Uranium Deposits of Erlian Basin (China): Role of Carbonaceous Debris Organic Matter and Hydrocarbon Fluids on Uranium Mineralization
Abstract
:1. Introduction
2. Geological Setting
2.1. The Erlian Basin
2.2. Tectonic Evolution and Basin Filling
2.3. Sandstone-Type Uranium Deposits
3. Sampling, Analytical Procedures and Methods
3.1. Samples
3.2. Mineralogical Study
3.2.1. SEM and EDX Analysis
3.2.2. EPMA Analysis
3.3. Micro Spectroscopy Analysis of Organic Matter
3.3.1. Raman Microprobe Spectroscopy
3.3.2. IR Spectroscopy
3.4. Organic Geochemical Studies
3.4.1. GC-MS Analysis
3.4.2. C Isotope Analysis
4. Results
4.1. Petrography and Mineralogy
4.2. Micro Spectroscopy Analysis
4.2.1. Microlaser Raman Analysis
4.2.2. Micro FTIR Spectroscopy Analysis
4.2.3. GC-MS Analysis of Soxhlet Extracts
4.2.4. C Isotope of Chloroform Bitumen A
5. Discussion
5.1. The Nature and Source of OM
5.2. The Relationship Between OM and Uranium Mineralization
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Atomic Energy Agency (IAEA). World Uranium Geology, Exploration, Resources and Production; IAEA Library: Vienna, Austria, 2020. [Google Scholar]
- International Atomic Energy Agency (IAEA), OECD-NEA/IAEA. Uranium 2009: Resources, Production and Demand (Red book); IAEA Library: Vienna, Austria, 2010. [Google Scholar]
- Liu, W.S.; Liu, J.H.; Wang, Z.B. Subsequent Transformation and Evolution of ore bearing structure in Erlian. J. East China Inst. Technol. 2005, 28, 52–58, (In Chinese with English Abstract). [Google Scholar]
- Fan, X.J.; Nie, F.J.; Chen, Y.P.; Wang, W. Discussion on age and paleo geographical environment of ore bearing strata for sandstone-type uranium deposits in Bayanwula area, Erlian basin. Uranium Geol. 2008, 24, 150–154, (In Chinese with English Abstract). [Google Scholar]
- Fan, G.; Qin, M.K.; Shen, K.F.; Kang, S.F. Electronic probe study on uranium minerals in 2082 sandstone-type uranium deposit. J. Chin. Electr. Microsc. Soc. 2006, 301–302, (In Chinese with English Abstract). [Google Scholar]
- Li, W.T.; Li, Z.Y.; Li, X.D.; Liu, W.S.; Kang, S.H.; Lv, Y.H. Study on uranium occurring state in Hadatu sandstone-type uranium deposit in Erlian basin. Uranium Geol. 2020, 24, 150–154, (In Chinese with English Abstract). [Google Scholar]
- Hao, J.T. Application of geochemical model in the prediction of sandstone-type uranium deposits in eastern Erlian basin. Uranium Geol. 2013, 29, 24–33, (In Chinese with English Abstract). [Google Scholar]
- Zhang, B.M.; Wang, X.Q.; Zhou, J.; Han, Z.X.; Liu, W.S.; Liu, Q.Q.; Wang, W.; Li, R.H.; Zhang, B.Y.; Dou, B. Regional geochemical survey of concealed sandstone-type uranium deposits using fine-grained soil and groundwater in the Erlian basin, north-east China. J. Geochem. Explor. 2020. [Google Scholar] [CrossRef]
- Liu, B.; Yang, J.X.; Qiao, B.C.; Zhang, F. Characteristics of ore-controlling genetic facies and prospect prediction of sandstone-type uranium deposits in the Tengge’ er depression, Inner Mongolia. Geol. Explor. 2015, 51, 870–878. [Google Scholar]
- Bonnettia, C.; Zhou, L.L.; Rieglerc, T.; Bruggerd, J.; Fairclough, M. Large S isotope and trace element fractionations in pyrite of uranium roll front systems result from internally-driven biogeochemical cycle. Geochim. Cosmochim. Acta 2020, 282, 113–132. [Google Scholar] [CrossRef]
- Rallakis, D.; Michels, R.; Brouand, M.; Cathelineau, M. The Role of Organic Matter on Uranium precipitation in Zoovch Ovoo, Mongolia. Minerals 2019, 9, 310. [Google Scholar] [CrossRef] [Green Version]
- Bonnetti, C.; Cuney, M.; Malartre, F.; Michels, R.; Liu, X.; Peng, Y. The Nuheting deposit, Erlian Basin, NE China: Synsedimentary to diagenetic uranium mineralization. Ore Geology. Rev. 2015, 69, 118–139. [Google Scholar] [CrossRef]
- David, J.; Mossman, D.J. Hydrocarbon habitat of the paleoproterozoic Franceville Series, Republic of Gabon. Energy Sources 2001, 23, 45–53. [Google Scholar] [CrossRef]
- Andrei, L.; Raymond, M.; Michel, C.; Christophe, M.; Marc, B.; Nicolas, F. Uranium deposits of Franceville basin (Gabon): Role of organic matter and oil cracking on uranium mineralization. Ore Geol. Rev. 2020. [Google Scholar] [CrossRef]
- Li, H.; Kuang, W. Metallogenesis and metallogenic model of the Nuheting uranium deposit in Erlian Basin. World Nucl. Geosci. 2010, 27, 125–129, (In Chinese with English Abstract). [Google Scholar]
- Niu, L.; Huang, S.; Yang, G. The Characteristics of Uranium Mineralization and Genesis of Nuheting Uranium Deposit in Erlian Basin, Inner Mongolia; China Nuclear Science and Technology Report; CNIC: Beijing, China, 1995; pp. 1005–1017. [Google Scholar]
- Zhang, R.; Ding, W. Discussion on geological characteristics of Nuheting type uranium deposit and the relation between oil and gas-bearing water and uranium metallogenesis. In Galaxy of Research Achievements of Uranium Geology of China; Bureau of Geology, China National Nuclear Corporation: Beijing, China, 1996; Volume 10, pp. 205–214. [Google Scholar]
- Wang, W. Features and the origin of mineral in sandstone type uranium deposit related to petroleum asphalt in Erlian basin of Inner Mogolia. Uranium Geol. 2016, 32, 270–278, (In Chinese with English Abstract). [Google Scholar]
- Yi, S.W. Exploration Theory and Practice of Lithologic and Stratigraphic Reservoirs in Erlian Basin. Ph.D. Thesis, Chengdu University of Technology, Chengdu, China, 2006. [Google Scholar]
- Xing, Y.W.; Zhang, Y.M.; Jiang, S.Q.; Dong, X.Y.; Wang, Y.J.; Wang, H.X.; Xu, Y.Z. Characteristics and distribution of petroleum reservoirs in Wulanhua Sag, Erlian Basin. China Pet. Explor. 2020, 25, 68–78. [Google Scholar]
- Zhao, X.Z.; Wang, Q.; Dan, W.N.; Wang, W.Y.; Qiao, X.X.; Ren, C.L. Exploration Discovery and Prospects of Cretaceous Stratigraphic Reservoirs in Erlian Basin. Lithol. Reserv. 2017, 29, 1–9. [Google Scholar]
- Liu, W.S.; Kang, S.H.; Zhao, X.Q.; Shi, Q.P.; Zhang, Z.N. Mineralization Mechanism and exploration of paleo channel type Uranium deposition Central Erlian Basin. Uranium Geol. 2015, 31, 163–175. [Google Scholar]
- Zhang, W.D.; Liu, W.S.; Zhang, Z.N.; Shi, Q.P.; Liu, C.H. Study on geochemical characteristics of hadatu paleo channel type sandstone type uranium deposit in Erlian basin. J. East China Univ. Technol. Nat. Sci. Ed. 2020, 43, 323–334. [Google Scholar]
- Liu, W.S.; Liu, J.H.; Wang, Z.B.; Xie, Y.X. The process and evolution of post-generation transformation of ore-bearing-formation in Erlian Basin. J. East China Univ. Technol. Nat. Sci. Ed. 2020, 28, 52–58. [Google Scholar]
- Nie, F.; Yan, Z.; Feng, Z.B.; Li, M.G.; Xia, F.; Zhang, C.Y.; Wang, Y.G.; Yang, J.X.; Kang, S.H.; Shen, K.F. Genetic models and exploration implication of the paleochannel sandstone-type uranium deposits in the Erlian Basin, North China—A review and comparative study. Ore Geol. Rev. 2020, 127, 103821. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Nie, F.J.; Quan, J.P.; Deng, W. Sources of Sandstone-type Uranium Ore of Intermountain Basin—Taking Tu-Ha Basin and Er’lian Basin as Examples. J. East China Univ. Technol. Nat. Sci. Ed. 2012, 35, 230–237. [Google Scholar]
- Qin, M.K.; Zhao, F.M.; He, Z.B.; Sheng, K.F.; Fan, G.; Li, Y.X.; Cao, J.Y. Comparison of metallogenic conditions for sandstone-type uranium deposit between Erlian basin of China and sedimentary basins of Mongolia. Uranium Geol. 2009, 25, 78–84. [Google Scholar]
- Yan, Z.B.; Nie, F.J.; Hu, J.J.; Kang, S.H. Study on uranium occurrences of sandstone-type uranium deposit in Bayanwula area, Erlian basin, Inner Mongolia. Appl. Mech. Mater. 2013, 295–298, 2803–2806. [Google Scholar] [CrossRef]
- Li, J.Y.; Gao, L.M.; Sun, G.H.; Li, Y.P.; Wang, Y.B. Shuangjingzi middle Triassic syn-collisional crust-derived granite in the east Inner Mongolia and its constraint on the timing of collision between Siberian and Sino-Korean paleo-plates. Acta Pet. 2007, 23, 565–582. [Google Scholar]
- Li, H.J.; Shen, K.F.; Nie, F.J.; Kuang, Z.W.; He, D.T. Sedimentary Evolution in Meso-Cenozoic and Uranium Mineralization of Erlian Basin. J. East China Univ. Technol. Nat. Sci. Ed. 2012, 35, 301–308. [Google Scholar]
- International Atomic Energy Agency (IAEA). World Distribution of Uranium Deposit /UDEPO, 2016 ed.; IAEA TECDOC-1843; IAEA Library: Vienna, Austria, 2016; pp. 112–114. [Google Scholar]
- Liu, W.S.; Kang, S.H.; Jia, L.C.; Shi, Q.P.; Peng, C. Characteristics of paleochannel sandstone-type uranium deposits in the central part of Erlian Basin. Uranium Geol. 2013, 29, 328–335. [Google Scholar]
- Liu, B.; Yang, J.X.; Peng, Y.B.; Kang, S.H.; Qiao, P.; Lu, C.; Zhang, F. Study of structure and formation in uranium-bearing paleo-valley and typical metallogenic models in eastern part of Erlian Basin. Mineral Deposits 2017, 36, 126–142. [Google Scholar]
- Feng, Z.B.; Nie, F.J.; Deng, J.Z.; Zhang, H.J.; Liu, B.H. Spatial-temporal collocation and genetic relationship among uranium, coal, and hydrocarbons and its significance for uranium prospecting: A case from the Mesozoic-Cenozoic uraniferous basins, North China. Russ. Geol. Geophys 2017, 58, 611–623. [Google Scholar] [CrossRef]
- Potgieter-Vermaak, S.; Maledi, N.; Wagner, N.; van Heerden, J.H.P.; van Griekenb, R.; Potgietere, J.H. Raman spectroscopy for the analysis of coal: A review. J. Raman Spectrosc 2011, 42, 123–129. [Google Scholar] [CrossRef]
- Masson, J.F.; Pelletier, L.; Collins, P. Rapid FTIR method for quantification of styrene-butadiene type copolymers in bitumen. Appl. Polym. Sci. 2001, 79, 1034–1041. [Google Scholar] [CrossRef]
- Robert, K.; Isacsson, U. Application of FTIR-ATR to Characterization of Bitumen Rejuvenator Diffusion. J. Mat. Civ. Eng. 2003, 15, 157–165. [Google Scholar]
- Wu, M.; Song, M.Y.; Liu, M.; Jiang, C.; Li, Z. Fungicidal activities of soil humic/fulvic acids as related to their chemical structures in greenhouse vegetable fields with cultivation chronosequence. Sci. Rep. 2016, 6, 32858. [Google Scholar] [CrossRef] [PubMed]
- Guan, X.H.; Chen, G.H.; Shang, C. ATR-FTIR and XPS study on the structure of complexes formed upon adsorption of simple organic acids on aluminum hydroxide. J. Environ. Sci. 2007, 19, 438–443. [Google Scholar] [CrossRef]
- Qiu, L.F.; Ou, G.X.; Zhang, M.; Li, Q.; Wu, D.; Shang, C.J. Micro-area Analysis of Uranium Minerals by Micro FT-IR Spectrometry. Acta Mineral. Sin. 2016, 36, 43–47. [Google Scholar]
- Ohmoto, H.; Rye, R.O. Isotopes of sulfur and carbon. In Geochemistry of Hydrothemeal Ore Deposits, 2nd ed.; Barnes, H.L., Ed.; Wiley: New York, NY, USA, 1979; pp. 509–567. [Google Scholar]
- Morga, R.; Jelonek, I.; Kruszewsk, K. Relationship between coking coal quality and its micro-Raman spectral characteristics. Int. J. Coal Geol. 2014, 134–135, 17–23. [Google Scholar] [CrossRef]
- Su, X.B.; Si, Q.; Song, J.X. Characteristics of coal Raman spectrum. J. China Coal. Soc. 2016, 41, 1197–1202. [Google Scholar]
- Zhang, N.; Wang, Z.M.; Ju, F.P.; Xiao, Z.Y.; Fang, Q.F.; Zhang, B.S.; Lu, Y.H.; Yu, X.Q. Diagenetic bitumen in Ordovician carbonate reservoirs of the northern Tarim basin. Acta Perrolei. Sin. 2013, 34, 225–232. [Google Scholar]
- Wang, M.L.; Xiao, X.M.; Wei, Q.; Zhou, Q. Thermal maturation of solid bitumen in shale as revealed by Raman spectroscopy. Nat. Gas Geosci. 2014, 26, 1712–1718. [Google Scholar]
- Li, X.; Zeng, F.G.; Wang, W.; Dong, K. Raman characterization of structural evolution in the low-middle rank coals. J. Coal Society. 2016, 41, 2298–2304. [Google Scholar]
- Cuesta, A.; Dhamelincourt, P.; Laureyns, J.; Martinez-Alonso, A.; Tascón, J.D. Raman microprobe studies on carbon materials. Carbon 1994, 32, 1523–1532. [Google Scholar] [CrossRef]
- Duan, J.C.; Zhuang, X.G.; He, M.C. Characteristics in laser Raman spectrum of different ranks of coal. Geo Log. Sci. Technol. Inf. 2002, 21, 64–67. [Google Scholar]
- Sun, X.G.; Chen, J.P.; Hao, D.F. Micro-FTIR Spectroscopy of Macerals in Coals from Tarim Basin. Acta Sci. Nat. Univ. Pekin. 2001, 37, 832–838. [Google Scholar]
- Jiménez-González, M.A.; Álvarez, A.M.; Carral, P.; Almendros, G. Chemometric assessment of soil organic matter storage and quality from humic acid infrared spectra. Sci. Total Environ. 2019, 685, 1160–1168. [Google Scholar] [CrossRef]
- Wei, S.P.; Wu, M.; Li, Z.P. Comparative Study on Infrared Spectroscopy of Humic Acid from Different Sources. Humic Acid 2018. [Google Scholar] [CrossRef]
- Zhang, M.Y. Study on Chemical Composition and Structure of Extracts from Plants at Different Evolutionary Stages and Humic Substances of Different Sources. Master’s Thesis, Jilin Agricultural University, Changchun, China, 2015. [Google Scholar]
- Cranwell, P.; Eglinton, G.; Robinson, N. Lipids of aquatic organisms as potential contributors to lacustrine sediments-II. Org. Geochem. 1987, 11, 513–527. [Google Scholar] [CrossRef]
- Meyers, P.A. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleolimatic processes. Org. Geochem. 1997, 27, 213–250. [Google Scholar] [CrossRef]
- Philp, R.P. Biolgical markers in fossil fuel production. Mass Spectrom. Rev. 1985, 4, 1–54. [Google Scholar] [CrossRef]
- Amane, W.; Hideki, N. Geochemical characteristics of terrigenous and marine sourced oils in Hokkaido, Japan. Org. Geochem. 1997, 28, 27–41. [Google Scholar]
- Feng, W.P.; Wang, F.Y.; Wang, Z.X.; Shi, Y.L.; Jiang, T.; Wang, Y.F.; Zhou, H.F. Characteristics and origin of crude oils in the Wulanhua sag. J. Geomech. 2020, 26, 932–940. [Google Scholar]
- Wang, H.; Wang, F.Y.; Jiang, S.Q.; Wu, Z.; Xin, Y.W.; Lan, B.F. The oil families and their geochemical characteristics in Sanhantala Sag, Erlian Basin. Lithol. Reserv. 2017, 29, 36–43. [Google Scholar]
- Huang, D.F.; Li, J.C. Types of kerogen and the validity, limitations and relevance of its classification parameters. Acta Sedimentol. Sin. 1984, 2, 18–33. [Google Scholar]
- Spirakis, C.S. The roles of organic matter in the formation of uranium deposits in sedimentary rocks. Ore Geol. Rev. 1996, 11, 53–69. [Google Scholar] [CrossRef]
- Langmuir, D. Uranium solution-mineral equilibria at low temperature with applications to sedimentary ore deposits. Geochim. Cosmochim. Acta 1978, 42, 547–569. [Google Scholar] [CrossRef]
- Szalay, A. The significance of humus in the geochemical enrichment of uranium. In Proceedings of the 2nd International Conference on the Peaceful Uses of Atomic Energy, Geneva, Switzerland, 1–13 September 1958; pp. 182–186. [Google Scholar]
- Hostetler, P.B.; Garrels, R.M. Transportation and precipitation of uranium and vanadium at low temperatures, with special reference to sandstone type uranium deposits. Econ. Geol. 1962, 57, 137–167. [Google Scholar] [CrossRef]
- Kochennov, A.V.; Zinevyev, V.; Lovaleva, S. Some features of the accumulation of uranium in peat bogs. Geochem. Int. 1965, 2, 65–70. [Google Scholar]
- Tayeva, N. Association of radium and uranium with peat. Geochem. Int. 1967, 4, 1168–1174. [Google Scholar]
- McKay, A.D.; Miezitis, Y. Australia’s uranium resources, geology and development of deposits. AGSO Geosci. Aust. Min. Resour. Rep. 2001, 1, 195. [Google Scholar]
- Alexandre, P.; Kyser, T.K. Geochemistry of uraniferous bitumen in the southwest Athabasca Basin, Saskatchewan, Canada. Econ. Geol. 2006, 101, 1605–1612. [Google Scholar] [CrossRef]
- Fuchs, S.H.J.; Schumann, D.; Williams-Jones, A.E.; Murray, A.J.; Couillard, M.; Lagarec, K.; Phaneuf, M.W.; Vali, H. Gold and uranium concentration by interaction of immiscible fluids (hydrothermal and hydrocarbon) in the Carbon Leader Reef, Witwatersrand Supergroup, South Africa. Precambrian Res. 2017, 293, 39–55. [Google Scholar] [CrossRef] [Green Version]
- Jaireth, S.; McKay, A.; Lambert, I. Association of large sandstone uranium deposits with hydrocarbons. Aust. Gov. Geosci. 2008, 89, 1–6. [Google Scholar]
- Sharon, E.; Bone, J.C.; Weaver, K.; Takacs, C.J.; Roycroft, S.; Fendorf, S.; Bargar, J.R. Complexation by organic matter controls uranium mobility in Anoxic Sediments. Environ. Sci. Technol 2020, 54, 1493–1502. [Google Scholar]
- Lovley, D.R.; Phillips, E.J.; Gorby, Y.A.; Landa, E.R. Microbial reduction of uranium. Nature 1991, 350, 413–416. [Google Scholar] [CrossRef]
- Mikutta, C.; Langner, P.; Bargar, J.R.; Kretzschmar, R. Tetra-and hexavalent uranium forms bidentate-mononuclear complexes with particulate organic matter in a naturally uranium-enriched peatland. Environ. Sci. Technol 2016, 50, 10465–10475. [Google Scholar] [CrossRef] [PubMed]
- Landais, P. Organic geochemistry of sedimentary uranium ore deposits. Ore Geol. Rev. 1996, 11, 33–51. [Google Scholar] [CrossRef]
- Xue, Z.W. Three History Analysis and Hydrocarbon Accumulation of Early Cretaceous Basin in Wunite Depression, Erlian Basin. Master’s Thesis, China University of Mining, Xuzhou, China, 2019. [Google Scholar]
- Nie, F.J.; Chen, A.P.; Hu, Q.H.; Shen, K.F. Discussion of the early Cretaceous sandstone type Uranium deposits, Erlian basin, Inner Mongolia. J. Stratigr. 2007, 31, 272–279. [Google Scholar]
- Liu, W.S.; Li, X.D.; Xue, Z.A.; Lv, Y.H.; Liu, C.H. Geochemical characteristics and geological significance of Hadatu uranium deposit in Erlian Basin, Inner Mongolia. Uranium Geol. 2020, 36, 325–335. [Google Scholar]
- Lu, C. Tectonic Ore-Controlling Mechanism and Uranium Metallogenic Model of Bayanwula Uranium Ore Field in Erlian Basin. Ph.D. Thesis, China University of Geosciences, Wuhan, China, 2019. [Google Scholar]
Testing No. | Sample Properties | Distribution Pattern | Absorption Peaks |
---|---|---|---|
FTIR-1 | type-I OM | Scatter in porosity of U-bearing sandstone | 826, 1033, 1182, 1242, 1457, 1508, 1604; 2871, 2928, 2962 |
FTIR-2 | type-II OM | Distribution along cracks of U-bearing sandstone | 749, 809, 855, 1031, 1180, 1249, 1374, 1438, 1595, 1747; 2853, 2924 |
FTIR-3 | type-III OM | Distribution in the dissolution voids of U-bearing sandstone | 749, 855, 995, 1352, 1402, 1610; 2852, 2924 |
FTIR-4 | OM-bearing Uraninite | Distribution in the dissolution voids of U-bearing sandstone | 711, 871, 953, 1376, 1795, 2512; 2856, 2874, 2924, 2981; |
Sample No. | Cont Bitm-A*/% | Sa-HC /% | Ar-HC /% | Non-HC/% | As/% | Main C-Peak | Sa/ Ar | Pr/Ph | CPI | OEP | Pr/nC17 | Ph/nC18 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
EK405-109-1 | 0.0052 | 31.58 | 15.79 | 44.74 | 7.89 | nC17 | 2.0 | 0.912 | 1.301 | 1.077 | 0.335 | 0.386 |
BK405-105-1 | 0.0074 | 51.35 | 2.70 | 37.84 | 8.11 | nC17 | 19.0 | 0.964 | 2.143 | 1.041 | 0.351 | 0.382 |
BK405-105-2 | 0.0289 | 31.51 | 2.74 | 57.53 | 8.22 | nC17 | 11.5 | 0.979 | 1.849 | 1.049 | 0.356 | 0.430 |
E19-02-4 | 0.0003 | 13.13 | 10.10 | 66.67 | 10.10 | nC18 | 1.3 | 0.792 | 1.617 | 0.960 | 0.304 | 0.274 |
E19-02-5 | 0.0021 | 30.77 | 9.40 | 49.57 | 10.26 | nC23 | 3.3 | 1.009 | 3.921 | 3.938 | 0.288 | 0.256 |
E19-02-6 | 0.0016 | 20.00 | 8.33 | 61.67 | 10.00 | nC18 | 2.4 | 0.754 | 1.407 | 0.920 | 0.283 | 0.266 |
EZK1215-3 | 0.0013 | 30.40 | 7.67 | 51.42 | 10.51 | nC25 | 4.0 | 1.128 | 2.127 | 1.907 | 0.116 | 0.085 |
EZK1215-4 | 0.00008 # | 25.00 | 6.25 | 53.12 | 15.63 | nC23 | 4.0 | 0.600 | 9.396 | 2.265 | 0.277 | 0.344 |
EZK1215-8 | 0.00009 # | 31.11 | 6.67 | 44.44 | 17.78 | nC18 | 4.7 | 0.622 | 1.752 | 0.970 | 0.307 | 0.430 |
EZK1215-9 | 0.0029 | 20.00 | 13.33 | 51.67 | 15.00 | nC25 | 1.5 | 0.588 | 2.649 | 2.039 | 0.303 | 0.394 |
E20-D3-3 | 0.0012 | 30.77 | 7.69 | 32.69 | 28.85 | nC19 | 4.0 | 0.730 | 2.138 | 1.060 | 0.323 | 0.347 |
Sample No. | Deposit | Sample Properties | δ13C V-PDB (‰) |
---|---|---|---|
EK405-109-1 | Bayanwula | Dark, high-grade U-ore | −31.1 |
BK405-105-1 | Bayanwula | Dark, high-grade U-ore | −33.4 |
BK405-105-2 | Bayanwula | Dark, high-grade U-ore | −32.0 |
E19-02-4 | New area drill | Grey, U-bearing sandstone | −28.6 |
E19-02-5 | New area drill | Grey, U-bearing sandstone | −28.1 |
E19-02-6 | New area drill | Grey, U-bearing sandstone | −27.0 |
EZK1215-3 | Hadatu | Dark, medium-grade U-ore | −29.6 |
EZK1215-4 | Hadatu | Dark, high-grade U-ore | −30.9 |
EZK1215-8 | Hadatu | Dark, medium-grade U-ore | −28.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, L.-F.; Li, X.-D.; Liu, W.-S.; Hu, B.-Q.; Gao, L.; He, Z.-B. Uranium Deposits of Erlian Basin (China): Role of Carbonaceous Debris Organic Matter and Hydrocarbon Fluids on Uranium Mineralization. Minerals 2021, 11, 532. https://doi.org/10.3390/min11050532
Qiu L-F, Li X-D, Liu W-S, Hu B-Q, Gao L, He Z-B. Uranium Deposits of Erlian Basin (China): Role of Carbonaceous Debris Organic Matter and Hydrocarbon Fluids on Uranium Mineralization. Minerals. 2021; 11(5):532. https://doi.org/10.3390/min11050532
Chicago/Turabian StyleQiu, Lin-Fei, Xi-De Li, Wu-Sheng Liu, Bao-Qun Hu, Long Gao, and Zhong-Bo He. 2021. "Uranium Deposits of Erlian Basin (China): Role of Carbonaceous Debris Organic Matter and Hydrocarbon Fluids on Uranium Mineralization" Minerals 11, no. 5: 532. https://doi.org/10.3390/min11050532
APA StyleQiu, L. -F., Li, X. -D., Liu, W. -S., Hu, B. -Q., Gao, L., & He, Z. -B. (2021). Uranium Deposits of Erlian Basin (China): Role of Carbonaceous Debris Organic Matter and Hydrocarbon Fluids on Uranium Mineralization. Minerals, 11(5), 532. https://doi.org/10.3390/min11050532