REE and Sr–Nd Isotope Characteristics of Cambrian–Ordovician Carbonate in Taebaek and Jeongseon Area, Korea
Abstract
:1. Introduction
2. Geological Background
2.1. Taebaek Area
2.2. Jeongseon Area
2.3. Petrography
3. Methods
3.1. REE Analyses
3.2. Sr and Nd Isotope Ratios
4. Results
4.1. REE Patterns
4.2. 87Sr/86Sr and 143Nd/144Nd Ratios
5. Discussion
5.1. Carbonate Depositional Environment
5.2. Geochemical Significance of Sr and Nd Isotope Ratios in the Taebaek and Jeongseon Carbonates
5.3. Comparison with the Carbonates in Japan and China
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tanaka, K.; Miura, N.; Asahara, Y.; Kawabe, I. Rare earth element and strontium isotopic study of seamount-type carbonates in Mesozoic accretionary complex of Southern Chichibu Terrane, central Japan: Implication for incorporation process of seawater REE into carbonates. Geochem. J. 2003, 37, 163–180. [Google Scholar] [CrossRef] [Green Version]
- Madhavaraju, J.; Loser, H.; Lee, Y.-I.; Santacruz, L.R.; Pi-Puig, T. Geochemistry of Lower Cretaceous carbonates of the Alisitos Formation, Baja California, Mexico: Implications for REE source and paleo-redox conditions. J. S. Am. Earth Sci. 2016, 66, 149–165. [Google Scholar] [CrossRef]
- Zhang, K.J.; Li, Q.H.; Yan, L.L.; Zeng, L.; Lu, L.; Zhang, Y.X.; Hui, J.; Jin, X.; Tang, X.C. Geochemistry of carbonate deposited in various plate tectonic settings. Earth Sci. Rev. 2017, 167, 27–46. [Google Scholar] [CrossRef] [Green Version]
- Son, J.H.; Kim, G.H. Geochemical and Strontium Isotopic Compositions for Carbonate Rocks from the Hoedongri Formation in the Jeongseon Area, South Korea. Master’s Thesis, Ewha University, Seoul, Korea, 2005. [Google Scholar]
- Banner, J.L. Application of the trace element and isotope geochemistry of strontium to studies of carbonate diagenesis. Sedimentology 1995, 42, 805–824. [Google Scholar] [CrossRef]
- Clauer, N.; Chaudhuri, S.; Subramanium, R. Strontium isotopes as indicators of diagenetic recrystallization scales within carbonate rocks. Chem. Geol. Isot. Geosci. Sect. 1989, 80, 27–34. [Google Scholar] [CrossRef]
- Huh, Y.; Jang, K. Authigenic Neodymium Isotope Record of Past Ocean Circulation. J. Petrol. Soc. Korea 2014, 23, 249–259. [Google Scholar] [CrossRef]
- Piepgras, D.J.; Wasserburg, G.J. Neodymium Isotopic Variations in Seawater. Earth Planet. Sci. Lett. 1980, 50, 128–138. [Google Scholar] [CrossRef]
- Jakubowicz, M.; Dopieralska, J.; Kaim, A.; Skupien, P.; Kiel, S.; Belka, Z. Nd isotope composition of seep carbonates: Towards a new approach for constraining subseafloor fluid circulation at hydrocarbon seeps. Chem. Geol. 2019, 503, 40–51. [Google Scholar] [CrossRef]
- Castornia, F.; Masi, U.; Billi, A. Assessing the origin of Sr and Nd isotopes and (REE + Y) in Middle-Upper Pleistocene travertines from the Acquasanta Terme area (Marche, central Italy) and implications for neotectonics. Appl. Geochem. 2020, 117, 104596. [Google Scholar] [CrossRef]
- Lee, H.Y. Conodont Fauna from the Great Carbonate Series in Dongjeom District, Samcheong-Gun, Gangweon-Do and its Stratigraphical Significance. J. Geol. Soc. Korea 1971, 7, 89–101. [Google Scholar]
- Lee, H.Y. A Study on Biostratigraphy and Bioprovince of the Middle Ordovician Conodonts from South Korea: With special reference to the Conodonts from Yeongheung Formation. J. Geol. Soc. Korea 1979, 15, 37–60. [Google Scholar]
- Kim, J.Y.; Park, Y.A. Sedimentological Study on the Pungchon and Hwajeol Formations, Gangweondo, Korea. J. Geol. Soc. Korea 1981, 17, 225–240. [Google Scholar]
- Lee, B.-S.; Choi, D.-K.; Lee, H.Y. Conodonts from the Machari Formation (Middle?-Upper Cambrian) in the Yeongweol Area, Kangweon-do, Korea. J. Geol. Soc. Korea 1991, 27, 394–408. [Google Scholar]
- Seo, K.-S.; Lee, H.-Y.; Moon, H.-S.; Song, Y.G. Mineral Chemistry of Biogenic Apatite in Lower Ordovician Conodont and Its Potential and Limitation for Stratigraphical Implication. J. Geol. Soc. Korea 1991, 27, 259–270. [Google Scholar]
- Sim, M.-S.; Lee, Y.-I. Sequence stratigraphy of the Middle Cambrian Daegi Formation (Korea), and its bearing on the regional stratigraphic correlation. Sediment. Geol. 2006, 191, 151–169. [Google Scholar] [CrossRef]
- Kang, I.-S.; Choi, D.-K. Middle Cambrian trilobites and biostratigraphy of the Daegi Formation (Taebaek Group) in the Seokgaejae section, Taebaeksan Basin, Korea. Geosci. J. 2007, 11, 279–296. [Google Scholar] [CrossRef]
- Lee, B.-S. Recognition and significance of the Aurilobodus serratus Conodont Zone (Darriwilian) in lower Paleozoic sequence of the Jeongseon—Pyeongchang area, Korea. Geosci. J. 2018, 22, 683–696. [Google Scholar] [CrossRef]
- Lee, B.-S. Upper Ordovician (Sandbian) conodonts from the Hoedongri Formation of western Jeongseon, Korea. Geosci. J. 2019, 23, 695–705. [Google Scholar] [CrossRef]
- Kwon, Y.-K.; Kwon, Y.-J.; Yeo, J.-M.; Lee, C.-Y. Basin Evolution of the Taebaeksan Basin during the Early Paleozoic. Econ. Environ. Geol. 2019, 52, 427–448. [Google Scholar]
- Won, J.-H.; Lee, H.-Y.; Woo, K.-S. Sedimentological study on the Jeongseon Carbonate Pyeongchang Group and Yongtan Group, Kangwon-Do, Korea. In Proceedings of the Geological Society of Korea, Jeju, Korea, 28–31 October 2015; p. 272. [Google Scholar]
- Woo, K.-S.; Ju, S.-O. Stratigraphic and sedimentological meaning of the Yongtan Group (Joseon Supergroup), Korea. In Proceedings of the Geological Society of Korea, Pyeongchang, Korea, 26–29 October 2016; p. 98. [Google Scholar]
- Kim, T.-H.; Lee, S.-G.; Yu, J.-Y.; Tanaka, T. Study on REE Analysis of Carbonate: Effect of Ba Oxide and Hydroxide Interferences on ICP-MS REE Analysis for Geological Samples. J. Geol. Soc. Korea 2019, 55, 759–770. [Google Scholar] [CrossRef]
- Kim, T.-H.; Tanaka, T.; Lee, S.-G.; Han, S.; Yoo, I.-S.; Park, S.-B.; Lee, J.-I. Quantitative analysis of REEs in geological samples using ICP-MS: Effect of oxide and hydroxide interference on REEs. In Proceedings of the 28th Proceedings Annual Joint Conference the Petrological Society of Korea and Mineralogical Society of Korea, Busan, Korea, 29–30 May 2014; pp. 29–30. [Google Scholar]
- McDonough, W.F.; Sun, S.S. The Composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- German, C.R.; Elderfield, H. Rare earth elements in the NW Indian Ocean. Geochim. Cosmochim. Acta 1990, 54, 1929–1940. [Google Scholar] [CrossRef]
- Piepgras, D.J.; Jacobsen, S.B. The behavior of rare earth elements in seawater: Precise determination of variations in the North Pacific water column. Geochim. Cosmochim. Acta 1992, 56, 1851–1862. [Google Scholar] [CrossRef]
- Bertram, C.J.; Elderfield, H. The geochemical balance of the rare earth elements and neodymium isotopes in the oceans. Geochim. Cosmochim. Acta 1993, 57, 1957–1986. [Google Scholar] [CrossRef]
- Sholkovitz, E.R.; Landing, W.M.; Lewis, B.L. Ocean particle chemistry: The fractionation of rare earth elements between suspended particles and seawater. Geochim. Cosmochim. Acta 1994, 58, 1567–1579. [Google Scholar] [CrossRef]
- German, C.R.; Masuzawa, T.; Greaves, M.J.; Elderfield, H.; Edmond, J.M. Dissolved rare earth elements in the Southern Ocean: Cerium oxidation and the influence of hydrography. Geochim. Cosmochim. Acta 1995, 59, 1551–1558. [Google Scholar] [CrossRef]
- Noh, J.H.; Oh, S.J. Hydrothermal Alteration of the Pungchon Carbonate and the Formation of High-Ca Carbonate. J. Geol. Soc. Korea 2005, 41, 175–197. [Google Scholar]
- Yoon, K.H.; Woo, K.S. Textural and geochemical characteristics of crystalline carbonate (high-purity carbonate) in the Daegi Formation, Korea. J. Geol. Soc. Korea 2006, 42, 561–576. [Google Scholar]
- Kim, C.S.; Choi, S.-G.; Kim, G.-B.; Kang, J.; Kim, K.B.; Kim, H.; Lee, J.; Ryu, I. Genetic Environments of the High-purity Carbonate in the Upper Zone of the Daegi Formation at the Jeongseon-Samcheok Area. Econ. Environ. Geol. 2017, 50, 287–302. [Google Scholar]
- Yi, J.-M.; Kim, K.H.; Tanaka, T.; Kawabe, I. REE and Sr isotopic compositions of carbonate pebbles in the phyllitic rocks of the Hwanggangni Formation, Okcheon zone. J. Geol. Soc. Korea 2000, 36, 257–278. [Google Scholar]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell: Oxford, UK, 1985. [Google Scholar]
- Garnit, H.; Bouhlel, S.; Barca, D.; Chtara, C. Application of LA-ICP-MS to sedimentary phosphatic particles from Tunisian phosphorite deposits: Insights from trace elements and REE into paleo-depositional environments. Geochemistry 2012, 72, 127–139. [Google Scholar] [CrossRef]
- Cheong, C.-S.; Chang, H.-W. Sr, Nd, and Pb isotope systematics of granitic rocks in the central Ogcheon Belt, Korea. Geochem. J. 1997, 31, 17–36. [Google Scholar] [CrossRef] [Green Version]
- Jwa, Y.-J. Possible source rocks of Mesozoic granite in South Korea: Implications for crustal evolution in NE Asia. Earth Environ. Sci. Trans. R. Soc. Edinb. 2004, 95, 181–198. [Google Scholar]
- Kawabe, I.; Inoue, T.; Kitamura, S. Comparison of REE analyses of GSJ carbonate reference rocks by ICP-AES and INAA: Fission and spectral interferences in INAA determination of REE in geochemical samples with high U/REE ratios. Geochem. J. 1994, 28, 19–29. [Google Scholar] [CrossRef] [Green Version]
- Kunimaru, T.; Shimizu, H.; Takahashi, K.; Yabuki, S. Differences in geochemical features between Permian and Triassic cherts from the Southern Chichibu terrane, southwest Japan: REE abundances, major element compositions and Sr isotopic ratio. Sediment. Geol. 1998, 119, 195–217. [Google Scholar] [CrossRef]
- Bao, Z.; Zhao, Z.; Guha, J.; Williams-Jones, A.E. HFSE, REE, and PGE geochemistry of three sedimentary rock-hosted disseminated gold deposits in southwestern Guizhou Province, China. Geochem. J. 2004, 38, 363–381. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, K.; Kawabe, I. REE abundance in ancient seawater inferred from marine carbonate experimental REE partition coefficients between calcite and aqueous solution. Geochem. J. 2006, 40, 425–435. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Hu, W.; Jin, Z.; Zhang, J. REE Composition of Lower Ordovician Dolomites in Central and North Tarim Basin, NW China: A Potential REE Proxy for Ancient Seawater. Acta Geol. Sin. Engl. Ed. 2008, 82, 610–621. [Google Scholar]
- Zhao, Y.-Y.; Zheng, Y.-F.; Chen, F. Trace element and strontium isotope constraints on sedimentary environment of Ediacaran carbonates in southern Anhui, South China. Chem. Geol. 2009, 265, 345–362. [Google Scholar] [CrossRef]
- Jin, Z.; Zhu, D.; Hu, W.; Zhang, X.; Zhang, J.; Song, Y. Mesogenetic dissolution of the middle Ordovician carbonate in the Tahe oilfield of Tarim basin, NW China. Mar. Pet. Geol. 2009, 26, 753–763. [Google Scholar] [CrossRef]
- Fu, X.; Wang, J.; Zeng, Y.; Tan, F.; Feng, X. REE geochemistry of marine oil shale from the Changshe Mountain area, Northern Tibet, China. Int. J. Coal Geol. 2010, 81, 191–199. [Google Scholar] [CrossRef]
- Qiu, Z.; Wang, Q.; Yan, D. Geochemistry of the Middle to Late Permian carbonates from the marginal zone of an isolated platform (Laibin, South China). Sci. China Earth Sci. 2013, 56, 1688–1700. [Google Scholar] [CrossRef]
- Ling, H.-F.; Chen, X.; Li, D.; Wang, D.; Shields-Zhou, G.A.; Zhu, M. Cerium anomaly variations in Ediacaran-earliest Cambrian carbonates from the Yangtze Gorges area, South China: Implications for oxygenation of coeval shallow seawater. Precambrian Res. 2013, 225, 110–127. [Google Scholar] [CrossRef]
- Hori, M.; Ishikawa, T.; Nagaishi, K.; You, C.-F.; Huang, K.-F.; Shen, C.-C.; Kano, A. Rare earth elements in a stalagmite from southwestern Japan: A potential proxy for chemical weathering. Geochem. J. 2014, 48, 73–84. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Hua, H.; Liu, W. Isotopic and REE evidence for the paleoenvironmental evolution of the late Ediacaran Dengying Section, Ningqing of Shaanxi Province, China. Precambrian Res. 2014, 242, 96–111. [Google Scholar] [CrossRef]
- Yang, Y.; Gao, F.; Chen, C.; Pu, X. A Transgressive Depositional Setting for the Paleogene Shahejie Formation in the Qikou Depression, Eastern China: Inferences from the REE Geochemistry of Carbonates. J. Earth Sci. 2018, 29, 326–341. [Google Scholar] [CrossRef]
- Su, C.; Li, F.; Tan, X.; Gong, Q.; Zeng, K.; Tang, H.; Li, M.; Wang, X. Recognition of diagenetic contribution to the formation of carbonate-marl alternations: A case study from Permian of south China. Mar. Pet. Geol. 2019, in press. [Google Scholar]
- Tostevin, R.; Wood, R.A.; Shields, G.A.; Poulton, S.W.; Guilbaud, R.; Bowyer, F.; Penny, A.M.; He, T.; Curtis, A.; Hoffmann, K.H.; et al. Low-oxygen waters limited habitable space for early animals. Nat. Commun. 2016, 7, 1–9. [Google Scholar] [CrossRef]
La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | (La/Yb)N b | Ce/Ce* | Eu/Eu* | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TB-1 | 984 a | 1835 | 226 | 884 | 191 | 46 | 191 | 29 | 185 | 40 | 118 | 17 | 106 | 16 | 6.33 | 0.96 | 0.74 |
TB-2 | 1821 | 3712 | 430 | 1694 | 353 | 70 | 336 | 57 | 339 | 68 | 184 | 25 | 159 | 24 | 7.78 | 1.00 | 0.62 |
TB-3 | 2417 | 4076 | 472 | 1771 | 378 | 72 | 360 | 57 | 342 | 69 | 195 | 27 | 174 | 27 | 9.43 | 0.90 | 0.60 |
TB-4 | 2708 | 5507 | 589 | 2294 | 463 | 107 | 420 | 64 | 389 | 76 | 214 | 30 | 194 | 27 | 9.47 | 1.03 | 0.74 |
TB-5 | 2744 | 5717 | 665 | 2567 | 542 | 108 | 508 | 79 | 488 | 102 | 274 | 42 | 256 | 36 | 7.27 | 1.03 | 0.63 |
TB-6 | 2732 | 5571 | 628 | 2442 | 478 | 80 | 422 | 71 | 441 | 87 | 240 | 35 | 208 | 31 | 8.91 | 1.02 | 0.54 |
TB-7 | 3003 | 6329 | 782 | 3204 | 668 | 178 | 666 | 96 | 547 | 99 | 263 | 38 | 230 | 34 | 8.88 | 0.99 | 0.81 |
TB-8 | 2607 | 4993 | 569 | 2210 | 424 | 93 | 399 | 59 | 333 | 67 | 191 | 29 | 182 | 28 | 9.73 | 0.97 | 0.69 |
JS-1 | 524 | 1053 | 122 | 441 | 78 | 16 | 71 | 11 | 62 | 12 | 32 | 5 | 28 | 4 | 12.30 | 1.02 | 0.65 |
JS-2 | 2801 | 6637 | 844 | 2927 | 553 | 90 | 550 | 83 | 499 | 91 | 251 | 36 | 222 | 32 | 8.74 | 1.12 | 0.51 |
JS-3 | 4434 | 9066 | 1117 | 4003 | 718 | 147 | 674 | 100 | 614 | 114 | 336 | 48 | 306 | 45 | 10.41 | 1.02 | 0.65 |
JS-4 | 1042 | 2138 | 244 | 1009 | 156 | 38 | 156 | 20 | 105 | 19 | 53 | 7 | 46 | 6 | 15.94 | 0.97 | 0.75 |
JS-5 | 1904 | 4544 | 593 | 2334 | 427 | 136 | 409 | 56 | 315 | 49 | 135 | 17 | 102 | 11 | 13.11 | 1.12 | 0.97 |
Sample Name | Sr (ppm) | 87Sr/86Sr | 143Nd/144Nd | εNd(0) a |
---|---|---|---|---|
TB-1 | 278 | 0.709892 | 0.511970 | −13.0 |
TB-2 | 258 | 0.709791 | 0.511870 | −15.0 |
TB-3 | 234 | 0.709681 | 0.511886 | −14.7 |
TB-4 | 270 | 0.710028 | 0.511448 | −23.2 |
TB-5 | 304 | 0.710442 | 0.511900 | −14.4 |
TB-6 | 246 | 0.711157 | 0.511960 | −13.2 |
TB-7 | 299 | 0.709789 | 0.511851 | −15.3 |
TB-8 | 321 | 0.710263 | 0.511841 | −15.6 |
JS-1 | 306 | 0.708841 | 0.511895 | −14.5 |
JS-2 | 266 | 0.709559 | 0.511980 | −12.8 |
JS-3 | 652 | 0.710083 | 0.511856 | −15.3 |
JS-4 | 358 | 0.709116 | 0.511881 | −14.8 |
JS-5 | 232 | 0.711142 | 0.511940 | −13.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, T.-H.; Lee, S.-G.; Yu, J.-Y. REE and Sr–Nd Isotope Characteristics of Cambrian–Ordovician Carbonate in Taebaek and Jeongseon Area, Korea. Minerals 2021, 11, 326. https://doi.org/10.3390/min11030326
Kim T-H, Lee S-G, Yu J-Y. REE and Sr–Nd Isotope Characteristics of Cambrian–Ordovician Carbonate in Taebaek and Jeongseon Area, Korea. Minerals. 2021; 11(3):326. https://doi.org/10.3390/min11030326
Chicago/Turabian StyleKim, Tae-Hyeon, Seung-Gu Lee, and Jae-Young Yu. 2021. "REE and Sr–Nd Isotope Characteristics of Cambrian–Ordovician Carbonate in Taebaek and Jeongseon Area, Korea" Minerals 11, no. 3: 326. https://doi.org/10.3390/min11030326
APA StyleKim, T. -H., Lee, S. -G., & Yu, J. -Y. (2021). REE and Sr–Nd Isotope Characteristics of Cambrian–Ordovician Carbonate in Taebaek and Jeongseon Area, Korea. Minerals, 11(3), 326. https://doi.org/10.3390/min11030326