The Influences of Dehydration on the Mechanical Properties of Human Dentin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dentin Specimen Preparation for H and E Tests
2.2. H and E Tests by a Nanoindenter
2.3. Weight-Loss Measurement Tests for Dentin Beams
2.4. Dentin Specimen Preparation for Ultimate Tensile Strength Test
2.5. Ultimate Tensile Strength (UTS) Test
2.6. Statistical Analysis
3. Results
3.1. H and E of Dentin Beams
3.2. Weight-Loss of Dentin Beams
3.3. UTS of Dentin Beams
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jameson, M.W.; Hood, J.A.A.; Tidmarsh, B.G. The effects of dehydration and rehydration on some mechanical properties of human dentine. J. Biomech. 1993, 26, 1055–1065. [Google Scholar] [CrossRef]
- Marshall, G.W., Jr.; Marshall, S.J.; Kinney, J.H.; Balooch, M. The dentin substrate: Structure and properties related to bonding. J. Dent. 1997, 25, 441–458. [Google Scholar] [CrossRef]
- Ziskind, D.; Hasday, M.; Cohen, S.R.; Wagner, H.D. Young’s modulus of peritubular and intertubular human dentin by nano-indentation tests. J. Struct. Biol. 2011, 174, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Weiner, S.; Veis, A.; Beniash, E.; Arad, T.; Dillon, J.W.; Sabsay, B.; Siddiqui, F. Peritubular dentin formation: Crystal organization and the macromolecular constituents in human teeth. J. Struct. Biol. 1999, 126, 27–41. [Google Scholar] [CrossRef]
- Goldberg, M.; Kulkarni, A.B.; Young, M.; Boskey, A. Dentin: Structure, Composition and Mineralization: The role of dentin ECM in dentin formation and mineralization. Front. Biosci. 2011, 3, 711. [Google Scholar] [CrossRef] [PubMed]
- Kinney, J.H.; Pople, J.A.; Marshall, G.W.; Marshall, S.J. Collagen orientation and crystallite size in human dentin: A small angle X-ray scattering study. Calcif. Tissue Int. 2001, 69, 31–37. [Google Scholar] [CrossRef]
- Chowdhury, A.A.; Saikaew, P.; Matsumoto, M.; Sano, H.; Carvalho, R.M. Gradual dehydration affects the mechanical properties and bonding outcome of adhesives to dentin. Dent. Mater. J. 2019, 38, 361–367. [Google Scholar] [CrossRef]
- Takahashi, A.; Sato, Y.; Uno, S.; Pereira, P.N.R.; Sano, H. Effects of mechanical properties of adhesive resins on bond strength to dentin. Dent. Mater. 2002, 18, 263–268. [Google Scholar] [CrossRef]
- Breschi, L.; Mazzoni, A.; Ruggeri, A.; Cadenaro, M.; Di Lenarda, R.; Dorigo, E.D.S. Dental adhesion review: Aging and stability of the bonded interface. Dent. Mater. 2008, 24, 90–101. [Google Scholar] [CrossRef] [PubMed]
- Tagami, J.; Nikaido, T.; Nakajima, M.; Shimada, Y. Relationship between bond strength tests and other in vitro phenomena. Dent. Mater. 2010, 26, e94–e99. [Google Scholar] [CrossRef] [PubMed]
- Mecholsky, J.J., Jr. Fracture mechanics principles. Dent. Mater. 1995, 11, 111–112. [Google Scholar] [CrossRef]
- Sadr, A.; Shimada, Y.; Lu, H.; Tagami, J. The viscoelastic behavior of dental adhesives: A nanoindentation study. Dent. Mater. 2009, 25, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Pedreira, A.P.R.V.; Pegoraro, L.F.; de Góes, M.F.; Pegoraro, T.A.; Carvalho, R.M. Microhardness of resin cements in the intraradicular environment: Effects of water storage and softening treament. Dent. Mater. 2009, 25, 868–876. [Google Scholar] [CrossRef] [PubMed]
- Shahdad, S.A.; McCabe, J.F.; Bull, S.; Rusby, S.; Wassell, R.W. Hardness measured with traditional Vickers and Martens hardness methods. Dent. Mater. 2007, 23, 1079–1085. [Google Scholar] [CrossRef]
- Zhang, Y.-R.; Du, W.; Zhou, X.-D.; Yu, H.-Y. Review of research on the mechanical properties of the human tooth. Int. J. Oral Sci. 2014, 6, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Ebenstein, D.M.; Pruitt, L.A. Nanoindentation of biological materials. Nano Today 2006, 1, 26–33. [Google Scholar] [CrossRef]
- Burnett, G.W.; Zenewitz, J. Studies of the composition of teeth: VII. The moisture content of calcified tooth tissues. J. Dent. Res. 1958, 37, 581–589. [Google Scholar] [CrossRef]
- Sano, H.; Chowdhury, A.F.M.A.; Saikaew, P.; Matsumoto, M.; Hoshika, S.; Yamauti, M. The microtensile bond strength test: Its historical background and application to bond testing. Jpn. Dent. Sci. Rev. 2020, 56, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Van Meerbeek, B.; Peumans, M.; Poitevin, A.; Mine, A.; Van Ende, A.; Neves, A.; De Munck, J. Relationship between bond-strength tests and clinical outcomes. Dent. Mater. 2010, 26, e100–e121. [Google Scholar] [CrossRef]
- Van Meerbeek, B.; Willems, G.; Celis, J.-P.; Roos, J.R.; Braem, M.; Lambrechts, P.; Vanherle, G. Assessment by nano-indentation of the hardness and elasticity of the resin-dentin bonding area. J. Dent. Res. 1993, 72, 1434–1442. [Google Scholar] [CrossRef] [PubMed]
- Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Armstrong, S.; Breschi, L.; Özcan, M.; Pfefferkorn, F.; Ferrari, M.; Van Meerbeek, B. Academy of Dental Materials guidance on in vitro testing of dental composite bonding effectiveness to dentin/enamel using micro-tensile bond strength (μTBS) approach. Dent. Mater. 2017, 33, 133–143. [Google Scholar] [CrossRef] [Green Version]
- Oyen, M.L. Nanoindentation of hydrated materials and tissues. Curr. Opin. Solid State Mater. Sci. 2015, 19, 317–323. [Google Scholar] [CrossRef]
- Bertassoni, L.E.; Habelitz, S.; Kinney, J.H.; Marshall, S.J.; Marshall, G.W., Jr. Biomechanical perspective on the remineralization of dentin. Caries Res. 2009, 43, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Oyen, M.L. Nanoindentation hardness of mineralized tissues. J. Biomech. 2006, 39, 2699–2702. [Google Scholar] [CrossRef] [PubMed]
- Angker, L.; Swain, M.V.; Kilpatrick, N. Characterising the micro-mechanical behaviour of the carious dentine of primary teeth using nano-indentation. J. Biomech. 2005, 38, 1535–1542. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.C.; Ko, C.C.; Liu, C.C.; Douglas, W.H.; DeLong, R.; Seong, W.-J.; Hodges, J.; An, K.-N. Elasticity of alveolar bone near dental implant–bone interfaces after one month’s healing. J. Biomech. 2003, 36, 1209–1214. [Google Scholar] [CrossRef]
- Zysset, P.K.; Guo, X.E.; Hoffler, C.E.; Moore, K.E.; Goldstein, S.A. Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. J. Biomech. 1999, 32, 1005–1012. [Google Scholar] [CrossRef]
- Chowdhury, A.F.M.A.; Islam, R.; Alam, A.; Matsumoto, M.; Yamauti, M.; Carvalho, R.M.; Sano, H. Variable Smear Layer and Adhesive Application: The Pursuit of Clinical Relevance in Bond Strength Testing. Int. J. Mol. Sci. 2019, 20, 5381. [Google Scholar] [CrossRef] [Green Version]
Mechanical Properties | Dehydration Time | ||
---|---|---|---|
5 min (Baseline) | 1 h | 24 h | |
Hardness * | 404.4 ± 84.2 A | 488.1 ± 71.6 B | 704.9 ± 75.9 C |
Elastic Modulus * | 17,311.0 ± 2742.3 A | 20,256.0 ± 1292.2 B | 21,324.0 ± 1784.8 B |
Tested Material | Dehydration Time | |||
---|---|---|---|---|
0 min | 5 min | 1 h | 24 h | |
Human Dentin Beams | 10.25 ± 0.32 A | 9.83 ± 0.35 B | 9.57 ± 0.52 B | 9.46 ± 0.50 B |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chowdhury, A.F.M.A.; Alam, A.; Islam, M.R.R.; Yamauti, M.; Alam, M.S.; Rahman, M.M.; Asad-Uz-Zaman; Ahmed, M.; Álvarez-Lloret, P.; Sano, H. The Influences of Dehydration on the Mechanical Properties of Human Dentin. Minerals 2021, 11, 336. https://doi.org/10.3390/min11040336
Chowdhury AFMA, Alam A, Islam MRR, Yamauti M, Alam MS, Rahman MM, Asad-Uz-Zaman, Ahmed M, Álvarez-Lloret P, Sano H. The Influences of Dehydration on the Mechanical Properties of Human Dentin. Minerals. 2021; 11(4):336. https://doi.org/10.3390/min11040336
Chicago/Turabian StyleChowdhury, Abu Faem Mohammad Almas, Arefin Alam, MD Refat Readul Islam, Monica Yamauti, Mohammad Shafiqul Alam, Mohammad Musfiqur Rahman, Asad-Uz-Zaman, Mohiuddin Ahmed, Pedro Álvarez-Lloret, and Hidehiko Sano. 2021. "The Influences of Dehydration on the Mechanical Properties of Human Dentin" Minerals 11, no. 4: 336. https://doi.org/10.3390/min11040336
APA StyleChowdhury, A. F. M. A., Alam, A., Islam, M. R. R., Yamauti, M., Alam, M. S., Rahman, M. M., Asad-Uz-Zaman, Ahmed, M., Álvarez-Lloret, P., & Sano, H. (2021). The Influences of Dehydration on the Mechanical Properties of Human Dentin. Minerals, 11(4), 336. https://doi.org/10.3390/min11040336