A Review on the Beneficiation Methods of Borate Minerals
Abstract
:1. Introduction
2. Particle Size
3. Magnetic Separation
4. Flotation
4.1. Pretreatment
4.1.1. Ultrasonic Treatment
4.1.2. Calcination
4.2. Surface Properties
4.2.1. Zeta Potential
4.2.2. Contact Angle
4.2.3. Effect of Ions
4.3. Flocculation
4.4. Direct Flotation
4.5. Reverse Flotation
4.6. Depressants
5. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hançer, M. Doygun Çözeltilerde Boraksın Flotasyon Kimyasının Incelenmesi. In Proceedings of the Türkiye XIII. Madencilik Kongresi, Istanbul, Turkey, 10–14 May 1993. [Google Scholar]
- Celik, M.; Bulut, R. Mechanism of selective flotation of sodium-calcium borates with anionic and cationic collectors. Sep. Sci. Technol. 1996, 31, 1817–1829. [Google Scholar] [CrossRef]
- Çolak, M.M.; Helvaci, C.; Maggetti, M. Saponite from the Emet colemanite mines, Kutahya, Turkey. Clays Clay Miner. 2000, 48, 409–423. [Google Scholar] [CrossRef]
- Alp, I. Application of magnetic separation technology for the Processing of a colemanite ore. J. S. Afr. Inst. Min. Metall. 2009, 109, 139–145. [Google Scholar]
- Hancer, M.; Celik, M.; Miller, J.D. The significance of interfacial water structure in soluble salt flotation systems. J. Colloid Interface Sci. 2001, 235, 150–161. [Google Scholar] [CrossRef] [PubMed]
- Batar, T.; Kahraman, B.; Cirit, E.; Celik, M.S. Dry Processing of borax by calcination as an alternative to wet methods. Int. J. Miner. Process. 1998, 54, 99–110. [Google Scholar] [CrossRef]
- Flores, H.; Villagran, P. Borates in the Argentine puna: A new application of magnetic separation. Phys. Sep. Sci. Eng. 1992, 3, 155–169. [Google Scholar] [CrossRef]
- Travis, N.; Cocks, E. The Tincal Trail: A History of Borax; Harrap: London, UK, 1984; Volume 311, pp. 115–124. [Google Scholar]
- Kistler, R.B.; Helvaci, C. Boron and borates. Ind. Miner. Rocks 1994, 6, 171–186. [Google Scholar]
- Woods, W.G. An introduction to boron: History, sources, uses, and chemistry. Environ. Health Perspect. 1994, 102 (Suppl. 7), 5–11. [Google Scholar]
- Celik, M.; Hancer, M.; Miller, J. Flotation chemistry of boron minerals. J. Colloid Interface Sci. 2002, 256, 121–131. [Google Scholar] [CrossRef]
- Koca, S.; Savas, M. Contact angle measurements at the colemanite and realgar surfaces. Appl. Surf. Sci. 2004, 225, 347–355. [Google Scholar] [CrossRef]
- Sahinkaya, H.U.; Ozkan, A. Investigation of shear flocculation behaviors of colemanite with some anionic surfactants and inorganic salts. Sep. Purif. Technol. 2011, 80, 131–139. [Google Scholar] [CrossRef]
- Ozkan, S.G. Flotation Studies of Colemanite Ores from the Emet Deposits of Turkiye; University of Birmingham: Birmingham, UK, 1994. [Google Scholar]
- Çelikkan, H.; Şahin, M.; Aksu, M.L.; Veziroğlu, T.N. The investigation of the electrooxidation of sodium borohydride on various metal electrodes in aqueous basic solutions. Int. J. Hydrogen Energy 2007, 32, 588–593. [Google Scholar] [CrossRef]
- Koca, S.; Savas, M.; Koca, H. Flotation of colemanite from realgar. Miner. Eng. 2003, 16, 479–482. [Google Scholar] [CrossRef]
- Muduroglu, M.; Ozbayoglu, G.; Arol, A.I. Mineral processing on the verge of the 21st century. In Proceedings of the 8th International Mineral Processing Symposium, Antalya, Turkey, 16–18 October 2000. [Google Scholar]
- Ucbeyiay, H.; Ozkan, A. Two-stage shear flocculation for enrichment of fine boron ore containing colemanite. Sep. Purif. Technol. 2014, 132, 302–308. [Google Scholar] [CrossRef]
- Ucar, A.; Yargan, M. Selective separation of boron values from the tailing of a colemanite processing plant. Sep. Purif. Technol. 2009, 68, 1–8. [Google Scholar] [CrossRef]
- Sonmez, E.; Koca, S.A.; Ozdag, H.; Ipek, H.A. Beneficiation of colemanite concentrates from fine wastes by using ultrasound waves. Miner. Eng. 2004, 17, 359–361. [Google Scholar] [CrossRef]
- Alp, I.; Özdağ, H. Investigation of the Processing of colemanite tailings by ultrasonic sound waves. In Mineral Processing on the Verge of the 21st Century; Özbayoğlu, G., Atalay, M.U., Arol, A.I., Hosten, C., Hicyilmaz, C., Eds.; Balkema: Rotterdam, The Netherlands, 2000; pp. 693–696. [Google Scholar]
- Özdag, H.; Bozkurt, R.; Uçar, A. Benefication of boron from tailings of Kestelek concentrator. In Proceedings of the 2nd International Mineral Processing Symposium, Izmir, Turkey; 1988. [Google Scholar]
- Gül, A.; Kaytaz, Y.; Önal, G. Beneficiation of colemanite tailings by attrition and flotation. Miner. Eng. 2006, 19, 368–369. [Google Scholar] [CrossRef]
- Celik, M.; Uzunoglu, H.; Arslan, F. Decrepitation properties of some boron minerals. Powder Technol. 1994, 79, 167–172. [Google Scholar] [CrossRef]
- Celik, M.; Yasar, E. Effect of temperature and impurities on electrostatic separation of boron minerals. Miner. Eng. 1995, 8, 829–833. [Google Scholar] [CrossRef]
- Hancer, M.; Celik, M. Flotation mechanisms of boron minerals. Sep. Sci. Technol. 1993, 28, 1703–1714. [Google Scholar] [CrossRef]
- Watson, J.; Beharrell, P. Extracting values from mine dumps and tailings. Miner. Eng. 2006, 19, 1580–1587. [Google Scholar] [CrossRef]
- Celik, M.S.; Somasundaran, P. Wettability of reservoir minerals by flotation and correlation with surfactant adsorption. In Proceedings of the SPE Oilfield and Geothermal Chemistry Symposium, Stanford, CA, USA, 28–30 May 1980; Society of Petroleum Engineers. [Google Scholar]
- Ozdemir, O.; Çelik, M.S. Surface properties and flotation characteristics of boron minerals. Open Miner. Process. J. 2010, 3. [Google Scholar] [CrossRef] [Green Version]
- Ucar, A.; Sahbaz, O.; Kerenciler, S.; Oteyaka, B. Recycling of colemanite tailings using the Jameson flotation technology. Physicochem. Probl. Miner. Process. 2014, 50, 645–655. [Google Scholar]
- Svoboda, J. Magnetic Techniques for the Treatment of Materials; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Alp, I. Application of magnetic separation technology for the recovery of colemanite from plant tailings. Waste Manag. Res. 2008, 26, 431–438. [Google Scholar] [CrossRef]
- Acarkan, N.; Bulut, G.; Kangal, O.; Önal, G. A new process for upgrading boron content and recovery of borax concentrate. Miner. Eng. 2005, 18, 739–741. [Google Scholar] [CrossRef]
- Elder, J.; Domenico, J. The role of physical Processing enhancing the quality of industrial minerals. In Proceedings of the 14th Industrial Minerals International Congress, Belgorod, Russia, 7 June 2000. [Google Scholar]
- Flores, H.; Mattenella, L.; Valdez, S. Physical and physicochemical properties of borates from Argentinean Puna. Inf. Tecnol. 2002, 13, 103–108. [Google Scholar]
- Ata, O.N.; Colak, S.; Copur, M.; Celik, C. Determination of the optimum conditions for boric acid extraction with carbon dioxide gas in aqueous media from colemanite containing arsenic. Ind. Eng. Chem. Res. 2000, 39, 488–493. [Google Scholar] [CrossRef]
- Schuette, R.; Goodman, B.A.; Stucki, J.W. Magnetic properties of oxidized and reduced smectites. Phys. Chem. Miner. 2000, 27, 251–257. [Google Scholar] [CrossRef]
- Trahar, W.; Warren, L. The flotability of very fine particles—A review. Int. J. Miner. Process. 1976, 3, 103–131. [Google Scholar] [CrossRef]
- Ozkan, S.G.; Gungoren, C. Investigation of ultrasonics use for colemanite flotation. Int. Multidiscip. Sci. Geoconf. SGEM 2010, 1, 661. [Google Scholar]
- Çilek, E.C.; Üresin, H. Beneficiation of borax by reverse flotation in boron saturated brine. J. Colloid Interface Sci. 2005, 290, 426–430. [Google Scholar] [CrossRef]
- Cilek, E.C.; Ozgen, S. Improvement of the flotation selectivity in a mechanical flotation cell by ultrasound. Sep. Sci. Technol. 2010, 45, 572–579. [Google Scholar] [CrossRef]
- Mitome, H. Action of ultrasound on particles and cavitation bubbles. In Proceedings of the World Congress on Ultrasonics, Paris, France, 7–10 September 2003. [Google Scholar]
- Ozkan, S.G.; Gungoren, C. Enhancement of colemanite flotation by ultrasonic pretreatment. Physicochem. Probl. Miner. Process 2012, 48, 455–462. [Google Scholar]
- Piskin, S. Thermal Properties of Hydratet Boron Minerals. Ph.D. Thesis, Istanbul Technical University, İstanbulc, Turkey, 1983. [Google Scholar]
- Şener, S.; Özbayoǧlu, G. Separation of ulexite from colemanite by calcination. Miner. Eng. 1995, 8, 697–704. [Google Scholar] [CrossRef]
- Kocakuşak, S.; Akcay, K.; Ayok, T.; Koöroǧlu, H.J.; Koral, M.; Savaşçi, Ö.T.; Tolun, R. Production of anhydrous, crystalline boron oxide in fluidized bed reactor. Chem. Eng. Process. Process Intensif. 1996, 35, 311–317. [Google Scholar] [CrossRef]
- Emrullahoglu, O.F.; Kara, M.; Tolun, R.; Celik, M.S. Beneficiation of calcined colemanite tailings. Powder Technol. 1993, 77, 215–217. [Google Scholar] [CrossRef]
- Somasundaran, P.; Hanna, H. Adsorption of sulfonates on reservoir rocks. Soc. Pet. Eng. J. 1979, 19, 221–232. [Google Scholar] [CrossRef]
- Israelachvili, J. Forces between surfaces in liquids. Adv. Colloid Interface Sci. 1982, 16, 31–47. [Google Scholar] [CrossRef]
- Morgan, L.J.; Ananthapadmanabhan, K.; Somasundaran, P. Oleate adsorption on hematite: Problems and methods. Int. J. Miner. Process. 1986, 18, 139–152. [Google Scholar] [CrossRef]
- Fuerstenau, M.C.; Miller, D.J.; Kuhn, M.C. Chemistry of Flotation; Society for Mining Metallurgy: Englewood, CO, USA, 1985. [Google Scholar]
- Ozkan, S.; Acar, A. Investigation of impact of water type on borate ore flotation. Water Res. 2004, 38, 1773–1778. [Google Scholar] [CrossRef]
- Li, C.; Somasundaran, P. Reversal of bubble charge in multivalent inorganic salt solutions—effect of magnesium. J. Colloid Interface Sci. 1991, 146, 215–218. [Google Scholar] [CrossRef]
- Warren, L. Shear flocculation. In Colloid Chemistry in Mineral Processing; Elsevier: Amsterdam, The Netherlands, 1992; pp. 309–329. [Google Scholar]
- Song, S.; Lu, S. Theory and applications of hydrophobic flocculation technology. In Developments in Mineral Processing; Elsevier: Amsterdam, The Netherlands, 2000; pp. C5-31–C5-38. [Google Scholar]
- Song, S.X.; Lopez-Valdivieso, A.; Reyes-Bahena, J.L.; Lara-Valenzuela, C. Floc flotation of galena and sphalerite fines. Miner. Eng. 2001, 14, 87–98. [Google Scholar] [CrossRef]
- Zollars, R.L.; Ali, S.I. Shear coagulation in the presence of repulsive interparticle forces. J. Colloid Interface Sci. 1986, 114, 149–166. [Google Scholar] [CrossRef]
- Pascoe, R.; Doherty, E. Shear flocculation and flotation of hematite using sodium oleate. Int. J. Miner. Process. 1997, 51, 269–282. [Google Scholar] [CrossRef]
- Shibata, J.; Fuerstenau, D. Flocculation and flotation characteristics of fine hematite with sodium oleate. Int. J. Miner. Process. 2003, 72, 25–32. [Google Scholar] [CrossRef]
- Aplan, F.; Fuerstenau, D. Principles of nonmetallic mineral flotation. Froth Flotat. 1962, 50, 170. [Google Scholar]
- Nalaskowski, J.; Veeramasuneni, S.; Miller, J. Interaction forces in the flotation of colemanite as measured by atomic force microscopy. In Proceedings of the Innovations Mineral Coal Processing: Proceedings 7th International Mineral Processing Symposium, Istanbul, Turkey, 15–17 September 1998. [Google Scholar]
- Zhang, R.; Somasundaran, P. Advances in adsorption of surfactants and their mixtures at solid/solution interfaces. Adv. Colloid Interface Sci. 2006, 123, 213–229. [Google Scholar] [CrossRef] [PubMed]
- Gibson, B.; Wonyen, D.; Chelgani, S.C. A review of pretreatment of diasporic bauxite ores by flotation separation. Miner. Eng. 2017, 114, 64–73. [Google Scholar] [CrossRef]
- Wonyen, D.G.; Kromah, V.; Gibson, B.; Nah, S.; Chelgani, S.C. A review of flotation separation of Mg carbonates (dolomite and magnesite). Minerals 2018, 8, 354. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Hu, Y.; Tian, J.; Wu, H.; Yang, Y.; Zeng, X.; Wang, Z.; Wang, J. Selective flotation separation of spodumene from feldspar using new mixed anionic/cationic collectors. Miner. Eng. 2016, 89, 84–92. [Google Scholar] [CrossRef]
- Young, C.; Miller, J. Effect of temperature on oleate adsorption at a calcite surface: An FT-NIR/IRS study and review. Int. J. Miner. Process. 2000, 58, 331–350. [Google Scholar] [CrossRef]
- Cebeci, Y.; Sönmez, İ. A study on the relationship between critical surface tension of wetting and oil agglomeration recovery of calcite. J. Colloid Interface Sci. 2004, 273, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Jafari, M.; Abdollahi, H.; Shafaei, S.Z.; Gharabaghi, M.; Jafari, H.; Akcil, A.; Panda, S. Acidophilic bioleaching: A review on the process and effect of organic–inorganic reagents and materials on its efficiency. Miner. Process. Extr. Metall. Rev. 2019, 40, 87–107. [Google Scholar] [CrossRef]
- Jafari, M.; Shafaei, S.Z.; Abdollahi, H.; Gharabaghi, M.; Chelgani, S.C. Effect of flotation reagents on the activity of L. ferrooxidans. Miner. Process. Extr. Metall. Rev. 2018, 39, 34–43. [Google Scholar] [CrossRef]
Reference | Condition | Results | ||||||
---|---|---|---|---|---|---|---|---|
Grade (%) | Recovery (%) | |||||||
Size | Collector | Ultrasound Frequency (kHz) | Power (W) | With Ultrasound | Without Ultrasound | With Ultrasound | Without Ultrasound | |
[39] | −250 + 38 (µm) | Cytec R825 2000 mg/g | 35 | 120 | 49 | 45 | 90 | 80 |
[21] | −6 (mm) | 35 | 250 | 35 | 25 | 69 | 67 | |
[11] | −150 + 74 (µm) | Sodium dodecyl sulfate | 90 | 5 |
Pretreatment Method | Particle Size (mm) | Weight (%) | B2O3 (%) | Distribution (%) |
---|---|---|---|---|
Ultrasonic beneficiations | −3.000 + 0.038 | 56.25 | 41.69 | 97.01 |
−0.038 + dissolved | 43.75 | 1.65 | 2.99 | |
Mechanical attrition and washing | −3.000 + 0.038 | 62.16 | 33.01 | 84.93 |
−0.038 + dissolved | 37.84 | 9.62 | 15.07 |
Particle Size (mm) | Feed | Concentrate | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Weight (%) | % B2O3 Grade | Optimum % B2O3 Grade | Temp. (°C) | Optimum % B2O3 Recovery | Temp. (°C) | Optimum % B2O3 Grade | Heating Time (min) | Optimum % B2O3 Recovery | Heating Time (min) | |
+0.50–1.00 | 9.00 | 29.91 | 43.8 | 325 | 85.0 | 375 | 46.0 | 15 | 90.2 | 10 |
+1.00–3.00 | 17.51 | 54.15 | 49.6 | 375 | 90.0 | 375 | 55.0 | 15 | 86.1 | 10 |
+3.00–4.76 | 10.81 | 25.17 | 53.0 | 375 | 87.5 | 375 | 58.1 | 15 | 96.0 | 10 |
+4.76–9.51 | 14.93 | 22.71 | 53.5 | 425 | 88.0 | 375 | 57.3 | 15 | 90.3 | 10 |
+9.51–12.50 | 8.63 | 23.54 | 48.5 | 475 | 81.0 | 475 | 61.0 | 25 | 79.8 | 15 |
+12.50–25.00 | 21.58 | 23.92 | 52.4 | 475 | 90.0 | 475 | 60.1 | 15 | 70.3 | 15 |
+25.00–50.00 | 5.92 | 18.02 | 54.0 | 575 | 75.0 | 575 | 60.2 | 25 | 50.1 | 10 |
[19] | [16] | |||||
---|---|---|---|---|---|---|
Colemanite | Reagent | Conc. (M) | Colemanite | Realgar | ||
Reagent | Conc. (M) | Contact Angle (°) | Contact Angle (°) | |||
R801 | E−5 to E−4 M | 67.0–73.0 | KAX | E−4 to E−2 M | 32.0–34.0 | 25.0–62.0 |
R825 | E−4 to E−3 M | 57.0–58.0 | KEX | E−4 to E−2 M | 32.0–36.0 | 30.0–63.0 |
SDS | E−4 to E−3 M | 53.0–56.0 | R825 | 0.01–0.50% | 32.0–35.0 | 32.0–47.0 |
Na-oleate | E−4 to E−3 M | 50.0–51.0 | R840 | 0.01–0.05% | 36.0–43.0 | 25.0–39.0 |
Armac-T | 0.01–0.10% | 44.0–48.0 | 32.0–43.0 | |||
Na-silicate | E−4 to E−2 M | 27.0–34.0 | 26.0–42.0 |
Collector | Collector Type | BM | Gangue | Depressant | pH | Recovery (% B2O3) | Grade (% B2O3) | Reference |
---|---|---|---|---|---|---|---|---|
R-801, R-825 and Hoechst F-698 | Sulfonate, anionic | Colemanite | Clays and Carbonates | Ke-1365, dextrine, Na2SiO3, Cataflot P-40 | 10 | 86.1 | 44.5 | [23] |
R801 | Sulfate, anionic | Colemanite | Clay | 7 | 98.47 | 45.42 | [30] | |
Dodiflood V3622; MW, 383 | Petroleum sulfonate, anionic | Colemanite | Clay | 7 | 96% | [26] | ||
Flotigam T | Amine, cationic | Colemanite | Clay | 10 | 95% | |||
SDS | Sulfate, anionic | Colemanite | Clay | 8.3 | 59 | [2] | ||
R801 | sulfonate, anionic | Colemanite | Clay, quartz, calcite | Corn starch | 9.3 | 99 | 46 | [19] |
R825 | sulfonate, anionic | Colemanite | Clay, quartz, calcite | Corn starch | 9.3 | 70 | 40 | |
SDS | Sulfate, anionic | Colemanite | Clay, quartz, calcite | Corn starch | 9.3 | 85 | 38 | |
Sodium oleate | Carboxylate, anionic | Colemanite | Clay, quartz, calcite | Corn starch | 9.3 | 98 | 38 | |
SDS | Sulfate, anionic | Ulexite | Clay | 8 | 45 | [2] | ||
DAH | Amine, cationic | Ulexite | Clay | 9.3 | 97 |
Gangue Mineral | Collector | Collector Type | Borate Mineral | Depressant | pH | Recovery (% B2O3) | Grade (% B2O3) | Reference |
---|---|---|---|---|---|---|---|---|
Realgar | KAX | Xanthate, anionic | Colemanite | Sodium silicate | 9 | 96.99 | 33.93% | [16] |
Calcite, dolomite, and clay | Sodium oleate | Carboxylate, anionic | Borax | Sodium silicate | 8 | 81.78 | 23.47 | [40] |
Clay | R801 | Xanthate, anionic | Colemanite | Tannic acid | 9.3 | 2.5 (floated) | [26] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Powoe, S.-P.B.; Kromah, V.; Jafari, M.; Chehreh Chelgani, S. A Review on the Beneficiation Methods of Borate Minerals. Minerals 2021, 11, 318. https://doi.org/10.3390/min11030318
Powoe S-PB, Kromah V, Jafari M, Chehreh Chelgani S. A Review on the Beneficiation Methods of Borate Minerals. Minerals. 2021; 11(3):318. https://doi.org/10.3390/min11030318
Chicago/Turabian StylePowoe, Soehoe-Panhyonon Benedict, Varney Kromah, Mohammad Jafari, and Saeed Chehreh Chelgani. 2021. "A Review on the Beneficiation Methods of Borate Minerals" Minerals 11, no. 3: 318. https://doi.org/10.3390/min11030318
APA StylePowoe, S. -P. B., Kromah, V., Jafari, M., & Chehreh Chelgani, S. (2021). A Review on the Beneficiation Methods of Borate Minerals. Minerals, 11(3), 318. https://doi.org/10.3390/min11030318