A Petrographic Investigation of the Carboniferous Sequence from the Ibbenbüren Mine: Tracing the Origin of the Coal Mine Drainage
Abstract
:1. Introduction
2. Site Description
2.1. Geological Setting
2.2. Stratigraphy
2.3. Hydrogeological Conditions
3. Materials and Methods
4. Results
4.1. Core Logging
4.1.1. Lithology
4.1.2. Joints and Fractures
4.2. Petrography
4.2.1. Rock Matrix
4.2.2. Porosity and Permeability
4.3. Elemental Rock Composition
5. Discussion
5.1. Kaolinite, Dickite, Illite and Sericite Formation
5.2. (Oxide-) Hydroxide Formation
5.2.1. Fe Source in the Rocks
5.2.2. Influence of Fractures in the Oxidation-Precipitation System of the Westfield
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kretschmann, J. Post-Mining—A Holistic Approach. Min. Metall. Explor. 2020, 37, 1401–1409. [Google Scholar] [CrossRef]
- Kretschmann, J. Sustainability-orientated post-mining in Germany. Eurasian Min. 2017, 33–38. [Google Scholar] [CrossRef] [Green Version]
- Oei, P.Y.; Brauers, H.; Herpich, P. Lessons from Germany’s hard coal mining phase-out: Policies and transition from 1950 to 2018. Clim. Policy 2020, 20, 963–979. [Google Scholar] [CrossRef] [Green Version]
- Kretschmann, J.; Efremenkov, A.B.; Khoreshok, A.A. From Mining to Post-Mining: The Sustainable Development Strategy of the German Hard Coal Mining Industry. IOP Conf. Ser. Earth Environ. Sci. 2017, 50, 012024. [Google Scholar] [CrossRef]
- Kessler, T.; Mugova, E.; Jasnowski-Peters, H.; Rinder, T.; Stemke, M.; Wolkersdorfer, C.; Hilberg, S.; Melchers, C.; Struckmeier, W.; Wieber, G.; et al. Grundwasser in ehemaligen deutschen Steinkohlenrevieren—Ein wissenschaftlicher Blickwinkel auf Grubenflutungen. Grundwasser 2020, 25, 259–272. [Google Scholar] [CrossRef]
- Cravotta, C.A. Dissolved metals and associated constituents in abandoned coal-mine discharges, Pennsylvania, USA. Part 1: Constituent quantities and correlations. Appl. Geochem. 2008, 23, 166–202. [Google Scholar] [CrossRef]
- Cravotta, C.A.; Brady, K. Priority pollutants and associated constituents in untreated and treated discharges from coal mining or processing facilities in Pennsylvania, USA. Appl. Geochem. 2015, 62, 108–130. [Google Scholar] [CrossRef]
- Morin, K.A.; Hutt, N.M. Environmental Geochemistry of Minesite Drainage: Practical Theory and Case Studies; MDAG Publishing: Vancouver, BC, Canada, 2001; ISBN 0968203914. [Google Scholar]
- Nordstrom, D.K. Mine waters: Acidic to circumneutral. Elements 2011, 7, 393–398. [Google Scholar] [CrossRef]
- Rinder, T.; Dietzel, M.; Stammeier, J.A.; Leis, A.; Bedoya-González, D.; Hilberg, S. Geochemistry of coal mine drainage, groundwater, and brines from the Ibbenbüren mine, Germany: A coupled elemental-isotopic approach. Appl. Geochem. 2020, 121, 104693. [Google Scholar] [CrossRef]
- Wolkersdorfer, C.; Bowell, R. Contemporary reviews of mine water studies in Europe, Part. Mine Water Environ. 2004, 23, 162–182. [Google Scholar] [CrossRef]
- Younger, P.L.; Wolkerdorfer, C.H.; Bowell, R.J.; Diels, L. Partnership for acid drainage remediation in Europe (PADRE): Building a better future founded on research and best practice. In Proceedings of the 7th International Conference on Acid Rock Drainage (ICARD), St. Louis, MO, USA, 26–30 March 2006; American Society of Mining and Reclamation: Lexington, KY, USA, 2006; Volume 3, pp. 2571–2574. [Google Scholar] [CrossRef]
- Gombert, P.; Sracek, O.; Koukouzas, N.; Gzyl, G.; Valladares, S.T.; Frączek, R.; Klinger, C.; Bauerek, A.; Areces, J.E.Á.; Chamberlain, S.; et al. An Overview of Priority Pollutants in Selected Coal Mine Discharges in Europe. Mine Water Environ. 2018, 38, 16–23. [Google Scholar] [CrossRef]
- Johnson, D.B.; Hallberg, K.B. Acid mine drainage remediation options: A review. Sci. Total Environ. 2005, 338, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, A.; Maurice, C.; Öhlander, B. Potential of coal mine waste rock for generating acid mine drainage. J. Geochem. Explor. 2016, 160, 44–54. [Google Scholar] [CrossRef]
- Johnson, D.B. Chemical and microbiological characteristics of mineral spoils and drainage waters at abandoned coal and metal mines. Water Air Soil Pollut. Focus 2003, 3, 47–66. [Google Scholar] [CrossRef]
- Xu, T.; White, S.P.; Pruess, K.; Brimhall, G.H. Modeling of pyrite oxidation in saturated and unsaturated subsurface flow systems. Transp. Porous Media 2000, 39, 25–56. [Google Scholar] [CrossRef]
- Banks, D.; Younger, P.L.; Arnesen, R.T.; Iversen, E.R.; Banks, S.B. Mine-water chemistry: The good, the bad and the ugly. Environ. Geol. 1997, 32, 157–174. [Google Scholar] [CrossRef]
- Blowes, D.W.; Ptacek, C.J.; Jambor, J.L.; Weisener, C.G. The Geochemistry of Acid Mine Drainage. Treatise Geochem. 2003, 9, 149–204. [Google Scholar]
- Akcil, A.; Koldas, S. Acid Mine Drainage (AMD): Causes, treatment and case studies. J. Clean. Prod. 2006, 14, 1139–1145. [Google Scholar] [CrossRef]
- Younger, P.L.; Robins, N.S. Challenges in the Characterization and Prediction of the Hydrogeology and Geochemistry of Mined Ground; Special Publications; Geological Society of London: London, UK, 2002; Volume 198, pp. 1–16. [Google Scholar] [CrossRef]
- DMT GmbH & Co. KG. Abschlussbetriebsplan des Steinkohlenbergwerks Ibbenbüren Anlage 17—Prognose zur optimierten Wasserannahme nach Stilllegung des Steinkohlenbergwerkes Ibbenbüren (Ostfeld); RAG Anthrazit Ibbenbüren GmbH: Essen, Germany, 2019; 104p. [Google Scholar]
- Lotze, F.; Semmler, W.; Kötter, K.; Mausolf, F. Hydrogeologie des Westteils der Ibbenbürener Karbonscholle; Springer Fachmedien Wiesbaden GmbH.: Wiesbaden, Germany, 1962; ISBN 9783663006657. [Google Scholar]
- David, K.; Timms, W.A.; Barbour, S.L.; Mitra, R. Tracking changes in the specific storage of overburden rock during longwall coal mining. J. Hydrol. 2017, 553, 304–320. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Q.M.; Li, W.P.; Li, T.; He, J.H. Height of water-conducting fractured zone in coal mining in the soil–rock composite structure overburdens. Environ. Earth Sci. 2019, 78, 242–255. [Google Scholar] [CrossRef]
- Majdi, A.; Hassani, F.P.; Nasiri, M.Y. Prediction of the height of destressed zone above the mined panel roof in longwall coal mining. Int. J. Coal Geol. 2012, 98, 62–72. [Google Scholar] [CrossRef]
- Qu, Q.; Xu, J.; Wu, R.; Qin, W.; Hu, G. Three-zone characterisation of coupled strata and gas behaviour in multi-seam mining. Int. J. Rock Mech. Min. Sci. 2015, 78, 91–98. [Google Scholar] [CrossRef]
- Zhang, X.; Ghabraie, B.; Ren, G.; Tu, M. Strata movement and fracture propagation characteristics due to sequential extraction of multiseam longwall panels. Adv. Civ. Eng. 2018. [Google Scholar] [CrossRef] [Green Version]
- Newman, C.; Agioutantis, Z.; Boede Jimenez Leon, G. Assessment of potential impacts to surface and subsurface water bodies due to longwall mining. Int. J. Min. Sci. Technol. 2017, 27, 57–64. [Google Scholar] [CrossRef]
- Becker, I.; Wüstefeld, P.; Koehrer, B.; Felder, M.; Hilgers, C. Porosity and permeability variations in a tight gas sandstone reservoir analogue, Westphalian D, Lower Saxony basin, NW Germany: Influence of depositional setting and diagenisis. J. Pet. Geol. 2017, 40, 363–389. [Google Scholar] [CrossRef]
- Wüstefeld, P.; Hilse, U.; Koehrer, B.; Adelmann, D.; Hilgers, C. Critical evaluation of an Upper Carboniferous tight gas sandstone reservoir analog: Diagenesis and petrophysical aspects. Mar. Pet. Geol. 2017, 86, 689–710. [Google Scholar] [CrossRef]
- Drozdzewski, G.; Dölling, M. Elemente der Osning-Störungszone (NW-Deutschland)—Leitstrukturen einer Blattverschiebungszone. In Scriptum online 7; Geologischer Dienst Nordrhein-Westfalen: Krefeld, Germany, 2018. [Google Scholar]
- Bruns, B.; Littke, R. Lithological dependency and anisotropy of vitrinite reflectance in high rank sedimentary rocks of the Ibbenbüren area, NW-Germany: Implications for the tectonic and thermal evolution of the Lower Saxony Basin. Int. J. Coal Geol. 2015, 137, 124–135. [Google Scholar] [CrossRef]
- Bässler, R. Hydrogeologische, chemische und Isotopen—Untersuchungen der Grubenwässer im Ibbenbürener Steinkohlenrevier. Z. Deutsch. Geol. Ges. 1970, 209–286. [Google Scholar] [CrossRef]
- Coldewey, W.G.; Wesche, D. Hydrologie und Hydrogeologie der Ibbenbürener Karbon-Scholle. In Scriptum Online 14; Geologischer Dienst Nordrhein-Westfalen: Krefeld, Germany, 2020; pp. 1–10. Available online: https://www.gd.nrw.de/zip/scriptumonline-14_2020-07.pdf (accessed on 28 April 2021).
- Bundesamt für Kartographie und Geodäsie, (BKG). Shapefile of Administrative Boundaries (WGS84). 2011. Available online: https://www.zensus2011.de/EN/Media/Background_material/Background_material_node.html (accessed on 23 April 2021).
- Becker, I.; Busch, B.; Koehrer, B.; Adelmann, D.; Hilgers, C. Reservoir Quality Evolution of Upper Carboniferous (Westphalian) Tight Gas Sandstones, Lower Saxony Basin, Nw Germany. J. Pet. Geol. 2019, 42, 371–392. [Google Scholar] [CrossRef]
- Rudakov, D.V.; Coldewey, W.G.; Goerke-Mallet, P. Modeling the Inflow and Discharge from Underground Structures within the Abandoned Hardcoal Mining Area of West Field (Ibbenbüren). In An Interdisciplinary Response to Mine Water Challenges, Proceedings of the 12th International Mine Water Association Congress (IMWA), Xuzhou, China, 18–22 August 2014; Sui, W., Sun, Y., Wang, C., Eds.; China University of Mining and Technology: Xuzhou, China, 2014; pp. 699–705. [Google Scholar]
- Drozdzewski, G. Tiefentektonik der Ibbenbürener Karbon-Scholle. In Beiträge zur Tiefentektonik westdeutscher Steinkohlenlagerstätten; Geologisches Landesamt Nordrhein Krefeld: Krefeld, Germany, 1985; pp. 189–216. [Google Scholar]
- Ingersoll, R.V.; Bullard, T.F.; Ford, R.L.; Grimm, J.P.; Pickle, J.D.; Sares, S.W. The effect of grain size on detrital modes: A test of the Gazzi- Dickinson point-counting method (Holocene, sand, New Mexico, USA). J. Sediment. Petrol. 1984, 54, 103–116. [Google Scholar]
- Bertier, P.; Swennen, R.; Lagrou, D.; Laenen, B.E.N.; Kemps, R. Palaeo-climate controlled diagenesis of the Westphalian C & D fluvial sandstones in the Campine Basin (north-east Belgium). Sedimentology 2008, 55, 1375–1417. [Google Scholar]
- Nagy, K.L.; Blum, A.E.; Lasaga, A.C. Kaolinite precipitation and dissolution: Effects on porosity and permeability. Am. Assoc. Pet. Geol. Bull. 1989, 73. [Google Scholar]
- Pierini, C.; Mizusaki, A.M.P.; Scherer, C.M.S.; Alves, D.B. Integrated stratigra phic and geochemical study of the Santa Maria and Caturrita formations (Triassic of the Paraná Basin), southern Brazil. J. S. Am. Earth Sci. 2002, 15, 669–681. [Google Scholar] [CrossRef]
- Ehrenberg, S.N.; Aagaard, P.; Wilson, M.J.; Fraser, A.R.; Duthie, D.M.L. Depth-Dependent Transformation of Kaolinite to Dickite In Sandstones of the Norwegian Continental Shelf. Clay Miner. 1993, 28, 325–352. [Google Scholar] [CrossRef]
- Beaufort, D.; Cassagnabere, A.; Petit, S.; Lanson, B.; Berger, G.; Lacharpagne, J.C.; Johansen, H. Kaolinite-to-dickite reaction in sandstone reservoirs. Clay Miner. 1998, 33, 297–316. [Google Scholar] [CrossRef]
- Huggett, J.M. Clays and Their Diagenesis. In Encyclopedia of Geology; Selley, R.C., Cocks, L.R., Plimer, I., Eds.; Elsevier Ltd.: London, UK, 2005; pp. 62–70. [Google Scholar]
- Huang, W. The Formation of Illitic Clays from Kaolinite in KOH Solution from 225 °C to 350 °C. Clays Clay Miner. 1993, 41, 645–654. [Google Scholar]
- Mantovani, M.; Becerro, A.I. Illitization of kaolinite: The effect of pressure on the reaction rate. Clays Clay Miner. 2010, 58, 766–771. [Google Scholar] [CrossRef]
- Thyne, G.; Boudreau, B.P.; Ramm, M.; Midtbø, R.E. Simulation of potassium feldspar dissolution and illitization in the Statfjord Formation, North Sea. Am. Assoc. Pet. Geol. Bull. 2001, 85, 621–635. [Google Scholar] [CrossRef]
- Galán, E.; Ferrell, R.E. Genesis of Clay Minerals; Developments in Clay Science, Elsevier Ltd.: Oxford, UK, 2013; Volume 5, pp. 83–126. ISBN 9780080982588. [Google Scholar] [CrossRef]
- Que, M.; Allen, A.R. Sericitization of plagioclase in the Rosses Granite Complex, Co. Donegal, Ireland. Mineral. Mag. 1996, 60, 927–936. [Google Scholar] [CrossRef]
- Zotov, A.; Mukhamet-Galeev, A.; Schott, J. An experimental study of kaolinite and dickite relative stability at 150–300 degrees C and the thermodynamic properties of dickite. Am. Mineral. 1998, 83, 516–524. [Google Scholar] [CrossRef]
- Besly, B.M.; Burley, S.D.; Turner, P. The late Carboniferous “Barren Red Bed” play of the Silver Pit area, southern north sea. Pet. Geol. Conf. Proc. 1993, 4, 727–740. [Google Scholar] [CrossRef]
- Delvigne, J.E. Atlas of Micromorphology of Mineral Alteration and Weathering; Special Publication; Martin, R.F., Ed.; Mineralogical Association of Canada: Quebec City, QC, Canada, 1998; ISBN 0921294433. [Google Scholar]
- Chandra, A.P.; Gerson, A.R. The mechanisms of pyrite oxidation and leaching: A fundamental perspective. Surf. Sci. Rep. 2010, 65, 293–315. [Google Scholar] [CrossRef]
- Pruess, K.; Narasimhan, T.N. A practical method for modeling fluid and heat flow in fractured porous media. Soc. Pet. Eng. J. 1985, 25, 14–26. [Google Scholar] [CrossRef] [Green Version]
- Hao, Y.; Fu, P.; Carrigan, C.R. Application of a dual-continuum model for simulation of fluid flow and heat transfer in fractured geothermal reservoirs. In Proceedings of the 38th Workshop on Geothermal Reservoir Engineering; SGP-TR-198; Stanford University: Stanford, CA, USA, 2013; pp. 462–469. [Google Scholar]
- Kordilla, J.; Sauter, M.; Reimann, T.; Geyer, T. Simulation of saturated and unsaturated flow in karst systems at catchment scale using a double continuum approach. Hydrol. Earth Syst. Sci. 2012, 16, 3909–3923. [Google Scholar] [CrossRef] [Green Version]
- Kovács, A.; Sauter, M. Modelling karst hydrodynamics. In Methods in Karst Hydrogeology; Goldscheider, N., Drew, D., Eds.; Taylor & Francis: London, UK, 2007; pp. 201–222. ISBN 6087858393. [Google Scholar]
- Sauter, M. Quantificaton and Forecasting of Regional Groundwater Flow and Transport in a Karst Aquifer (Gallusquelle, Malm, SW. Germany); Geowissenschaftliche Fakultät: Jena, Germany, 1992. [Google Scholar]
- Nordstrom, D.K.; Blowes, D.W.; Ptacek, C.J. Hydrogeochemistry and microbiology of mine drainage: An update. Appl. Geochem. 2015, 57, 3–16. [Google Scholar] [CrossRef]
- Hammarstrom, J.M.; Seal, R.R.; Meier, A.L.; Kornfeld, J.M. Secondary sulfate minerals associated with acid drainage in the eastern US: Recycling of metals and acidity in surficial environments. Chem. Geol. 2005, 215, 407–431. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bedoya-Gonzalez, D.; Hilberg, S.; Redhammer, G.; Rinder, T. A Petrographic Investigation of the Carboniferous Sequence from the Ibbenbüren Mine: Tracing the Origin of the Coal Mine Drainage. Minerals 2021, 11, 483. https://doi.org/10.3390/min11050483
Bedoya-Gonzalez D, Hilberg S, Redhammer G, Rinder T. A Petrographic Investigation of the Carboniferous Sequence from the Ibbenbüren Mine: Tracing the Origin of the Coal Mine Drainage. Minerals. 2021; 11(5):483. https://doi.org/10.3390/min11050483
Chicago/Turabian StyleBedoya-Gonzalez, Diego, Sylke Hilberg, Günther Redhammer, and Thomas Rinder. 2021. "A Petrographic Investigation of the Carboniferous Sequence from the Ibbenbüren Mine: Tracing the Origin of the Coal Mine Drainage" Minerals 11, no. 5: 483. https://doi.org/10.3390/min11050483
APA StyleBedoya-Gonzalez, D., Hilberg, S., Redhammer, G., & Rinder, T. (2021). A Petrographic Investigation of the Carboniferous Sequence from the Ibbenbüren Mine: Tracing the Origin of the Coal Mine Drainage. Minerals, 11(5), 483. https://doi.org/10.3390/min11050483