Geochemical and Petrographic Characterization of Bricks and Mortars of the Parish Church SANTA Maria in Padovetere (Comacchio, Ferrara, Italy)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Chemical and Mineralogical Characterization
3. Results
3.1. Macroscopic Characterization
3.2. Optical Microscopic Characterization
3.3. XRF Analysis on the Soil Samples
3.4. XRPD Data Analysis on Bricks, Mortars and Salt Crust
3.5. SEM-EDS Data Analysis on Bricks, Mortar and Salt Crust
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wheeler, D.L. Land Reclamation in the Po River Delta of Italy. Land Econ. 1965, 41, 376–382. [Google Scholar] [CrossRef]
- Cencini, C. Physical Processes and Human Activities in the Evolution of the Po Delta, Italy. J. Coast. Res. 1998, 14, 774–793. [Google Scholar]
- Gelichi, S. Gli scavi archeologici intorno alla Cattedrale di Comacchio. The Archaeological Excavations nearby the Comacchio Cathedral. In L’isola del Vescovo; All’insegna del Giglio: Borgo San Lorenzo, Italy, 2009; pp. 1–88. [Google Scholar]
- McCormick, M. Comparing and connecting: Comacchio and the early medieval trading towns. In From One Sea to Another: Trading Places in the European and Mediterranean Early Middle Ages, Proceedings of the International Conference, Comacchio, Italy, 27–29 March 2009; Gelichi, S., Hodges, R., Eds.; Turnhout Brepols Publishers: Turnhout, Belgium, 2013; pp. 477–502. [Google Scholar] [CrossRef] [Green Version]
- Mini, F.M.; Santi, P.; Renzulli, A.; Riccardi, M.P.; Antonelli, F.; Alberti, A. Representative archaeological finds of pietra ollare from Comacchio (Italy): Identifying provenance and high-T mineral breakdown reactions hindering lithotype classification. Archaeol. Anthr. Sci. 2016, 8, 135–148. [Google Scholar] [CrossRef]
- Gelichi, S. Chapter 7: Comacchio: A Liminal Community in a Nodal Point during the Early Middle Ages. In Venice and Its Neighbors from the 8th to 11th Century: Through Renovation and Continuity; The Medieval Mediterranean; Brill: Leiden, The Netherlands, 2017; Volume 7, pp. 142–167. [Google Scholar] [CrossRef]
- Alfieri, N. La pianura ferrarese nell’antichità. In Il Po, la Cattedrale, la Corte dalle Origini al 1598; Renzi, R., Ed.; Edizioni Alfa Bologna: Bologna, Italy, 1969; Volume 1. [Google Scholar]
- Alfieri, N. La ricerca e la scoperta di Spina. In Spina: Storia di Una Città tra Greci ed Etruschi, Proceedings of the Exhibition, Ferrara-Castello Estense, Italy, 26 September 1993–15 May 1994; Berti, F., Guzzo, G., Eds.; Ferrara Arte: Ferrara, Italy, 1993; pp. 3–19. [Google Scholar]
- Hostetter, E. Banqueting Bronzes at Spina: The Archaeological Context. J. Etruscan Found. 1998, 5, 1–26. [Google Scholar] [CrossRef]
- Rucco, A.A. From documents to the ground. The early medieval landscape of Comacchio. Reti Medievali Rivista 2015, 16, 197–229. [Google Scholar] [CrossRef]
- Beltrame, C.; Costa, E. A 5th-Century-AD Sewn-Plank River Barge at St Maria in Padovetere (Comacchio-FE), Italy: An interim report. Int. J. Naut. Archaeol. 2016, 45, 253–266. [Google Scholar] [CrossRef]
- Beltrame, C.; Mozzi, P.; Forti, A.; Maritan, M.; Rucco, A.A.; Vavasori, A.; Miola, A. The Fifth-Century AD Riverine Barge of Santa Maria in Padovetere (Ferrara, Italy): A Multidisciplinary Approach to its Environment and Shipbuilding Techniques. Environ. Archaeol. 2019. [Google Scholar] [CrossRef]
- Corti, C. Santa Maria in Padovetere: La chiesa, la necropoli e l’insediamento circostante. In Genti del Delta da Spina a Comacchio; Corbo Editore: Ferrara, Italy, 2007; pp. 531–535. [Google Scholar]
- Beltrame, C.; Forti, A.; Maritan, M.; Miola, A.; Mozzi, P.; Rucco, A.A.; Vavasori, A. Multidisciplinary research in naval archaeology: The shipwreck of Santa Maria in Padovetere (Ferrara, N Italy). In Humans and Environmental Sustainability: Lessons from the Past Ecosystems of Europe and Northern Africa, Proceedings of the 14th Conference on Environmental Archaeology, Modena, Italy, 26–28 February 2018; CEA: Milan, Italy, 2018; pp. 81–82. [Google Scholar]
- Peters, T.J.; Iberg, R. Mineralogical changes during firing of Ca-rich brick clays. Am. Ceram. Soc. Bull. 1978, 57, 503–506. [Google Scholar]
- Maggetti, M. Majolika aus Mexiko: Ein archa biometrisches Fallbeispiel. Fortschr Miner 1986, 64, 87–103. [Google Scholar]
- Heimann, R.B. Assessing the technology of ancient pottery: The use of ceramic phase diagrams. Archeomaterials 1989, 3, 123–148. [Google Scholar]
- Riccardi, M.P.; Messiga, B.; Duminuco, P. An approach to the dynamics of clay firing. Appl. Clay Sci. 1999, 15, 393–409. [Google Scholar] [CrossRef]
- Coletti, C.; Cultrone, G.; Maritan, L.; Mazzoli, C. How to face the new industrial challenge of compatible, sustainable brick production: Study of various types of commercially available bricks. Appl. Clay Sci. 2016, 124, 219–226. [Google Scholar] [CrossRef]
- Secco, M.; Previato, C.; Addis, A.; Zago, G.; Kamsteeg, A.; Dilaria, S.; Canovaro, C.; Artioli, G.; Bonetto, J. Mineralogical clustering of the structural mortars from the Sarno Baths, Pompeii: A tool to interpret construction techniques and relative chronologies. J. Cult. Herit. 2019, 40, 265–273. [Google Scholar] [CrossRef]
- Adorni, E.; Coïsson, E.; Ferretti, D. In situ characterization of archaeological adobe bricks. Constr. Build. Mater. 2013, 40, 1–9. [Google Scholar] [CrossRef]
- Miriello, D.; Barca, D.; Bloise, A.; Ciarallo, A.; Crisci, G.M.; De Rose, T.; Gattuso, C.; Gazineo, F.; La Russa, M.F. Characterisation of archaeological mortars from Pompeii (Campania, Italy) and identification of construction phases by compositional data analysis. J. Archaeol. Sci. 2010, 37, 2207–2223. [Google Scholar] [CrossRef]
- Lopez-Arce, P.; Garcia-Guinea, J. Weathering traces in ancient bricks from historic buildings. Build Environ 2005, 40, 929–941. [Google Scholar] [CrossRef] [Green Version]
- Baldini, C. Analisi Geochimiche del Sito Archeologico di Santa Maria in Padovetere. Ph.D. Thesis, Ferrara University, Ferrara, Italy, 2013–2014. [Google Scholar]
- Bruni, S.; Maino, G.; Marrocchino, E.; Vaccaro, C.; Volpe, L. A study of the Civic Tower in Ravenna as an example of medieval towers’ preservation problems. Eur. Phys. J. Plus 2013, 128, 33. [Google Scholar] [CrossRef]
- Marrocchino, E.; Telloli, C.; Novara, P.; Meletti, V.; Vaccaro, C. Petro-archaeometric characterization of historical mortars in the city of Ravenna (Italy). In Proceedings of the 2020 IMEKO TC-4 International Conference on Metrology for Archaeology and Cultural Heritage, Trento, Italy, 22–24 October 2020. [Google Scholar]
- Marrocchino, E.; Telloli, C.; Pedrini, M.; Vaccaro, C. Natural stones used in the Orsi-Marconi palace façade (Bologna): A petro-mineralogical characterization. Heritage 2020, 3, 1109–1123. [Google Scholar] [CrossRef]
- Telloli, C.; Chicca, M.; Pepi, S.; Vaccaro, C. Saharan dust particles in snow samples of Alps and Apennines during an exceptional event of transboundary air pollution. Environ. Monit. Assess. 2018, 109, 1–15. [Google Scholar] [CrossRef]
- Marrocchino, E.; Telloli, C.; Vaccaro, C. Geochemical and mineralogical characterization of construction materials from historical buildings of Ferrara (Italy). Geosciences 2021, 11, 31. [Google Scholar] [CrossRef]
- Marrocchino, E.; Telloli, C.; Vaccaro, C. Microscopic and chemical characterization of metal slags found at the Porta Paola excavation in Ferrara. In Proceedings of the 2020 IMEKO TC-4 International Conference on Metrology for Archaeology and Cultural Heritage, Trento, Italy, 22–24 October 2020. [Google Scholar]
- Lachance, G.R.; Traill, J.R. Practical solution to the matrix problem in X-ray analysis. Can. Spectrosc. 1966, 11, 43–48. [Google Scholar]
- Antonelli, F.; Cancelliere, S.; Lazzarini, L. Minero-petrographic characterisation of historic bricks in the Arsenale, Venice. J. Cult. Herit. 2002, 3, 59–64. [Google Scholar] [CrossRef]
- Oliveira, M.L.S.; Flore, E.M.M.; Dotto, G.L.; Neckel, A.; Silva, L.F.O. Nanomineralogy of mortars and ceramics from the Forum of Caesar and Nerva (Rome, Italy): The protagonist of black crusts produced on historic buildings. J Clean Prod 2021, 278, 123982. [Google Scholar] [CrossRef]
- Cultrone, G.; De la Torre, M.J.; Sebastian, E.M.; Cazalla, O.; Rodriguez-Navarro, C. Behavior of Brick Samples in Aggressive Environments. Water Air Soil Pollut. 2000, 119, 191–207. [Google Scholar] [CrossRef]
- Marrocchino, E.; Rapti-Caputo, D.; Vaccaro, C. Chemical–mineralogical characterisation as useful tool in the assessment of the decay of the Mesola Castle (Ferrara, Italy). Constr. Build. Mater. 2010, 24, 2672–2683. [Google Scholar] [CrossRef]
- Přikryl, R.; Svobodová, J.; Zák, K.; Hradil, D. Anthropogenic origin of salt crusts on sandstone sculptures of Prague’s Charles Bridge (Czech Republic): Evidence of mineralogy and stable isotope geochemistry. Eur. J. Miner. 2004, 16, 609–618. [Google Scholar] [CrossRef]
- Camelo-García, V.M.M.; Lima, E.F.B.; Rezende, J.A.M. Rearing Frankliniella zucchini Nakahara & Monteiro (Thysanoptera: Thripidae) on zucchini (Cucurbita pepo L. ‘Caserta’) fruits. Rev. Bras. Entomol. 2019, 63, 115–118. [Google Scholar]
- Humphreys, W.F. The accoutrements of spiders’ eggs (Araneae) with an exploration of their functional importance. Zool. J. Linn. Soc. 1987, 89, 171–201. [Google Scholar] [CrossRef]
- Quagliarini, E.; Gianangeli, A.; D’Orazio, M.; Gregorini, B.; Osimani, A.; Aquilanti, L.; Clementi, F. Effect of temperature and relative humidity on algae biofouling on different fired brick surfaces. Constr. Build. Mater. 2019, 19928, 396–405. [Google Scholar] [CrossRef]
- Rapti-Caputo, D.; Pavanelli, D.; Tassinari, R.M.; Vaccaro, C. Caratterizzazione geochimica dei sedimenti e delle acque del Fiume Reno. In Atti II Giornata di Studio sul Monitoraggio Idrotorbidimetrico dei Corsi d’Acqua per la Stima dei Processi Erosivi E il Bilancio dei Solidi Sospesi; Donatella Pavanelli—Università di Bologna: Bologna, Italy, 2004. [Google Scholar]
- Abu Zeid, N.; Marrocchino, E.; Vaccaro, C.; Nieto, D.; Martinucci, M. Geological and Geophysical Investigation of “Site Effects” Due to Liquefaction in Mirabello Following the May 20th, 2012 Emilia Earthquake; EAI: Milan, Italy, 2012; Parte II; pp. 4–5. [Google Scholar]
- Amorosi, A.; Centineo, M.C.; Dinelli, E.; Lucchini, F.; Tateo, F. Geochemical and mineralogical variations as indicators of provenance changes in Late Quaternary deposits of SE Po Plain. Sediment. Geol. 2002, 151, 273–292. [Google Scholar] [CrossRef]
- Amorosi, A.; Guermandi, M.; Marchi, N.; Sammartino, I. Fingerprinting sedimentary and soil units by their natural metal contents: A new approach to assess metal contamination. Sci. Total Environ. 2014, 500, 361–372. [Google Scholar] [CrossRef]
- Salman, S.M.; Salama, S.N.; Abo-Mosallam, H.A. The crystallization behaviour and bioactivity of wollastoniteglass-ceramic based on Na2O–K2O–CaO–SiO2–F glass system. J. Asian Ceram. Soc. 2015, 3, 255–261. [Google Scholar] [CrossRef] [Green Version]
- Kadïr, S.; Akbulut, A. Mineralogy, geochemistry and genesis of the Taşoluk kaolinite deposits in pre-Early Cambrian metamorphites and Neogene volcanites of Afyonkarahisar, Turkey. Clay Min. 2009, 44, 89–112. [Google Scholar] [CrossRef]
- Cultrone, G.; Carrillo Rosua, F.J. Growth of metastable phases during brick firing: Mineralogical and microtextural changes induced by the composition of the raw material and the presence of additives. Appl. Clay Sci. 2020, 185, 105419. [Google Scholar] [CrossRef]
- Duminuco, P.; Messiga, B.; Riccardi, M.P. Firing process of natural clays. Some microtextures and related phase compositions. Thermochim. Acta 1998, 321, 185–190. [Google Scholar] [CrossRef]
- Bianchini, G.; Marrocchino, E.; Moretti, A.; Vaccaro, C. Chemical-mineralogical characterization of historical bricks from Ferrara: An integrated bulk and micro-analitycal approach. In Geomaterials in Cultural Heritage; Special Publication; Maggetti, M., Messiga, B., Eds.; Geological Society: London, UK, 2006; Volume 257, pp. 127–140. [Google Scholar] [CrossRef]
- Cultrone, G.; Sebastian, E.; Elert, K.; de la Torre, M.J.; Cazalla, O.; Rodriguez-Navarro, C. Influence of mineralogy and firing temperature on the porosity of bricks. J. Eur. Ceram. Soc. 2004, 24, 547–564. [Google Scholar] [CrossRef]
- Whitney, D.L. Abbreviations for Names of Rock-Forming Minerals. Am. Miner. 2010, 95, 185–187. [Google Scholar] [CrossRef]
Sample Number | Type of Soil | |
---|---|---|
1, 3, 4, 5, 7 | CSP1 | Saline soil, scarcely or moderately calcareous, weakly alkaline in the upper part and weakly acidic in the lower part |
2 | BUR1/MOT1 | Non-calcareous or very poorly calcareous soil rich in organic materials |
6 | AGO1 | Saline soil, from non-calcareous to moderately calcareous |
Sample 1 | Sample 2 | Sample 3 | Sample 4 | Sample 5 | Sample 6 | Sample 7 | |
---|---|---|---|---|---|---|---|
SiO2 | 45.67 | 70.94 | 60.92 | 36.39 | 49.69 | 58.48 | 47.51 |
TiO2 | 0.62 | 0.38 | 0.55 | 0.48 | 0.63 | 0.63 | 0.62 |
Al2O3 | 17.56 | 10.78 | 13.82 | 13.83 | 19.19 | 14.26 | 18.08 |
Fe2O3 | 8.17 | 2.59 | 4.57 | 7.17 | 7.26 | 4.60 | 7.54 |
MnO | 0.06 | 0.06 | 0.10 | 0.07 | 0.06 | 0.09 | 0.06 |
MgO | 3.56 | 3.71 | 4.24 | 3.44 | 3.12 | 4.33 | 3.49 |
CaO | 10.48 | 6.16 | 8.80 | 21.65 | 8.97 | 8.60 | 11.13 |
Na2O | 0.79 | 1.94 | 1.26 | 0.49 | 0.56 | 1.13 | 0.53 |
K2O | 2.88 | 2.11 | 2.55 | 2.24 | 3.16 | 2.56 | 3.09 |
P2O5 | 0.47 | 0.13 | 0.21 | 0.55 | 0.32 | 0.29 | 0.41 |
LOI | 9.74 | 1.20 | 2.98 | 13.67 | 7.05 | 5.03 | 7.53 |
Total | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Ba | 415.2 | 277.4 | 350.3 | 348.5 | 482.5 | 376.0 | 425.4 |
Ce | 67.8 | 41.8 | 54.3 | 75.0 | 63.8 | 53.6 | 78.8 |
Co | 18.5 | 13.1 | 17.6 | 15.1 | 19.6 | 20.3 | 23.2 |
Cr | 210.2 | 95.9 | 130.0 | 141.8 | 228.8 | 151.5 | 213.5 |
La | 28.7 | 20.7 | 26.0 | 27.0 | 22.2 | 23.1 | 25.3 |
Nb | 8.7 | 7.4 | 12.1 | 8.7 | 11.8 | 10.7 | 11.8 |
Ni | 132.9 | 80.4 | 102.9 | 111.6 | 149.8 | 113.1 | 149.9 |
Pb | 30.3 | 17.5 | 25.5 | 36.7 | 36.5 | 25.7 | 37.2 |
Rb | 134.2 | 82.4 | 116.2 | 100.9 | 163.7 | 105.3 | 158.4 |
Sr | 429.9 | 224.9 | 310.7 | 844.7 | 409.7 | 259.0 | 306.8 |
Th | 5.7 | 5.1 | 5.5 | 1.7 | 7.3 | 6.3 | 6.0 |
V | 133.3 | 54.8 | 90.3 | 111.4 | 152.7 | 100.6 | 141.6 |
Y | 16.0 | 20.6 | 25.5 | 15.5 | 22.9 | 22.2 | 21.7 |
Zn | 85.0 | 53.2 | 83.0 | 64.9 | 96.2 | 89.1 | 101.6 |
Zr | 73.0 | 104.7 | 141.0 | 62.4 | 82.2 | 136.0 | 88.5 |
Cu | 63.0 | 12.8 | 33.3 | 85.1 | 76.5 | 38.9 | 67.7 |
Ga | 21.4 | 6.3 | 10.2 | 15.9 | 22.5 | 13.7 | 20.5 |
Nd | 21.4 | 5.9 | 9.8 | 20.6 | 24.8 | 15.5 | 21.8 |
S | 34,613.6 | 2627.9 | 9076.3 | 35,649.8 | 20,329.4 | 3208.4 | 17,179.7 |
Sc | 16.5 | 9.0 | 12.5 | 12.4 | 16.8 | 13.3 | 15.1 |
Albasi P20 Area | Albasi P20 Punctual | Albasi P21c Area | Albasi P21c Punctual | Red P16 Area | Red P16 Punctual | Red P27 Area | Red P27 Punctual | Saltcrust P5b Area | Saltcrust P5b Punctual | Clay P14 Area | Clay P14 Punctual | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
C | 34.45 | 11.35 | 23.58 | 10.46 | 29.25 | 17.65 | 19.56 | 31.34 | 13.22 | 12.06 | 41.71 | 28.29 |
O | 38.35 | 43.14 | 45.39 | 52.22 | 45.43 | 36.40 | 46.09 | 33.56 | 58.03 | 57.44 | 17.87 | 42.39 |
Na | 1.46 | 1.01 | 0.91 | 0.00 | 0.51 | 0.37 | 0.90 | 0.15 | 23.15 | 29.26 | 0.00 | 4.78 |
Mg | 1.21 | 2.26 | 1.79 | 0.19 | 1.41 | 4.32 | 1.46 | 0.14 | 0.34 | 0.00 | 0.00 | 1.23 |
Al | 3.55 | 4.67 | 3.12 | 0.41 | 4.48 | 7.70 | 4.94 | 0.51 | 0.64 | 0.10 | 0.00 | 0.46 |
Si | 10.85 | 11.13 | 8.35 | 35.56 | 12.35 | 13.14 | 17.86 | 8.82 | 1.74 | 0.15 | 6.38 | 19.00 |
S | 0.00 | 0.00 | 5.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.29 | 0.80 | 0.00 | 0.00 |
Cl | 0.40 | 0.12 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
K | 0.26 | 0.30 | 0.60 | 0.60 | 1.25 | 1.72 | 1.77 | 0.33 | 0.09 | 0.00 | 0.00 | 0.25 |
Ca | 7.25 | 5.69 | 9.36 | 0.91 | 2.66 | 2.93 | 4.14 | 0.42 | 1.23 | 0.19 | 6.94 | 3.34 |
Ti | 0.00 | 0.22 | 0.12 | 0.00 | 0.28 | 0.00 | 0.23 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Fe | 2.22 | 2.43 | 1.75 | 0.25 | 2.37 | 15.77 | 3.05 | 0.32 | 0.28 | 0.00 | 27.10 | 0.25 |
Zr | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 24.40 | 0.00 | 0.00 | 0.00 | 0.00 |
Total | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Estimated T° | Sample | Primary Phases Present in the Bricks | Secondary Phases | ||||||
---|---|---|---|---|---|---|---|---|---|
Silicates—Rising T° | Carbonates | ||||||||
Pct | Fsp | Px | Wo | Mll | Qz | Dol | CC | ||
750–800° | P2 | X | X | X | X | X | X | ||
P20 | X | X | X | X | X | X | |||
P22 | X | X | X | X | X | X | |||
850–900° | P3 | X | X | X | X | X | |||
P25 | X | X | X | X | |||||
900–1000° | P9 | X | X | X | X | X | X | ||
P11 | X | X | X | X | X | ||||
P12 | X | X | X | X | X | X | |||
P26 | X | X | X | X | X | X | |||
>1000° | P21d | X | X | X | X |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marrocchino, E.; Telloli, C.; Cesarano, M.; Montuori, M. Geochemical and Petrographic Characterization of Bricks and Mortars of the Parish Church SANTA Maria in Padovetere (Comacchio, Ferrara, Italy). Minerals 2021, 11, 530. https://doi.org/10.3390/min11050530
Marrocchino E, Telloli C, Cesarano M, Montuori M. Geochemical and Petrographic Characterization of Bricks and Mortars of the Parish Church SANTA Maria in Padovetere (Comacchio, Ferrara, Italy). Minerals. 2021; 11(5):530. https://doi.org/10.3390/min11050530
Chicago/Turabian StyleMarrocchino, Elena, Chiara Telloli, Mario Cesarano, and Manlio Montuori. 2021. "Geochemical and Petrographic Characterization of Bricks and Mortars of the Parish Church SANTA Maria in Padovetere (Comacchio, Ferrara, Italy)" Minerals 11, no. 5: 530. https://doi.org/10.3390/min11050530
APA StyleMarrocchino, E., Telloli, C., Cesarano, M., & Montuori, M. (2021). Geochemical and Petrographic Characterization of Bricks and Mortars of the Parish Church SANTA Maria in Padovetere (Comacchio, Ferrara, Italy). Minerals, 11(5), 530. https://doi.org/10.3390/min11050530