientific drill hole based on new texture measurements and texture-based velocity calculations. Tectonophysics 2012, 570–571, 123–134. [Google Scholar] [CrossRef]
- Kim, J.; Jung, H. New Crystal Preferred Orientation of Amphibole Experimentally Found in Simple Shear. Geophys. Res. Lett. 2019, 46, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ko, B.; Jung, H. Crystal preferred orientation of an amphibole experimentally deformed by simple shear. Nat. Commun. 2015, 6, 6586. [Google Scholar] [CrossRef] [Green Version]
- Jung, H. Crystal preferred orientations of olivine, orthopyroxene, serpentine, chlorite, and amphibole, and implications for seismic anisotropy in subduction zones: A review. Geosci. J. 2017, 21, 985–1011. [Google Scholar] [CrossRef]
- Brown, J.M.; Abramson, E.H. Elasticity of calcium and calcium-sodium amphiboles. Phys. Earth Planet. Inter. 2016, 261, 161–171. [Google Scholar] [CrossRef]
- Alexandrov, K.S.; Ryzhova, T.V. The Elastic Properties of Rock-Forming Minerals. II: Layered Silicates; Geophysics Series; Bulletin USSR Academy of Science: Moscow, Russia, 1961; Volume 9. [Google Scholar]
- Vaughan, M.T.; Guggenheim, S. Elasticity of Muscovite and Its Relationship to Crystal Structure. J. Geophys. Res. 1986, 91, 4657–4664. [Google Scholar] [CrossRef]
- Weiss, T.; Siegesmund, S.; Rabbel, W.; Bohlen, T.; Pohl, M. Seismic velocities and anisotropy of the lower continental crust: A review. Pure Appl. Geophys. 1999, 156, 97–122. [Google Scholar] [CrossRef]
- Shapiro, N.M.; Ritzwoller, M.H.; Molnar, P.; Levin, V. Thinning and flow of Tibetan crust constrained by seismic anisotropy. Science 2004, 305, 233–236. [Google Scholar] [CrossRef] [Green Version]
- Mahan, K. Retrograde mica in deep crustal granulites: Implications for crustal seismic anisotropy. Geophys. Res. Lett. 2006, 33, 1–6. [Google Scholar] [CrossRef]
- Meissner, R.; Rabbel, W.; Kern, H. Seismic lamination and anisotropy of the lower continental crust. Tectonophysics 2006, 416, 81–99. [Google Scholar] [CrossRef]
- Wenk, H.R.; Yu, R.; Cárdenes, V.; Lopez-Sanchez, M.A.; Sintubin, M. Fabric and anisotropy of slates: From classical studies to new results. J. Struct. Geol. 2020, 138. [Google Scholar] [CrossRef]
- Law, R.D. Crystallographic fabrics: A selective review of their applications to research in structural geology. In Deformation Mechanisms, Rheology and Tectonics; Knipe, R.J., Rutter, E.H., Eds.; Geological Society Special Publication: London, UK, 1990; Volume 54, pp. 335–352. [Google Scholar]
- Little, T.A.; Hacker, B.R. Microstructures and quartz lattice-preferred orientations in the eclogite-bearing migmatitic gneisses of the D’Entrecasteaux Islands, Papua New Guinea. Geochem. Geophys. Geosyst. 2013, 14, 2030–2062. [Google Scholar] [CrossRef] [Green Version]
- Stipp, M.; Stünitz, H.; Heilbronner, R.; Schmid, S.M. The eastern Tonale fault zone: A “natural laboratory” for crystal plastic deformation of quartz over a temperature range from 250 to 700 °C. J. Struct. Geol. 2002, 24, 1861–1884. [Google Scholar] [CrossRef]
- Law, R.D. Deformation thermometry based on quartz c-axis fabrics and recrystallization microstructures: A review. J. Struct. Geol. 2014, 66, 129–161. [Google Scholar] [CrossRef]
- Cross, A.J.; Kidder, S.; Prior, D.J. Using microstructures and TitaniQ thermobarometry of quartz sheared around garnet porphyroclasts to evaluate microstructural evolution and constrain an Alpine Fault Zone geotherm. J. Struct. Geol. 2015, 75, 17–31. [Google Scholar] [CrossRef]
- Savignano, E.; Reddy, S.M.; Bridges, J.; Mazzoli, S. Quartz fabric variations across the greenschist facies shear zone separating the zermatt-saas and combin ophiolitic zones, upper val gressoney, western alps. Ofioliti 2016, 41, 85–98. [Google Scholar] [CrossRef]
- Tullis, J.; Christie, J.M.; Griggs, D.T. Microstructures and preferred orientations of experimentally deformed quartzites. In Bulletin of the Geological Society of America; Geological Society of America: Boulder, CO, USA, 1973; Volume 84, pp. 297–314. [Google Scholar]
- Lister, G.S.; Hobbs, B.E. The simulation of fabric development during plastic deformation and its application to quartzite: The influence of deformation history. J. Struct. Geol. 1980, 2, 355–370. [Google Scholar] [CrossRef]
- Schmid, S.M.; Casey, M. Complete fabric analysis of some commonly observed quartz C-axis patterns. Geophys. Monogr. 1986, 36, 263–286. [Google Scholar] [CrossRef]
- Hirth, G.; Tullis, J. Dislocation creep regimes in quartz aggregates. J. Struct. Geol. 1992, 14, 145–159. [Google Scholar] [CrossRef]
- Heilbronner, R.; Tullis, J. Evolution of c axis pole figures and grain size during dynamic recrystallization: Results from experimentally sheared quartzite. J. Geophys. Res. 2006, 111, 1–19. [Google Scholar] [CrossRef]
- Faleiros, F.M.; Moraes, R.; Pavan, M.; Campanha, G.A.C. A new empirical calibration of the quartz c-axis fabric opening-angle deformation thermometer. Tectonophysics 2016, 671, 173–182. [Google Scholar] [CrossRef]
- Tokle, L.; Hirth, G.; Behr, W.M. Flow laws and fabric transitions in wet quartzite. Earth Planet. Sci. Lett. 2019, 505, 152–161. [Google Scholar] [CrossRef]
- Wenk, H.R.; Bunge, H.J.; Jansen, E.; Pannetier, J. Preferred orientation of plagioclase-neutron diffraction and U-stage data. Tectonophysics 1986, 126, 271–284. [Google Scholar] [CrossRef]
- Prior, D.J.; Wheeler, J. Feldspar fabrics in a greenschist facies albite-rich mylonite from electron backscatter diffraction. Tectonophysics 1999, 303, 29–49. [Google Scholar] [CrossRef]
- Jiang, Z.; Prior, D.J.; Wheeler, J. Albite crystallographic preferred orientation and grain misorientation distribution in a low-grade mylonite: Implications for granular flow. J. Struct. Geol. 2000, 22, 1663–1674. [Google Scholar] [CrossRef]
- Morales, L.F.G.; Boudier, F.; Nicolas, A. Microstructures and crystallographic preferred orientation of anorthosites from Oman ophiolite and the dynamics of melt lenses. Tectonics 2011, 30, 1–21. [Google Scholar] [CrossRef]
- Díaz-Azpiroz, M.; Lloyd, G.E.; Fernández, C. Deformation mechanisms of plagioclase and seismic anisotropy of the Acebuches metabasites (SW Iberian massif). In Deformation Mechanisms, Rheology and Tectonics: Microstructures, Mechanics and Anisotropy; Prior, D.J., Rutter, E.H., Tatham, D.J., Eds.; Geological Society Special Publications: London, UK, 2011; pp. 79–95. ISBN 9781862393387. [Google Scholar]
- Menegon, L.; Stünitz, H.; Nasipuri, P.; Heilbronner, R.; Svahnberg, H. Transition from fracturing to viscous flow in granulite facies perthitic feldspar (Lofoten, Norway). J. Struct. Geol. 2013, 48, 95–112. [Google Scholar] [CrossRef]
- Eberlei, T.; Habler, G.; Grasemann, B.; Abart, R. Upper-greenschist facies intragrain deformation of albite in mylonitic meta-pegmatite and the influence of crystallographic anisotropy on microstructure formation. J. Struct. Geol. 2014, 69, 47–58. [Google Scholar] [CrossRef]
- Ji, S.; Shao, T.; Salisbury, M.H.; Sun, S.; Michibayashi, K.; Zhao, W.; Long, C.; Liang, F.; Satsukawa, T. Plagioclase preferred orientation and induced seismic anisotropy in mafic igneous rocks. J. Geophys. Res. Solid Earth 2014, 119, 8064–8088. [Google Scholar] [CrossRef]
- Miranda, E.A.; Hirth, G.; John, B.E. Microstructural evidence for the transition from dislocation creep to dislocation-accommodated grain boundary sliding in naturally deformed plagioclase. J. Struct. Geol. 2016, 92, 30–45. [Google Scholar] [CrossRef]
- Stünitz, H.; Fitz Gerald, J.D.; Tullis, J. Dislocation generation, slip systems, and dynamic recrystallization in experimentally deformed plagioclase single crystals. Tectonophysics 2003, 372, 215–233. [Google Scholar] [CrossRef]
- Olsen, T.S.; Kohlstedt, D.L. Analysis of dislocations in some naturally deformed plagioclase feldspars. Phys. Chem. Miner. 1984, 11, 153–160. [Google Scholar] [CrossRef]
- Marshall, D.B.; McLaren, A.C. Deformation mechanisms in experimentally deformed plagioclase feldspars. Phys. Chem. Miner. 1977, 1, 351–370. [Google Scholar] [CrossRef]
- Erdman, M.E.; Hacker, B.R.; Zandt, G.; Seward, G. Seismic anisotropy of the crust: Electron-backscatter diffraction measurements from the Basin and Range. Geophys. J. Int. 2013, 195, 1211–1229. [Google Scholar] [CrossRef] [Green Version]
- Ward, D.; Mahan, K.; Schulte-Pelkum, V. Roles of quartz and mica in seismic anisotropy of mylonites. Geophys. J. Int. 2012, 190, 1123–1134. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.R.; Cho, K. Precambrian Crustal Evolution of the Korean Peninsula. J. Petrol. Soc. Korea 2012, 21, 89–112. [Google Scholar] [CrossRef] [Green Version]
- Cho, M.; Kim, T.; Yang, S.; Yi, K. Paleoproterozoic to Triassic crustal evolution of the Gyeonggi Massif, Korea: Tectonic correlation with the North China craton. In Linkages and Feedbacks in Orogenic Systems; Law, R.D., Thigpen, J.R., Merschat, A.J., Stowell, H., Eds.; Geological Society of America Memoir: Boulder, CO, USA, 2017; Volume 213, pp. 165–197. [Google Scholar]
- Cluzel, D.; Cadet, J.P.; Lapierre, H. Geodynamics of the Ogcheon Belt (South Korea). Tectonophysics 1990, 183, 41–56. [Google Scholar] [CrossRef]
- Cluzel, D.; Jolivet, L.; Cadet, J. Early Middle Paleozoic Intraplate Orogeny in the Ogcheon Belt (South Korea): A new insight on the Paleozoic buildup of east Asia. Tectonics 1991, 10, 1130–1151. [Google Scholar] [CrossRef] [Green Version]
- Ree, J.H.; Cho, M.; Kwon, S.T.; Nakamura, E. Possible eastward extension of Chinese collision belt in South Korea: The Imjingang belt. Geology 1996, 24, 1071–1074. [Google Scholar] [CrossRef]
- Cho, M.; Kim, H. Metamorphic Evolution of the Ogcheon Belt, Korea: A Review and New Age Constraints. Int. Geol. Rev. 2005, 47, 41–57. [Google Scholar] [CrossRef]
- Chough, S.K.; Kwon, S.-T.; Ree, J.H.; Choi, D.K. Tectonic and sedimentary evolution of the Korean peninsula: A review and new view. Earth Sci. Rev. 2000, 52, 175–235. [Google Scholar] [CrossRef]
- Kwon, S.; Sajeev, K.; Mitra, G.; Park, Y.; Kim, S.W.; Ryu, I.C. Evidence for Permo-Triassic collision in Far East Asia: The Korean collisional orogen. Earth Planet. Sci. Lett. 2009, 279, 340–349. [Google Scholar] [CrossRef]
- Cho, M.; Lee, Y.; Kim, T.; Cheong, W.; Kim, Y.; Lee, S.R. Tectonic evolution of Precambrian basement massifs and an adjoining fold-and-thrust belt (Gyeonggi Marginal Belt), Korea: An overview. Geosci. J. 2017, 21, 845–865. [Google Scholar] [CrossRef]
- Lee, Y., II; Lee, J., II. Paleozoic sedimentation and tectonics in Korea: A review. Isl. Arc 2003, 12, 162–179. [Google Scholar] [CrossRef]
- Oh, C.W.; Kim, S.W.; Ryu, I.C.; Okada, T.; Hyodo, H.; Itaya, T. Tectono-metamorphic evolution of the Okcheon Metamorphic Belt, South Korea: Tectonic implications in East Asia. Isl. Arc 2004, 13, 387–402. [Google Scholar] [CrossRef]
- Oh, C.W.; Choi, S.G.; Seo, J.; Rajesh, V.J.; Lee, J.H.; Zhai, M.; Peng, P. Neoproterozoic tectonic evolution of the Hongseong area, southwestern Gyeonggi Massif, South Korea; implication for the tectonic evolution of Northeast Asia. Gondwana Res. 2009, 16, 272–284. [Google Scholar] [CrossRef]
- Cho, M.; Kim, T.; Kim, H. SHRIMP U-Pb Zircon Age of a Felsic Meta-tuff in the Ogcheon Metamorphic Belt, Korea: Neoproterozoic (ca. 750 Ma) Volcanism. J. Petrol. Soc. Korea 2004, 13, 119–125. [Google Scholar]
- Choi, D.K.; Woo, J.; Park, T. The Okcheon Supergroup in the Lake Chungju area, Korea: Neoproterozoic volcanic and glaciogenic sedimentary successions in a rift basin. Geosci. J. 2012, 16, 229–252. [Google Scholar] [CrossRef]
- Lee, K.S.; Chang, H.W.; Park, K.H. Neoproterozoic bimodal volcanism in the central Ogcheon belt, Korea: Age and tectonic implication. Precambrian Res. 1998, 89, 47–57. [Google Scholar] [CrossRef]
- Kim, S.W.; Kee, W.S.; Santosh, M.; Cho, D.L.; Hong, P.S.; Ko, K.; Lee, B.C.; Byun, U.H.; Jang, Y. Tracing the Precambrian tectonic history of East Asia from Neoproterozoic sedimentation and magmatism in the Korean Peninsula. Earth Sci. Rev. 2020, 209, 103311. [Google Scholar] [CrossRef]
- Lim, S.; Chun, H.Y.; Kim, Y.B.; Kim, B.C.; Cho, D. Geologic ages, stratigraphy and geological structures of the metasedimentary strata in BibongYeonmu area, NW Okcheon belt, Korea. J. Geol. Soc. Korea 2005, 41, 335–368. [Google Scholar]
- Kang, J.-H.; Hayasaka, Y.; Ryoo, C.-R. Tectonic evolution of the Central Ogcheon Belt, Korea. J. Petrol. Soc. Korea 2012, 21, 129–150. [Google Scholar] [CrossRef]
- Cho, M.; Min, K.; Kim, H. Geology of the 2018 Winter Olympic site, Pyeongchang, Korea. Int. Geol. Rev. 2018, 60, 267–287. [Google Scholar] [CrossRef]
- De Jong, K.; Han, S.; Ruffet, G. Fast cooling following a Late Triassic metamorphic and magmatic pulse: Implications for the tectonic evolution of the Korean collision belt. Tectonophysics 2015, 662, 271–290. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Kihm, Y.H.; Kee, W. Geological Report of the Iri Sheet (Scale 1:50,000); Korea Institute of Geoscience and Mineral Resources: Daejeon, Korea, 2012. [Google Scholar]
- Choi, P.; Hwang, J.H. Geological Report of the Gunsan, Buan, Banchukdo, Jangjado Sheets (Scale 1:50,000); Korea Institute of Geoscience and Mineral Resources: Daejeon, Korea, 2013. [Google Scholar]
- Kim, H.; Cho, M.; Koh, H.J. Tectonometamorphic evolution of the central Ogcheon belt in the Jeungpyeong-Deokpyeong area. J. Geol. Soc. Korea 1995, 31, 299–314. [Google Scholar]
- Kim, H.; Cho, M. Polymetamorphism of Ogcheon Supergroup in the Miwon area, central Ogcheon metamorphic belt, South Korea. Geosci. J. 1999, 3, 151–162. [Google Scholar] [CrossRef]
- Kim, S.W.; Itaya, T.; Hyodo, H.; Matsuda, T. Metamorphic K-Feldspar in Low-grade Metasediments from the Ogcheon Metamorphic Belt in South Korea. Gondwana Res. 2002, 5, 849–855. [Google Scholar] [CrossRef]
- Panozzo, R.H. Two-dimensional analysis of shape-fabric using projections of digitized lines in a plane. Tectonophysics 1983, 95, 279–294. [Google Scholar] [CrossRef]
- Skemer, P.; Katayama, I.; Jiang, Z.; Karato, S.I. The misorientation index: Development of a new method for calculating the strength of lattice-preferred orientation. Tectonophysics 2005, 411, 157–167. [Google Scholar] [CrossRef]
- Mainprice, D.; Hielscher, R.; Schaeben, H. Calculating anisotropic physical properties from texture data using the MTEX open-source package. In Deformation Mechanisms, Rheology and Tectonics: Microstructures, Mechanics and Anisotropy; Prior, D.J., Rutter, E.H., Tatham, D.J., Eds.; Geological Society Special Publications: London, UK, 2011; pp. 175–192. [Google Scholar]
- Efron, B.; Tibshirani, R.J. An Introduction to the Bootstrap; Chapman & Hall/CRC: Boca Raton, FL, USA, 1994; ISBN 9781000064988. [Google Scholar]
- Morales, L.F.G.; Mainprice, D.; Kern, H. Olivine-antigorite orientation relationships: Microstructures, phase boundary misorientations and the effect of cracks in the seismic properties of serpentinites. Tectonophysics 2018, 724–725, 93–115. [Google Scholar] [CrossRef]
- Mainprice, D. A Fortran Program to Calculate Seismic Anisotropy from the Lattice Preferred Orientation of Minerals. Comput. Geosci. 1990, 16, 385–393. [Google Scholar] [CrossRef]
- McSkimin, H.J.; Andreatch, P.; Thurston, R.N. Elastic moduli of quartz versus hydrostatic pressure at 25°and −195.8 °C. J. Appl. Phys. 1965, 36, 1624–1632. [Google Scholar] [CrossRef]
- Ryzhova, T.V. Elastic properties of plagioclases. Akad SSSR Izv Ser Geofiz 1964, 7, 1049–1051. [Google Scholar]
- Wenk, H.R.; Kanitpanyacharoen, W.; Voltolini, M. Preferred orientation of phyllosilicates: Comparison of fault gouge, shale and schist. J. Struct. Geol. 2010, 32, 478–489. [Google Scholar] [CrossRef]
- Kim, D.; Jung, H. Deformation microstructures of olivine and chlorite in chlorite peridotites from Almklovdalen in the Western Gneiss Region, southwest Norway, and implications for seismic anisotropy. Int. Geol. Rev. 2015, 57, 650–668. [Google Scholar] [CrossRef]
- Park, M.; Jung, H. Relationships Between Eclogite-Facies Mineral Assemblages, Deformation Microstructures, and Seismic Properties in the Yuka Terrane, North Qaidam Ultrahigh-Pressure Metamorphic Belt, NW China. J. Geophys. Res. Solid Earth 2019, 124, 1–24. [Google Scholar] [CrossRef]
- Ha, Y.; Jung, H.; Raymond, L.A. Deformation fabrics of glaucophane schists and implications for seismic anisotropy: The importance of lattice preferred orientation of phengite. Int. Geol. Rev. 2019, 61, 720–737. [Google Scholar] [CrossRef]
- Puelles, P.; Beranoaguirre, A.; Ábalos, B.; Gil Ibarguchi, J.I.; García de Madinabeitia, S.; Rodríguez, J.; Fernández-Armas, S. Eclogite inclusions from subducted metaigneous continental crust (Malpica-Tui Allochthonous Complex, NW Spain): Petrofabric, geochronology, and calculated seismic properties. Tectonics 2017, 36, 1376–1406. [Google Scholar] [CrossRef]
- Lee, J.; Jung, H.; Klemd, R.; Tarling, M.S.; Konopelko, D. Lattice preferred orientation of talc and implications for seismic anisotropy in subduction zones. Earth Planet. Sci. Lett. 2020, 537, 116178. [Google Scholar] [CrossRef]
- Kim, D.; Jung, H.; Lee, J. Strain-induced fabric transition of chlorite and implications for seismic anisotropy in subduction zones. Minerals 2020, 10, 503. [Google Scholar] [CrossRef]
- Passchier, C.W.; Trouw, R.A.J. Microtectonics, 2nd ed.; Springer: New York City, NY, USA, 2005; ISBN 978-3-540-64003-5. [Google Scholar]
- Mares, V.M.; Kronenberg, A.K. Experimental deformation of muscovite. J. Struct. Geol. 1993, 15, 1061–1075. [Google Scholar] [CrossRef]
- Okudaira, T.; Takeshita, T.; Hara, I.; Ando, J. A new estimate of the conditions for transition from basal 〈a〉 to prism [c] slip in naturally deformed quartz. Tectonophysics 1995, 250, 31–46. [Google Scholar] [CrossRef]
- Bons, P.D.; Den Brok, B. Crystallographic preferred orientation development by dissolution-precipitation creep. J. Struct. Geol. 2000, 22, 1713–1722. [Google Scholar] [CrossRef]
- Stallard, A.; Shelley, D. Quartz c-axes parallel to stretching directions in very low-grade metamorphic rocks. Tectonophysics 1995, 249, 31–40. [Google Scholar] [CrossRef]
- Tullis, J.; Yund, R.A. Transition from cataclastic flow to dislocation creep of feldspar: Mechanisms and microstructures. Geology 1987, 15, 606–609. [Google Scholar] [CrossRef]
- Fitz Gerald, J.D.; Stünitz, H. Deformation of granitoids at low metamorphic grade. I: Reactions and grain size reduction. Tectonophysics 1993, 221, 299–324. [Google Scholar] [CrossRef]
- Wang, K.; Jiang, C.; Yang, Y.; Schulte-Pelkum, V.; Liu, Q. Crustal Deformation in Southern California Constrained by Radial Anisotropy From Ambient Noise Adjoint Tomography. Geophys. Res. Lett. 2020, 47, 1–12. [Google Scholar] [CrossRef]
- Han, C.; Xu, M.; Huang, Z.; Wang, L.; Xu, M.; Mi, N.; Yu, D.; Gou, T.; Wang, H.; Hao, S.; et al. Layered crustal anisotropy and deformation in the SE Tibetan plateau revealed by Markov-Chain-Monte-Carlo inversion of receiver functions. Phys. Earth Planet. Inter. 2020, 306, 106522. [Google Scholar] [CrossRef]
- Cao, Y.; Jung, H. Seismic properties of subducting oceanic crust: Constraints from natural lawsonite-bearing blueschist and eclogite in Sivrihisar Massif, Turkey. Phys. Earth Planet. Inter. 2016, 250, 12–30. [Google Scholar] [CrossRef]
- Meltzer, A.; Christensen, N. Nanga Parbat crustal anisotropy: Implications for interpretation of crustal velocity structure and shear-wave splitting. Geophys. Res. Lett. 2001, 28, 2129–2132. [Google Scholar] [CrossRef] [Green Version]
- Jung, H. Seismic anisotropy produced by serpentine in mantle wedge. Earth Planet. Sci. Lett. 2011, 307, 535–543. [Google Scholar] [CrossRef]
Sample No. | Modal Composition (%) 1 | Mean Aspect Ratio | Step Size (μm) | ||||||
---|---|---|---|---|---|---|---|---|---|
Ms | Chl | Qtz | Ab | Cal | Accessory | Qtz | Ab | ||
G101 | 34.7 | 7.6 | 38.6 | 13.4 | 0.9 | 4.8 | 1.91 | 2.44 | 5 |
G102 | 31.1 | 11.3 | 33.0 | 15.0 | 0.9 | 8.7 | 1.93 | 2.11 | 5 |
G103 | 23.4 | 8.8 | 35.7 | 22.8 | 4.6 | 4.7 | 1.87 | 2.25 | 5 |
G104 | 22.1 | 13.8 | 47.6 | 14.0 | 0.8 | 1.7 | 2.12 | 3.39 | 5 |
G105 | 4.6 | 5.7 | 67.6 | 12.1 | 2.3 | 7.7 | 2.04 | 1.87 | 0.31 |
Sample No. | M-Index | |||||||
---|---|---|---|---|---|---|---|---|
Ms | Chl | Qtz | Ab | |||||
Mean | CI 1 | Mean | CI | Mean | CI | Mean | CI | |
G101 | 0.3172 | ±0.01170 | 0.2510 | ±0.04770 | 0.0387 | ±0.00890 | 0.0627 | ±0.01395 |
G102 | 0.1693 | ±0.02335 | 0.1711 | ±0.04980 | 0.0326 | ±0.00670 | 0.0632 | ±0.01460 |
G103 | 0.2194 | ±0.02090 | 0.1578 | ±0.04575 | 0.0537 | ±0.01055 | 0.0639 | ±0.01295 |
G104 | 0.3175 | ±0.02775 | 0.2928 | ±0.06080 | 0.0555 | ±0.00570 | 0.0821 | ±0.01860 |
G105 | 0.21 | - | 0.293 | - | 0.09 | - | 0.379 | - |
Sample No. | Muscovite | Chlorite | Quartz | Albite | Whole Rock | |||||
---|---|---|---|---|---|---|---|---|---|---|
AVp (%) | Max. AVs (%) | AVp (%) | Max. AVs (%) | AVp (%) | Max. AVs (%) | AVp (%) | Max. AVs (%) | AVp (%) | Max. AVs (%) | |
G101 | 51.1 | 58.1 | 26.7 | 51.1 | 4.5 | 5.7 | 1.2 | 1.5 | 21.7 | 24.2 |
G102 | 43.4 | 41.9 | 25.3 | 40.2 | 2.8 | 3.5 | 2.1 | 1.3 | 18.9 | 19.7 |
G103 | 44.4 | 47.7 | 21.4 | 34.9 | 3.9 | 4.7 | 1.3 | 1.7 | 14.3 | 15.4 |
G104 | 51.1 | 59.1 | 29.4 | 56.8 | 4.3 | 5.7 | 1.3 | 1.6 | 17.2 | 20.3 |
G105 | 43.9 | 42.8 | 26.5 | 47.4 | 7.1 | 9.8 | 15.6 | 24.8 | 9 | 9.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, S.; Jung, H. Deformation Microstructures of Phyllite in Gunsan, Korea, and Implications for Seismic Anisotropy in Continental Crust. Minerals 2021, 11, 294. https://doi.org/10.3390/min11030294
Han S, Jung H. Deformation Microstructures of Phyllite in Gunsan, Korea, and Implications for Seismic Anisotropy in Continental Crust. Minerals. 2021; 11(3):294. https://doi.org/10.3390/min11030294
Chicago/Turabian StyleHan, Seokyoung, and Haemyeong Jung. 2021. "Deformation Microstructures of Phyllite in Gunsan, Korea, and Implications for Seismic Anisotropy in Continental Crust" Minerals 11, no. 3: 294. https://doi.org/10.3390/min11030294
APA StyleHan, S., & Jung, H. (2021). Deformation Microstructures of Phyllite in Gunsan, Korea, and Implications for Seismic Anisotropy in Continental Crust. Minerals, 11(3), 294. https://doi.org/10.3390/min11030294