Topographic Analysis of Calcite (104) Cleavage Surface Dissolution in Ethanol–Water Solutions
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Bulk Dissolution Rate
3.2. Etch Pits Growth after Pre-Immersion in 20% Ethanol–Water Solution for 12 h
3.3. Adsorption of Ethanol by Calcite Powders
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Martin, J.B. Carbonate minerals in the global carbon cycle. Chem. Geol. 2017, 449, 58–72. [Google Scholar] [CrossRef]
- Dong, S.; Berelson, W.M.; Rollins, N.E.; Subhas, A.V.; Naviaux, J.D.; Celestian, A.J.; Liu, X.; Turaga, N.; Kemnitz, N.J.; Byrne, R.H.; et al. Aragonite dissolution kinetics and calcite/aragonite ratios in sinking and suspended particles in the North Pacific. Earth Planet. Sci. Lett. 2019, 515, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Dhami, N.K.; Reddy, M.S.; Mukherjee, M.S. Biomineralization of calcium carbonates and their engineered applications: A review. Front. Microbiol. 2013, 4, 314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sand, K.K.; Pedersen, C.S.; Sjöberg, S.; Nielsen, J.W.; Makovicky, E.; Stipp, S.L.S. Biomineralization: Long-term effectiveness of polysaccharides on the growth and dissolution of calcite. Cryst. Growth Des. 2014, 14, 5486–5494. [Google Scholar] [CrossRef]
- Yao, S.; Jin, B.; Liu, Z.; Shao, C.; Zhao, R.; Wang, X.; Tang, R. Biomineralization: From Material Tactics to Biological Strategy. Adv. Mater. 2017, 29, 1605903. [Google Scholar] [CrossRef]
- Singh, A.V.; Maheshwari, S.; Giovanni, D.; Naikmasur, V.G.; Rai, A.; Aditi, A.S.; Gade, W.N.; Vyas, V.; Gemmati, D.; Zeri, G.; et al. Nanoengineering approaches to design advanced dental materials for clinical applications. J. Bionanosci. 2010, 453. [Google Scholar] [CrossRef]
- Achal, V.; Mukherjee, A.; Kumari, D.; Zhang, Q. Biomineralization for sustainable construction—A review of processes and applications. Earth-Sci. Rev. 2015, 148, 1–17. [Google Scholar] [CrossRef]
- Ricci, M.; Segura, J.J.; Erickson, B.W.; Fantner, G.; Stellacci, F.; Voïtchovsky, K. Growth and Dissolution of Calcite in the Presence of Adsorbed Stearic Acid. Langmuir 2015, 31, 7563–7571. [Google Scholar] [CrossRef] [Green Version]
- Montanari, G.; Lakshtanov, L.Z.; Tobler, D.J.; Dideriksen, K.; Dalby, K.N.; Bovet, N.; Stipp, S.L.S. Effect of Aspartic Acid and Glycine on Calcite Growth. Cryst. Growth Des. 2016, 16, 4813–4821. [Google Scholar] [CrossRef]
- Mann, S. Molecular recognition in biomineralization. Nature 1988, 332, 119–124. [Google Scholar] [CrossRef]
- Saharay, M.; Kirkpatrick, R.J. Ab initio and metadynamics studies on the role of essential functional groups in biomineralization of calcium carbonate and environmental situations. Phys. Chem. Chem. Phys. 2014, 16, 26843–26854. [Google Scholar] [CrossRef]
- Yang, M.; Stipp, S.L.S.; Harding, J. Biological control on calcite crystallization by polysaccharides. Cryst. Growth Des. 2008, 8, 4066–4074. [Google Scholar] [CrossRef]
- Imada, H.; Kimura, K.; Onishi, H. Water and 2-propanol structured on calcite (104) probed by frequency-modulation atomic force microscopy. Langmuir 2013, 29, 10744–10751. [Google Scholar] [CrossRef]
- Bovet, N.; Yang, M.; Javadi, M.S.; Stipp, S.L.S. Interaction of alcohols with the calcite surface. Phys. Chem. Chem. Phys. 2015, 17, 3490–3496. [Google Scholar] [CrossRef]
- Teng, H.H.; Chen, Y.; Pauli, E. Direction specific interactions of 1,4-dicarboxylic acid with calcite surfaces. J. Am. Chem. Soc. 2006, 128, 14482–14484. [Google Scholar] [CrossRef]
- Freeman, C.L.; Asteriadis, I.; Yang, M.; Harding, J.H. Interactions of organic molecules with calcite and magnesite surfaces. J. Phys. Chem. C 2009, 113, 3666–3673. [Google Scholar] [CrossRef]
- Lakshtanov, L.Z.; Bovet, N.; Stipp, S.L.S. Inhibition of calcite growth by alginate. Geochim. Cosmochim. Acta 2011, 75, 3945–3955. [Google Scholar] [CrossRef]
- Giuffre, A.J.; Hamm, L.M.; Han, N.; De Yoreo, J.J.; Dove, P.M. Polysaccharide chemistry regulates kinetics of calcite nucleation through competition of interfacial energies. Proc. Natl. Acad. Sci. USA 2013, 110, 9261–9262. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Agudo, E.; Putnis, C.V. Direct observations of mineral fluid reactions using atomic force microscopy: The specific example of calcite. Mineral. Mag. 2012, 76, 227–253. [Google Scholar] [CrossRef]
- Perry, T.D., IV; Duckworth, O.W.; McNamara, C.J.; Martin, S.T.; Mitchell, R. Effects of the biologically produced polymer alginic acid on macroscopic and microscopic calcite dissolution rates. Environ. Sci. Technol. 2004, 38, 3040–3046. [Google Scholar] [CrossRef]
- Thomas, M.M.; Clouse, J.A.; Longo, J.M. Adsorption of organic compounds on carbonate minerals 3. Influence on dissolution rates. Chem. Geol. 1993, 109, 227–237. [Google Scholar] [CrossRef]
- Sand, K.K.; Yang, M.; Makovicky, E.; Cooke, D.J.; Hassenkam, T.; Bechgaard, K.; Stipp, S.L.S. Binding of ethanol on calcite: The role of the OH bond and its relevance to biomineralization. Langmuir 2010, 26, 15239–15247. [Google Scholar] [CrossRef]
- Cooke, D.J.; Gray, R.J.; Sand, K.K.; Stipp, S.L.S.; Elliott, J.A. Interaction of ethanol and water with the {1014} surface of calcite. Langmuir 2010, 26, 14520–14529. [Google Scholar] [CrossRef]
- Pasarín, I.S.; Yang, M.; Bovet, N.; Glyvradal, M.; Nielsen, M.M.; Bohr, J.; Feidenhansâ, R.; Stipp, S.L.S. Molecular ordering of ethanol at the calcite surface. Langmuir 2012, 28, 2545–2550. [Google Scholar] [CrossRef]
- Wu, D.; Navrotsky, A. Probing the energetics of organic-nanoparticle interactions of ethanol on calcite. Proc. Natl. Acad. Sci. USA 2015, 112, 5314–5318. [Google Scholar] [CrossRef] [Green Version]
- Ataman, E.; Andersson, M.P.; Ceccato, M.; Bovet, N.; Stipp, S.L.S. Functional Group Adsorption on Calcite: I. Oxygen Containing and Nonpolar Organic Molecules. J. Phys. Chem. C 2016, 120. [Google Scholar] [CrossRef]
- Pingitore, N.E. Dissolution kinetics of CaCO3 in common laboratory solvents. J. Sediment. Petrol. 1993, 63, 641–645. [Google Scholar] [CrossRef]
- Feng, P.; Brand, A.S.; Chen, L.; Bullard, W. In situ nanoscale observations of gypsum dissolution by digital holographic microscopy. Chem. Geol. 2017, 460, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.; Feng, P.; Liu, Y.; Liu, J.; Bullard, J.W. In situ nano-scale observation of rapid mineral dissolution in water. Cem. Concr. Res. 2020, 132, 106044. [Google Scholar] [CrossRef]
- Brand, A.S.; Feng, P.; Bullard, J.W. Calcite dissolution rate spectra measured by in situ digital holographic microscopy. Geochim. Cosmochim. Acta 2017, 213, 317–329. [Google Scholar] [CrossRef] [PubMed]
- Renon, H.; Prausnitz, J.M. Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J. 1968, 14. [Google Scholar] [CrossRef]
- Fischer, C.; Kurganskaya, I.; Schäfer, T.; Lüttge, A. Variability of crystal surface reactivity: What do we know? Appl. Geochem. 2014, 43, 132–157. [Google Scholar] [CrossRef]
- Fischer, C.; Luttge, A. Beyond the conventional understanding of water-rock reactivity. Earth Planet. Sci. Lett. 2017, 457, 100–105. [Google Scholar] [CrossRef]
- Fischer, C.; Kurganskaya, I.; Luttge, A. Inherited control of crystal surface reactivity. Appl. Geochem. 2018, 91, 140–148. [Google Scholar] [CrossRef]
- Smith, M.E.; Knauss, K.G.; Higgins, S.R. Effects of crystal orientation on the dissolution of calcite by chemical and microscopic analysis. Chem. Geol. 2013, 360, 10–21. [Google Scholar] [CrossRef]
- Lasaga, A.L.; Luttge, A. Variation of Crystal Dissolution Rate Based on a Dissolution Step Wave Model. Science 2001, 291, 2400–2404. [Google Scholar] [CrossRef]
- Britt, D.W.; Hlady, V. In-Situ atomic force microscope imaging of calcite etch pit morphology changes in undersaturated and 1-hydroxyethylidene-1,1-diphosphonic acid poisoned solutions. Langmuir 1997, 13, 1873–1876. [Google Scholar] [CrossRef] [Green Version]
- Arvidson, R.S.; Ertan, I.E.; Amonette, J.E.; Luttge, A. Variation in calcite dissolution rates: A fundamental problem? Geochim. Cosmochim. Acta 2003, 67, 1623–1634. [Google Scholar] [CrossRef]
- Ruiz-Agudo, E.; Urosevic, M.; Putnis, C.V.; Rodríguez-Navarro, C.; Cardell, C.; Putnis, A. Ion-specific effects on the kinetics of mineral dissolution. Chem. Geol. 2011, 281, 364–371. [Google Scholar] [CrossRef]
- Wang, S.; Li, G.; Li, Y.; Guo, J.; Zhou, S.; Yong, S.; Pan, B.; Bai, B. Adsorption of new hydrophobic polyacrylamide on the calcite surface. J. Appl. Polym. Sci. 2017, 134, 45134. [Google Scholar] [CrossRef]
- Brand, A.S.; Bullard, J.W. Dissolution Kinetics of Cubic Tricalcium Aluminate Measured by Digital Holographic Microscopy. Langmuir 2017, 33, 9645–9656. [Google Scholar] [CrossRef]
- Brand, A.S.; Gorham, J.M.; Bullard, J.W. Dissolution rate spectra of β-dicalcium silicate in water of varying activity. Cem. Concr. Res. 2019, 118, 69–83. [Google Scholar] [CrossRef]
- Keller, K.S.; Olsson, M.H.M.; Yang, M.; Stipp, S.L.S. Adsorption of ethanol and water on calcite: Dependence on surface geometry and effect on surface behavior. Langmuir 2015, 31, 3847–3853. [Google Scholar] [CrossRef]
- Söngen, H.; Jaques, Y.M.; Spijker, P.; Marutschke, C.; Klassen, S.; Hermes, I.; Bechstein, R.; Zivanovic, L.; Tracey, J.; Foster, A.S.; et al. Three-dimensional solvation structure of ethanol on carbonate minerals. Beilstein J. Nanotechnol. 2020, 11, 891–898. [Google Scholar] [CrossRef]
- Teng, H.H. Controls by saturation state on etch pit formation during calcite dissolution. Geochim. Cosmochim. Acta 2004, 68, 253–262. [Google Scholar] [CrossRef]
- Henriksen, K.; Stipp, S.L.S.; Young, J.R.; Marsh, M.E. Biological control on calcite crystallization: AFM investigation of coccolith polysaccharide function. Am. Mineral. 2004, 89, 1709–1716. [Google Scholar] [CrossRef]
- Reeder, R.J. Interaction of divalent cobalt, zinc, cadmium, and barium with the calcite surface during layer growth. Geochim. Cosmochim. Acta 1996, 60, 1543–1552. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, S.; Feng, P.; Liu, J. Topographic Analysis of Calcite (104) Cleavage Surface Dissolution in Ethanol–Water Solutions. Minerals 2021, 11, 376. https://doi.org/10.3390/min11040376
Ye S, Feng P, Liu J. Topographic Analysis of Calcite (104) Cleavage Surface Dissolution in Ethanol–Water Solutions. Minerals. 2021; 11(4):376. https://doi.org/10.3390/min11040376
Chicago/Turabian StyleYe, Shaoxiong, Pan Feng, and Jiaping Liu. 2021. "Topographic Analysis of Calcite (104) Cleavage Surface Dissolution in Ethanol–Water Solutions" Minerals 11, no. 4: 376. https://doi.org/10.3390/min11040376
APA StyleYe, S., Feng, P., & Liu, J. (2021). Topographic Analysis of Calcite (104) Cleavage Surface Dissolution in Ethanol–Water Solutions. Minerals, 11(4), 376. https://doi.org/10.3390/min11040376