Concretes Made of Magnesium–Silicate Rocks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Magnesium–Silicate Rocks of the Yoko–Dovyren Massif
2.1.2. Other Materials
2.2. Methods
2.2.1. Concrete Sampling
2.2.2. Research Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Emmanuel, A.Y.; Jerry, C.S.; Dzigbodi, D.A. Review of environmental and health impacts of mining in Ghana. J. Health Pollut. 2018, 8, 43–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, M.K.; Das, A. Impact of mine waste leachates on aquatic environment: A review. Curr. Pollut. Rep. 2017, 3, 31–37. [Google Scholar] [CrossRef]
- Wellen, C.; Shatilla, N.J.; Carey, S.K. The influence of mining on hydrology and solute transport in the Elk Valley, British Columbia, Canada. Environ. Res. Lett. 2018, 13, 074012. [Google Scholar] [CrossRef] [Green Version]
- Tayebi-Khorami, M.; Edraki, M.; Corder, G.; Golev, A. Re-Thinking mining waste through an integrative approach led by circular economy aspirations. Minerals 2019, 9, 286. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, F.P. Mining industry and sustainable development: Time for Change. Food Energy Secur. 2017, 6, 61–77. [Google Scholar] [CrossRef]
- Benarchid, Y.; Taha, Y.; Argane, R.; Tagnit-Hamou, A.; Benzaazoua, M. Concrete containing low-sulphide waste rocks as fine and coarse aggregates: Preliminary assessment of materials. J. Clean. Prod. 2019, 221, 419–429. [Google Scholar] [CrossRef]
- Machi, A.E.; Mabroum, S.; Taha, Y.; Tagnit-Hamou, A.; Benzaazoua, M.; Hakkou, R. Use of flint from phosphate mine waste rocks as an alternative aggregates for concrete. Constr. Build. Mater. 2021, 271, 121886. [Google Scholar] [CrossRef]
- Góra, J.; Piasta, W. Impact of mechanical resistance of aggregate on properties of concrete. Case Stud. Constr. Mater. 2020, 13, e00438. [Google Scholar] [CrossRef]
- Strzałkowski, J.; Garbalinska, H. The effect of aggregate shape on the properties of concretes with silica fume. Materials 2020, 13, 2780. [Google Scholar] [CrossRef] [PubMed]
- Prajapati, J.; Karanjit, S. Effect of coarse aggregate sources on the compressive strength of various grade of nominal mixed concrete. Jpn. Soc. Civ. Eng. 2019, 7, 52–60. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Qiu, J.; Deng, W.; Xing, J.; Liang, J. Factors affecting brittleness behavior of coal-gangue ceramsite lightweigh aggregate concrete. Front. Mater. 2020, 7, 554718. [Google Scholar] [CrossRef]
- Gayana, B.C.; Chandar, K.R. Sustainable use of mine waste and tailings with suitable admixture as aggregates in concrete pavements—A review. Adv. Concr. Constr. 2018, 6, 221–243. [Google Scholar]
- Pilegis, M.; Gardner, D.; Lark, R. An investigation into the use of manufactured sand as a 100% replacement for fine aggregate in concrete. Materials 2016, 9, 440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tebbal, N.; Rahmouni, Z.E.A. Influence of local sand on the physicomechanical comportment and durability of high performance concrete. Adv. Civ. Eng. 2016, 2016, 3897064. [Google Scholar] [CrossRef]
- Tapkire, G.V.; Wagh, H.D.; Jade, Y.R. The effect of sand particle size and shape on compressive strength of cement. Int. J. Adv. Res. Sci. Eng. 2017, 6, 672–677. [Google Scholar]
- Belhadj, B.; Bederina, M.; Benguettache, K.; Queneudec, M. Effect of the type of sand on the fracture and mechanical properties of sand concrete. Adv. Concr. Constr. 2014, 2, 13–27. [Google Scholar] [CrossRef] [Green Version]
- Mavroulidou, M. Mechanical properties and durability of concrete with water cooled copper slag aggregate. Waste Biomass Valor. 2017, 8, 1841–1854. [Google Scholar] [CrossRef] [Green Version]
- Shen, W.; Liu, Y.; Wang, Z.; Cao, L.; Wu, D.; Wang, Y.; Ji, X. Influence of manufactured sand’s characteristics on its concrete performance. Constr. Build. Mater. 2018, 172, 574–583. [Google Scholar] [CrossRef]
- Lozano-Lunar, A.; Dubchenko, I.; Bashynskyi, S.; Rodero, A.; Fernández, J.M.; Jiménez, J.R. Performance of self-compacting mortars with granite sludge as aggregate. Constr. Build. Mater. 2020, 251, 118998. [Google Scholar] [CrossRef]
- Santos, C.R.; Tubino, R.M.C.; Schneider, I.A.H. Mineral processing and characterization of coal waste to be used as fine aggregates for concrete paving blocks. IBRACON Struct. Mater. J. 2015, 8, 14–24. [Google Scholar] [CrossRef]
- González, J.S.; Boadella, I.L.; Gayarre, F.L.; Pérez, C.L.-C.; López, M.S.; Stochino, F. Use of mining waste to produce ultra-high-performance fibre-reinforced concrete. Materials 2020, 13, 2457. [Google Scholar] [CrossRef] [PubMed]
- Gou, M.; Zhou, L.; Then, N.W.Y. Utilization of tailings in cement and concrete: A review. Sci. Eng. Compos. Mater. 2019, 26, 449–464. [Google Scholar] [CrossRef]
- Ugama, T.I.; Ejeh, S.P.; Amartey, D.Y. Effect of iron ore tailing on the properties of concrete. Civ. Environ. Res. 2014, 6, 7–13. [Google Scholar]
- Tian, Z.X.; Zhao, Z.H.; Dai, C.Q.; Liu, S.J. Experimental study on the properties of concrete mixed with iron ore tailings. Adv. Mater. Sci. Eng. 2016, 2016, 8606505. [Google Scholar] [CrossRef] [Green Version]
- Krivenko, P.; Kovalchuk, O.; Boiko, O. Practical experience of construction of concrete pavement using non-conditional aggregates. IOP Conf. Ser. Mater. Sci. Eng. 2019, 708, 012089. [Google Scholar] [CrossRef]
- Lam, E.J.; Zetola, V.; Ramírez, Y.; Montofré, Í.L.; Pereira, F. Making paving stones from copper mine tailings as aggregates. Int. J. Environ. Res. Public Health 2020, 17, 2448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naldrett, A.J. Magmatic Sulfide Deposits: Geology, Geochemistry and Exploration; Springer: Berlin, Germany, 2004; p. 728. [Google Scholar]
- Stowe, C.W. Compositions and tectonic settings of chromite deposits through time. Econ. Geol. 1994, 89, 528–546. [Google Scholar] [CrossRef]
- Force, E.R. Geology of titanium-mineral deposits. Geol. Soc. Am. Spec. Pap. 1991, 259, 19–37. [Google Scholar]
- Virta, R.L. Asbestos: Geology, mineralogy, mining, and uses. In United States Geological Survey Open-File Report 02–149; USGS: Reston, VA, USA, 2002; p. 38. [Google Scholar]
- Harlow, G.E.; Sorensen, S.S. Jade (nephrite and jadeitite) and serpentinite: Metasomatic connections. Int. Geol. Rev. 2005, 47, 113–146. [Google Scholar] [CrossRef]
- Pohl, W. Economic Geology: Principles and Practice: Metals, Minerals, Coal and Hydrocarbons—Introduction to Formation and Sustainable Exploration of Mineral Deposits; Wiley-Blackwell: Hoboken, NJ, USA, 2011; p. 695. [Google Scholar]
- Gurney, J.J.; Helmstaedt, H.H.; Richardson, S.H.; Shirey, S.B. Diamonds through time. Econ. Geol. 2010, 105, 689–712. [Google Scholar] [CrossRef]
- Tappert, R.; Tappert, M.C. Diamonds in Nature: A Guide to Rough Diamonds; Springer: Berlin, Germany, 2011; p. 142. [Google Scholar]
- Kislov, E.V.; Khudyakova, L.I. Yoko–Dovyren Layered Massif: Composition, Mineralization, Overburden and Dump Rock Utilization. Minerals 2020, 10, 682. [Google Scholar] [CrossRef]
- Timofeeva, S.S.; Kislov, E.V.; Khudyakova, L.I. Yoko-Dovyren layered dunite-troctolite-gabbro massif, North Baikal region, Russia: Structure, composition and use of mineral raw materials. Earth Sci. Front. 2020, 27, 262–279. [Google Scholar]
- Konnikov, E.G. Differentiated Ultrabasic-Basic Complexes in the Precambrian Rocks of Transbaikalia; Publishing House of Science: Novosibirsk, Russia, 1986; p. 127. (In Russian) [Google Scholar]
- Kislov, E.V. The Yoko-Dovyren Layered Massif; RAS SD Buryat Scientific Centre Publishing House: Ulan-Ude, Russia, 1998; p. 265. (In Russian) [Google Scholar]
- Rytsk, E.Y.; Shalaev, V.S.; Rizvanova, N.G.; Krymskii, R.S.; Makeev, A.F.; Rile, G.V. The Olokit Zone of the Baikal Fold Region: New isotopic geochronological and geochemical data. Geotectonics 2002, 36, 24–35. [Google Scholar]
- Ariskin, A.; Danyushevsky, L.; Nikolaev, G.; Kislov, E.; Fiorentini, M.; McNeill, A.; Kostitsyn, Y.; Goemann, K.; Feig, S.; Malyshev, A. The Dovyren Intrusive Complex (Southern Siberia, Russia): Insights into dynamics of an open magma chamber with implications for parental magma origin, composition, and Cu-Ni-PGE fertility. Lithos 2018, 302, 242–262. [Google Scholar] [CrossRef]
- Manuilova, M.M.; Zarubin, V.V. Precambrian Vlcanogenic Rocks of the Northern Baikal Region; Publishing House of Science: Leningrad, Russia, 1981; p. 88. (In Russian) [Google Scholar]
- Ariskin, A.A.; Danyushevsky, L.V.; Konnikov, E.G.; Maas, R.; Kostitsyn, Y.A.; McNeill, A.; Meffre, S.; Nikolaev, G.S.; Kislov, E.V. The Dovyren Intrusive Complex (Northern Baikal region, Russia): Isotope-geochemical markers of contamination of parental magmas and extreme enrichment of the source. Russ. Geol. Geophys. 2015, 56, 411–434. [Google Scholar] [CrossRef]
- Ariskin, A.A.; Konnikov, E.G.; Danyushevsky, L.V.; Kislov, E.V.; Nikolaev, G.S.; Orsoev, D.A.; Barmina, G.S.; Bychkov, K.A. The Dovyren Intrusive Complex: Problems of petrology and Ni sulfide mineralization. Geochem. Int. 2009, 47, 425–453. [Google Scholar] [CrossRef]
- Ariskin, A.A.; Kostitsyn, Y.A.; Konnikov, E.G.; Danyushevsky, L.V.; Meffre, S.; Nikolaev, G.S.; McNeill, A.; Kislov, E.V.; Orsoev, D.A. Geochronology of the Dovyren Intrusive Complex, Northwestern Baikal area, Russia, in the Neoproterozoic. Geochem. Int. 2013, 51, 859–875. [Google Scholar] [CrossRef]
- Ernst, R.E.; Hamilton, M.A.; Söderlund, U.; Hanes, J.A.; Gladkochub, D.P.; Okrugin, A.V.; Kolotilina, T.; Mekhonoshin, A.S.; Bleeker, W.; LeCheminant, A.N.; et al. Long-lived connection between southern Siberia and northern Laurentia in the Proterozoic. Nat. Geosci. 2016, 9, 464–469. [Google Scholar] [CrossRef]
- GOST 8267–93 Crushed Stone and Gravel of Solid Rocks for Construction Works. In Specifications; Standartinform: Moscow, Russia, 2018; p. 27. (In Russian)
- GOST 8736–2014 Sand for Construction Works. In Specifications; Standartinform: Moscow, Russia, 2019; p. 16. (In Russian)
- GOST 10178–85 Portland Cement and Portland Blastfurnace Slag Cement. In Specifications; Standartinform: Moscow, Russia, 2008; p. 14. (In Russian)
- GOST 30515–2013 Cements. In General Specifications; Standartinform: Moscow, Russia, 2019; p. 39. (In Russian)
- GOST 23732-2011 Water for Concrete and Mortars. In Specifications; Standartinform: Moscow, Russia, 2012; p. 21. (In Russian)
- Li, B.X.; Ke, G.J.; Zhou, M.K. Influence of manufactured sand characteristics on strength and abrasion resistance of pavement cement concrete. Constr. Build. Mater. 2011, 25, 3849–3853. [Google Scholar] [CrossRef]
- Dilek, U. Effects of manufactured sand characteristics on water demand of mortar and concrete mixtures. J. Test. Eval. 2015, 43, 562–573. [Google Scholar] [CrossRef]
- GOST 12730.3-78 Concretes. In Method of Determination of Water Absorption; Standartinform: Moscow, Russia, 2007; p. 6. (In Russian)
- Apeagyei, A.K.; Grenfell, J.R.A.; Airey, G.D. Influence of aggregate absorption and diffusion properties on moisture damage in asphalt mixtures. Road Mater. Pavement Des. 2015, 16, 404–422. [Google Scholar] [CrossRef]
Rock | Basic Oxides | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | FeO | MgO | CaO | Na2O | K2O | LOI | % | |
Dunite | 37.40 | 1.25 | 3.10 | 12.60 | 40.81 | 0.40 | 0.14 | 0.02 | 2.84 | 98.56 |
Wehrlite | 39.70 | 1.80 | 0.42 | 10.70 | 43.83 | 0.81 | 0.12 | 0.07 | 1.29 | 98.74 |
Troctolite | 40.60 | 12.00 | 1.11 | 9.45 | 28.60 | 5.57 | 0.57 | 0.04 | 1.33 | 99.27 |
Dunite sand | 38.40 | 2.10 | 2.93 | 9.95 | 43.20 | 0.46 | 0.05 | 0.03 | 0.98 | 98.10 |
Characteristics | Dunite | Wehrlite | Troctolite | Granite |
---|---|---|---|---|
Bulk specific gravity, kg/m3 | 1745.0 | 1739.0 | 1728.0 | 1400.0 |
True density (specific gravity), kg/m3 | 3004.0 | 3012.0 | 2913.0 | 2640.0 |
Humidity, % | 0.5 | 0.5 | 0.5 | 0.5 |
Crushability grade | 1200 | 1200 | 1200 | 1000 |
Abrasion capacity grade | II | II | II | II |
Grain content of lamellar (flaky) and needle-shaped grains, % | - | - | - | 24.4 |
Content of soft rock grains, % | - | - | - | 7.9 |
Content of dust-like and clay particles, % | 0.7 | 0.7 | 0.8 | 2.5 |
Content of clay in lumps, % | - | - | - | - |
Mass loss during decomposition, % | 1.0 | 1.0 | 1.2 | 1.4 |
Characteristics | Dunite Sand | Quartz Sand |
---|---|---|
Bulk density (density in loose bulk condition), kg/m3 | 1900.0 | 1700.0 |
True density (specific gravity), kg/m3 | 3038.0 | 2650.0 |
Humidity, % | 1.0 | 2.8 |
Content of dust-like and clay particles, % | 3.0 | 2.0 |
Content of clay in lumps, % | 0.4 | 0.3 |
Fineness modulus | 2.7 | 2.5 |
Aggregates | Characteristics | |||
---|---|---|---|---|
Crushed Stone | Sand | Cone Flow, mm | Cone Slump, mm | Density, kg/m3 |
Dunite | Quartz | 170 | 590 | 2794 |
Dunite | 160 | 560 | 2889 | |
Wehrlite | Quartz | 170 | 590 | 2763 |
Dunite | 160 | 560 | 2826 | |
Troctolite | Quartz | 170 | 600 | 2656 |
Dunite | 160 | 570 | 2714 | |
Granite | Quartz | 180 | 610 | 2371 |
Dunite | 170 | 570 | 2432 |
Crushed Stone | Sand | p7 (MPa) | α7 | p14 (MPa) | α14 | p28 (MPa) | α28 | p90 (MPa) | α90 |
---|---|---|---|---|---|---|---|---|---|
Granite | Quartz | 16.0 | 1.00 | 19.2 | 1.00 | 27.3 | 1.00 | 32.1 | 1.00 |
Dunite | 17.3 | 1.08 | 20.6 | 1.07 | 28.4 | 1.04 | 33.8 | 1.05 | |
Dunite | Quartz | 18.3 | 1.14 | 21.8 | 1.14 | 28.8 | 1.05 | 34.5 | 1.07 |
Dunite | 21.9 | 1.37 | 25.3 | 1.32 | 32.8 | 1.20 | 38.9 | 1.21 | |
Wehrlite | Quartz | 17.1 | 1.07 | 20.4 | 1.06 | 28.3 | 1.04 | 34.2 | 1.07 |
Dunite | 21.7 | 1.36 | 25.1 | 1.31 | 32.0 | 1.17 | 37.9 | 1.18 | |
Troctolite | Quartz | 16.9 | 1.06 | 20.0 | 1.04 | 28.0 | 1.03 | 33.6 | 1.05 |
Dunite | 20.7 | 1.29 | 24.2 | 1.26 | 31.5 | 1.15 | 37.7 | 1.17 |
Crushed Stone | Sand | Weight Loss, %, After the Cycles | Frost Resistance Coefficient, After the Cycles | ||||
---|---|---|---|---|---|---|---|
25 | 50 | 75 | 25 | 50 | 75 | ||
Granite | Quartz | 1.57 | 1.83 | 2.03 | 1.02 | 0.99 | 0.89 |
Dunite | 1.48 | 1.80 | 1.98 | 1.03 | 1.00 | 0.90 | |
Dunite | Quartz | 1.14 | 1.26 | 1.41 | 1.07 | 1.01 | 0.97 |
Dunite | 1.09 | 1.18 | 1.37 | 1.11 | 1.03 | 0.96 | |
Wehrlite | Quartz | 1.31 | 1.39 | 1.54 | 1.07 | 1.00 | 0.95 |
Dunite | 1.27 | 1.34 | 1.51 | 1.10 | 1.02 | 0.96 | |
Troctolite | Quartz | 1.66 | 1.72 | 1.96 | 1.04 | 1.00 | 0.90 |
Dunite | 1.59 | 1.67 | 1.91 | 1.08 | 1.01 | 0.91 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khudyakova, L.I.; Kislov, E.V.; Kotova, I.Y.; Paleev, P.L. Concretes Made of Magnesium–Silicate Rocks. Minerals 2021, 11, 441. https://doi.org/10.3390/min11050441
Khudyakova LI, Kislov EV, Kotova IY, Paleev PL. Concretes Made of Magnesium–Silicate Rocks. Minerals. 2021; 11(5):441. https://doi.org/10.3390/min11050441
Chicago/Turabian StyleKhudyakova, Lyudmila I., Evgeniy V. Kislov, Irina Yu. Kotova, and Pavel L. Paleev. 2021. "Concretes Made of Magnesium–Silicate Rocks" Minerals 11, no. 5: 441. https://doi.org/10.3390/min11050441
APA StyleKhudyakova, L. I., Kislov, E. V., Kotova, I. Y., & Paleev, P. L. (2021). Concretes Made of Magnesium–Silicate Rocks. Minerals, 11(5), 441. https://doi.org/10.3390/min11050441