A Review of the Commercial Uses of Sulphate Minerals from the Titanium Dioxide Pigment Industry: The Case of Huelva (Spain)
Abstract
:1. Introduction
- (1)
- The substance or object is commonly used for specific purposes;
- (2)
- A market or demand exists for such a substance or object;
- (3)
- The substance or object fulfils the technical requirements for specific purposes and meets the existing legislation and standards applicable to products;
- (4)
- The use of the substance or object will not lead to overall adverse environmental or human health impacts.
2. TiO2 Industrial Process
2.1. Historical Evolution of the Industrial Process
- (1)
- Acid attack in the digestion step: This step began with the mixture of sulphuric acid and raw material (ilmenite);
- (2)
- The resulting mixture was sent to a decantation zone, where mud was separated and transferred to a boat and sent offshore (more than 40 miles into the Gulf of Cadiz) in a zone of minimal environmental impact. This mud was mainly composed of all un-attacked minerals from the raw materials;
- (3)
- The sample containing titanium and iron in solution was treated, precipitating the titanium contents in the liquid fraction and the resulting liquor (20–25% H2SO4, usually named strong acid) containing sulphuric acid and iron salts, which was mixed with the previously obtained mud and sent offshore.
2.2. Treatment of Acid Streams
3. Characterisation of the Samples
3.1. Mineralogical Composition
3.2. Major Elements
3.3. Trace Elements
3.4. Scanning Electron Microscopy
3.5. Radioactive Characterisation
4. Commercial Applications of Sulphates from the Titanium Dioxide Industry
- Development of new lines of Research and Development (R&D), with the aim to introduce changes in the production processes that entail improvements in order to achieve the minimisation of the produced waste;
- Improvement of the public image of the industry thanks to the valorisation process of the waste, minimising the environmental pollution;
- Improvement in competitiveness, increasing sales and market share and reducing costs related to the management of waste.
- Fe2+ iron can be directly assimilated by plants;
- The solubilisation of several cations (magnesium or phosphorus) is carried out by using sulphuric acid;
- Other elements such as zinc, copper, and manganese are important trace elements in plant growth.
5. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hakkou, R.; Benzaazoua, M.; Bussière, B. Valorization of phosphate waste rocks and sludge from the moroccan phosphate mines: Challenges and perspectives. Procedia Eng. 2016, 138, 110–118. [Google Scholar] [CrossRef] [Green Version]
- Alia Ben Ghacham, A.B.; Pasquier, L.-C.; Cecchi, E.; Blais, J.-F.; Mercier, G. Valorization of waste concrete through CO2 mineral carbonation: Optimizing parameters and improving reactivity using concrete separation. J. Clean. Prod. 2017, 166, 869–878. [Google Scholar] [CrossRef] [Green Version]
- Cuadros Blázquez, F.; González González, A.; Sánchez Sánchez, C.; Díaz Rodrígueza, V.; Cuadros Salcedo, F. Waste valorization as an example of circular economy in extremadura (Spain). J. Clean. Prod. 2017, 181, 136–144. [Google Scholar] [CrossRef]
- Ruello, M.L.; Bellezze, T.; Corinaldesi, V.; Donnini, J.; Eusebi, A.L.; Fatone, F.; Fava, G.; Favoni, O.; Fratesi, R.; Giosué, C.; et al. Sustainability in construction materials: From waste valorization to circular economy. In The First Outstanding 50 Years of “Università Politecnica delle Marche”; Longhi, S., Monteriù, A., Freddi, A., Frontoni, E., Germani, M., Revel, G., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Directive 2008/98/EC on Waste (Waste Framework Directive). Available online: http://eurlex.europa.eu/legalcontent/EN/TXT/?uri=CELEX:32008L0098 (accessed on 19 November 2008).
- Harrou, A.; Garibay, E.K.; Taha, Y.; Fagel, N.; El Ouahabi, M. Phosphogypsum and black steel slag as additives for ecological bentonite-based materials: Microstructure and characterization. Minerals 2020, 10, 1067. [Google Scholar] [CrossRef]
- Ng, K.S.; Phan, A.N.; Lacovidou, E.; Ghani, W.A.W.A.K. Techno-economic assessment of a novel integrated system of mechanical-biological treatment and valorisation of residual municipal solid waste into hydrogen: A case study in the UK. J. Clean Prod. 2021, 298, 126706. [Google Scholar] [CrossRef]
- Igarashi, T.; Herrera, P.S.; Uchiyama, H.; Miyamae, H.; Iyatomi, N.; Hashimoto, K.; Tabelin, C.B. The two-step neutralization ferrite-formation process for sustainable acid mine drainage treatment: Removal of copper, zinc and arsenic, and the influence of coexisting ions on ferritization. Sci. Total Environ. 2020, 715, 136877. [Google Scholar] [CrossRef]
- Chen, L.; Liao, Y.; Ma, X. Economic analysis on sewage sludge drying and its co-combustion in municipal solid waste power plant. Waste Manag. 2021, 121, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Samadder, S.R. A review on technological options of waste to energy for effective management of municipal solid waste(Review). Waste Manag. 2017, 69, 407–422. [Google Scholar] [CrossRef]
- Murphy, P.; Frick, L. Titanium. In Industrial Minerals and Rocks, 7th ed.; Kogel, J.E., Trivedi, N.C., Barker, J.M., Krukowski, S.T., Eds.; Society for Mining, Metallurgy, and Exploration, Inc.: Littleton, CO, USA, 2006; pp. 987–1003. [Google Scholar]
- Gázquez, M.J. Caracterización y Valorización de Residuos Generados en la Industria de Producción de Dióxido de Titanio. Ph.D. Thesis, University of Huelva, Huelva, Spain, 2010. (In Spanish). [Google Scholar]
- Gázquez, M.J.; Bolívar, J.P.; Garcia-Tenorio, R.; Vaca, F. Physicochemical characterization of raw materials and by-products from the titanium dioxide industry. J. Hazard. Mater. 2009, 166, 1429–1440. [Google Scholar] [CrossRef] [PubMed]
- European Union. COUNCIL DIRECTIVE of 20 February 1978 on Waste from the Titanium Dioxide Industry (78/176/EEC) in European Union Law; EUROPA: Brussels, Belgium, 2014. [Google Scholar]
- European Union. COUNCIL DIRECTIVE 92/112/EEC of 15 December 1992 on Procedures for Harmonizing the Programmes for the Reduction and Eventual Elimination of Pollution Caused by Waste from the Titanium Dioxide Industry in European Union Law; EUROPA: Brussels, Belgium, 2014. [Google Scholar]
- International Atomic Energy Agency (IAEA). Radiation Protection and NORM Residue Management in the Titanium Dioxide and Related Industries; Safety Reports Series; International Atomic Energy Agency (IAEA): Vienna, Austria, 2012; ISSN 1020–6450, No. 76. [Google Scholar]
- The Nuclear Safety Council. Collection of Technical Reports “Titanium Dioxide Pigments Industry”; The Nuclear Safety Council: Madrid, Spain, 2010. [Google Scholar]
- Chernet, T. Applied mineralogical studies on Australian sand ilmenite concentrate with special reference to its behavior in the sulphate process. Miner. Eng. 1999, 12, 485–495. [Google Scholar] [CrossRef]
- Klepka, M.; Lawniczak-Jablonska, K.; Jablonski, M.; Wolska, A.; Minikayev, R.; Paszkowicz, W.; Przepiera, A.; Spolnik, Z.; Van Grieken, R. Combined XRD, EPMA and X-ray absorption study of mineral ilmenite used in pigments production. J. Alloy. Compd. 2005, 401, 281–288. [Google Scholar] [CrossRef]
- Wang, T.; Debelak, K.A.; Roth, J.A. Dehydration of iron (II) sulphate heptahydrate. Thermochim. Acta 2007, 462, 89–93. [Google Scholar] [CrossRef]
- Fauziah, I.; Zauyah, S.; Jamal, T. Characterizaton and land application of red gypsum: A waste product from the titanium dioxide industry. Sci. Total Environ. 1996, 188, 243–251. [Google Scholar] [CrossRef]
- Potgieter, J.H.; Potgieter, S.S.; Mccrindle, R.I. A comparison of the performance of various synthetic gypsums in plant trials during the manufacturing of OPC clinker. Cem. Concr. Res. 2004, 34, 2245–2250. [Google Scholar] [CrossRef]
- Gao, R.E. Composition of the continental crust. In Treatise of Geochemistry; The Crust; Elsevier: Amsterdam, The Netherlands, 2003; Volume 3, pp. 1–64. [Google Scholar]
- Ren, G.; Yang, L.; Zhang, Z.; Zhong, B.; Yang, X.; Wang, X. A new green synthesis of porous magnetite nanoparticles from waste ferrous sulfate by solid-phase reduction reaction. J. Alloy. Compd. 2017, 710, 875–879. [Google Scholar] [CrossRef]
- Ren, G.; Wang, X.; Zhang, Z.; Zhong, B.; Yang, L.; Yang, X. Characterization and synthesis of nanometer magnetite black pigment from titanium slag by microwave-assisted reduction method. Dyes Pigment. 2017, 147, 24–30. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z.; Zeng, Y. A green process for recovery of H2SO4 and Fe2O3 from FeSO4·7H2O by modeling phase equilibrium of the Fe(П)-SO42−—H+-Cl− system. AlChE J. 2017, 10, 4549–4563. [Google Scholar] [CrossRef]
- Tao, Y.; Jiang, B.; Yang, X.; Ma, X.; Chen, Z.; Wang, X.; Wang, Y. Physicochemical study of the sustainable preparation of nano-Fe2O3 from ferrous sulfate with coke. J. Clean. Prod. 2020, 255, 120175. [Google Scholar] [CrossRef]
- Rodrigues, C.S.D.; Madeira, L.M.; Boaventura, R.A.R. Treatment of textile dye wastewaters using ferrous sulphate in a chemical coagulation/flocculation process. Environ. Technol. 2013, 34, 719–729. [Google Scholar] [CrossRef]
- Gázquez, M.J.; Bolívar, J.P.; Vaca, F.; García-Tenorio, R.; Caparros, A. Evaluation of the use of TiO2 industry red gypsum waste in cement production. Cem. Concr. Compos. 2012, 37, 76–81. [Google Scholar] [CrossRef]
- United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). Report of the United Nations Scientific Committee on the Effects of Atomic Radiation; UNSCEAR: New York, NY, USA, 2000. [Google Scholar]
- Gázquez, M.J.; Mantero, J.; Bolívar, J.P.; García-Tenorio, R.; Vaca, F.; Lozano, R.L. Physico-chemical and radioactive characterization of TiO2 undissolved mud for its valorization. J. Hazard. Mater. 2011, 191, 269–276. [Google Scholar] [CrossRef]
- Orihuela, D.L.; Marijuan, J.L. (Eds.) Sulfatos de Hierro: Su Uso Agrícola; University of Huelva: Huelva, Spain, 2003; (In Spanish). ISBN 9788495699749. [Google Scholar]
- European Union. Directive 2003/53/EC of the European Parliament and of the Council of 18 June 2003 Amending for the 26th Time Council Directive 76/769/EEC Relating to Restrictions on the Marketing and Use of Certain Dangerous Substances and Preparations (Nonylphenol, Nonylphenol Ethoxylate and Cement) in European Union Law; EUROPA: Brussels, Belgium, 2019. [Google Scholar]
- Mončeková, M.; Novotný, R.; Koplík, J.; Kalina, L.; Bílek, V.; Šoukal, F. Hexavalent chromium reduction by ferrous sulphate heptahydrate addition into the portland clinker. Procedia Eng. 2016, 151, 73–79. [Google Scholar] [CrossRef] [Green Version]
- EFSA Panel on Additives and Products or Substances Used in Animal Feed (EFSA FEEDAP Panel). Scientific Opinion on the safety and efficacy of iron compounds (E1) as feed additives for all species: Ferrous sulphate heptahydrate based on a dossier submitted by Kronos International, Inc. EFSA J. 2014, 12, 3566. [Google Scholar] [CrossRef]
- EFSA Panel on Additives and Products or Substances Used in Animal Feed (EFSA FEEDAP Panel). Scientific opinion on the safety and efficacy of iron compounds (E1) as feed additives for all species: Ferric oxide based on a dossier submitted by Poortershaven Industriele Mineralen B.V. EFSA J. 2016, 14, 4508. [Google Scholar] [CrossRef] [Green Version]
- Sajjad Talpur, H.; Shafi, I.; Dad, R.; Bhattarai, D.; Rehman, Z.; Ullah, F.; Aman Ullah, A. Effects of supplementation of ferrous sulphate (iron) on the growth of hubbard broiler chicks. Sci. Int. 2016, 28, 4687–4692. [Google Scholar]
- Arnaudova-Matey, A.; Shindarska, Z.; Yankovska, T.; Dilova, V. Influence of the iron methionate and ferrous sulphate on some productive indices in broiler chickens. Bulg. J. Agric. Sci. 2015, 21, 215–219. [Google Scholar]
- Peng, X.; Xu, D.; Yang, X.; Zhang, Z.; Ren, G.; Yang, L.; Zhong, Y.; Wang, X. A new green synthesis method of magnesium ferrite from ferrous sulfate waste. J. Alloy. Compd. 2018, 756, 117–125. [Google Scholar] [CrossRef]
- Yu, W.; Peng, Y.; Zheng, Y. Recovery of iron from waste ferrous sulphate by co-precipitation and magnetic separation. Trans. Nonferrous Met. Soc. 2017, 27, 211–219. [Google Scholar] [CrossRef]
- Peng, Y.; Yu, W.; Zheng, Y. Recovery of magnetite from waste ferrous sulfate using polyethylene glycol (PEG) as a dispersant. Trans. Nonferrous Met. Soc. 2018, 28, 1465–1474. [Google Scholar] [CrossRef]
- Wang, W.; Shu, Y.; Xiang, H.; Xu, D.; Zhang, P.; Ren, G.; Zhong, Y.; Yang, X. Magnetic properties of Cu0.5Mg0.5Fe2O4 nanoparticles synthesized with waste ferrous sulfate. Mater. Today Commun. 2020, 25, 101516. [Google Scholar] [CrossRef]
- Kanari, N.; Filippova, I.; Diot, F.; Mochón, J.; Ruiz-Bustinza, I.; Allain, E.; Yvon, J. Utilization of a waste from titanium oxide industry for the synthesis of sodium ferrate by gas–solid reactions. Thermochim. Acta 2014, 575, 219–225. [Google Scholar] [CrossRef]
- Deneux-Mustin, S.; Lartiges, B.S.; Villemin, G.; Thomas, F.; Yvon, J.; Bersillon, J.L.; Snidaro, D. Ferric chloride and lime conditioning of activated sludges: An electron microscopic study on resin-embedded samples. Water Res. 2001, 35, 3018–3024. [Google Scholar] [CrossRef]
- Jiang, J.Q. Research progress in the use of ferrate(VI) for the environmental remediation. J. Hazard. Mater. 2007, 146, 617–623. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, H.; Wang, L.; Chen, J.; Xu, S.; Hou, H.; Shi, Y.; Zhang, J.; Ma, M.; Tsang, D.C.W.; et al. Transformation of arsenic during realgar tailings stabilization using ferrous sulfate in a pilot-scale treatment. Sci. Total Environ. 2019, 668, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Zhang, H.; Wang, X.; Yao, D.; Hou, H.; Shi, Y.; Chen, J.; Wang, L.; Ma, M.; Liu, J.; et al. The mechanism of microwave-induced mineral transformation and stabilization of arsenic in realgar tailings using ferrous sulfate. Chem. Eng. Trans. 2020, 393, 124732. [Google Scholar] [CrossRef]
- Zou, Q.; Li, D.; Jiang, J.; Aihemaiti, A.; Gao, Y.; Liu, N.; Liu, J. Geochemical simulation of the stabilization process of vanadium-contaminated soil remediated with calcium oxide and ferrous sulfate. Ecotoxicol. Environ. Saf. 2019, 174, 498–505. [Google Scholar] [CrossRef] [PubMed]
- Vithalkar, S.H.; Rao, S.N.; Shivastva, S.; Sathe, A.M. Kinetic study of oxidation of nitrophenol present in waste water using ferrous sulphate. Mater. Today 2019, 15 Pt 3, 620–625. [Google Scholar] [CrossRef]
- White, M.; Glendinning, S.; Hughes, P.; Manning, D.A.C. Use of red gypsum in soil mixing engineering applications. Geotech. Eng. 2011, 164, 223–234. [Google Scholar] [CrossRef]
- Hughes, P.N.; Glendinning, S.; Manning, D.A.C.; Noble, B.C. Production of ‘green concrete’ using red gypsum and waste. In Proceedings of the ICE-Engineering Sustainability; ICE Virtual Library: London, UK, 2010; Volume 163, pp. 137–146. [Google Scholar]
- Wu, S.; Yao, Y.; Yao, X.; Ren, C.; Li, J.; Xu, D.; Wang, W. Co-preparation of calcium sulfoaluminate cement and sulfuric acid through mass utilization of industrial by-product gypsum. J. Clean. Prod. 2020, 265, 121801. [Google Scholar] [CrossRef]
- Zhang, J.; Yan, Y.; Hu, Z. Preparation and characterization of foamed concrete with Ti-extracted residues and red gypsum. Constr. Build Mater. 2018, 171, 109–119. [Google Scholar] [CrossRef]
- Zhang, J.; Yan, Y.; Hu, Z.; Xie, X.; Yang, L. Properties and hydration behavior of Ti-extracted residues-red gypsum based cementitious materials. Constr. Build Mater. 2019, 218, 610–617. [Google Scholar] [CrossRef]
- Chen, Q.; Ding, W.; Sun, H.; Peng, T. Synthesis of anhydrite from red gypsum and acidic wastewater treatment. J. Clean. Prod. 2021, 278, 124026. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X.; Li, Z.; Ren, Y.; Wang, Y.; Zhang, W. Preparation, characterization and application of red mud, fly ash and desulfurized gypsum based eco-friendly road base materials. J. Clean. Prod. 2021, 284, 124777. [Google Scholar] [CrossRef]
- Claisse, P.; Ganjian, E.; Tyrer, M. The use of secondary gypsum to make a controlled low strength material. Open Constr. Build. Technol. J. 2008, 6, 294–305. [Google Scholar] [CrossRef] [Green Version]
- Zhai, W.; Dai, Y.; Zhao, W.; Yuan, H.; Qiu, D.; Chen, J.; Gustave, W.; Maguffin, S.C.; Chen, Z.; Liu, X.; et al. Simultaneous immobilization of the cadmium, lead and arsenic in paddy soils amended with titanium gypsum. Environ. Pollut. 2020, 258, 113790. [Google Scholar] [CrossRef] [PubMed]
- Rosli, N.A.; Aziz, H.A.; Selamat, M.R.; Lim, L.L.P. A mixture of sewage sludge and red gypsum as an alternative material for temporary landfill cover. J. Environ. Manag. 2020, 263, 110420. [Google Scholar] [CrossRef]
- Zapata-Carbonell, J.; Bégeot, C.; Carry, N.; Choulet, F.; Delhautal, P.; Gillet, F.; Girardclos, O.; Mouly, A.; Chalot, M. Spontaneous ecological recovery of vegetation in a red gypsum landfill: Betula pendula dominates after 10 years of inactivity. Ecol. Eng. 2019, 132, 31–40. [Google Scholar] [CrossRef]
- Pérez-Moreno, S.M.; Gázquez, M.J.; Bolívar, J.P. CO2 sequestration by indirect carbonation of artificial gypsum generated in the manufacture of titanium dioxide pigments. Chem. Eng. J. 2015, 262, 737–746. [Google Scholar] [CrossRef]
- Rahmani, O. CO2 sequestration by indirect mineral carbonation of industrial waste red gypsum. J. CO2 Util. 2018, 27, 374–380. [Google Scholar] [CrossRef]
- Rahmani, O. An experimental study of accelerated mineral carbonation of industrial waste red gypsum for CO2 sequestration. J. CO2 Util. 2020, 35, 265–271. [Google Scholar] [CrossRef]
- Azdarpour, A.; Karaei, M.A.; Hamidi, H.; Mohammadian, E.; Honarvar, B. CO2 sequestration through direct aqueous mineral carbonation of red gypsum. Petroleum 2018, 4, 398–407. [Google Scholar] [CrossRef]
- Rahmani, O. Siderite precipitation using by-product red gypsum for CO2 sequestration. J. CO2 Util. 2018, 24, 321–327. [Google Scholar] [CrossRef]
Ilmenite | Copperas | Monohydrate | Red Gypsum | |
---|---|---|---|---|
SiO2 | 1.13 ± 0.25 | <0.01 | <0.01 | 1.2 ± 0.2 |
Al2O3 | 1.10 ± 0.21 | 0.06 ± 0.01 | 1.1 ± 0.3 | 1.4 ± 0.2 |
FeOT | 44 ± 1 | 39 ± 3 | 31 ± 2 | 14 ± 2 |
MnO | 1.30 ± 0.05 | 0.35 ± 0.04 | 1.4 ± 0.1 | 0.35 ± 0.04 |
MgO | 0.32 ± 0.07 | 0.25 ± 0.03 | 0.61 ± 0.12 | 1.4 ± 0.2 |
CaO | 0.05 ± 0.01 | <0.01 | 0.09 ± 0.03 | 33 ± 2 |
TiO2 | 49.6 ± 0.3 | 0.18 ± 0.02 | 2.9 ± 0.3 | 7.6 ± 1.2 |
SO3 | <0.01 | 22 ± 2 | 25 ± 1 | 27 ± 1 |
L.O.I. | <0.01 | 39 ± 2 | 41 ± 3 | 21 ± 2 |
Ilmenite | Copperas | Monohydrate | Red Gypsum | (*) | |
---|---|---|---|---|---|
Cr | 344 ± 60 | 10 ± 1 | 467 ± 27 | 133 ± 4 | 92 |
Cu | 41 ± 6 | <0.01 | <0.01 | 12 ± 1 | 28 |
Zn | 296 ± 28 | 299 ± 34 | 749 ± 55 | 225 ± 12 | 67 |
As | 22 ± 2 | 0.25 ± 0.03 | 1.32 ± 0.09 | 12 ± 1 | 4.8 |
Cd | 2.7 ±0.3 | 3.3 ± 0.4 | 0.87 ± 0.04 | 1.0 ± 0.1 | 0.09 |
Pb | 135 ± 10 | 46 ± 6 | 45 ± 3 | 35 ± 2 | 17 |
Th | 97 ± 9 | 3.1 ± 0.5 | 92 ± 5 | 30 ± 1 | 11 |
U | 6.5 ± 0.7 | 0.11 ± 0.01 | 5.0 ± 0.2 | 1.7 ± 0.2 | 2.7 |
Code | Ilmenite | Red Gypsum | Cooperas | Monohydrate | |
---|---|---|---|---|---|
AlphaSpectrometry | 210Po | 96 ± 9 | 14.0 ± 2.0 | 5.7 ± 0.7 | 22 ± 3 |
238U | 116 ± 10 | 19.0 ± 1.0 | 0.90 ± 0.10 | 53 ± 4 | |
232Th | 315 ± 20 | 127 ± 8 | 8.0 ± 0.9 | 365 ± 18 | |
230Th | 95 ± 5 | 43 ± 3 | 3.5 ± 1.2 | 114 ± 6 | |
Gamma Spectrometry | 226Ra | 86 ± 5 | 14.0 ± 1.0 | 4.5 ± 1.0 | 9.2 ± 1.0 |
228Ra | 300 ± 20 | 91 ± 4 | 6.3 ± 1.3 | 43 ± 3 | |
40K | 30 ± 5 | <18 | <14 | <14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gázquez, M.J.; Contreras, M.; Pérez-Moreno, S.M.; Guerrero, J.L.; Casas-Ruiz, M.; Bolívar, J.P. A Review of the Commercial Uses of Sulphate Minerals from the Titanium Dioxide Pigment Industry: The Case of Huelva (Spain). Minerals 2021, 11, 575. https://doi.org/10.3390/min11060575
Gázquez MJ, Contreras M, Pérez-Moreno SM, Guerrero JL, Casas-Ruiz M, Bolívar JP. A Review of the Commercial Uses of Sulphate Minerals from the Titanium Dioxide Pigment Industry: The Case of Huelva (Spain). Minerals. 2021; 11(6):575. https://doi.org/10.3390/min11060575
Chicago/Turabian StyleGázquez, Manuel Jesús, Manuel Contreras, Silvia María Pérez-Moreno, Jose Luis Guerrero, Melquiades Casas-Ruiz, and Juan Pedro Bolívar. 2021. "A Review of the Commercial Uses of Sulphate Minerals from the Titanium Dioxide Pigment Industry: The Case of Huelva (Spain)" Minerals 11, no. 6: 575. https://doi.org/10.3390/min11060575
APA StyleGázquez, M. J., Contreras, M., Pérez-Moreno, S. M., Guerrero, J. L., Casas-Ruiz, M., & Bolívar, J. P. (2021). A Review of the Commercial Uses of Sulphate Minerals from the Titanium Dioxide Pigment Industry: The Case of Huelva (Spain). Minerals, 11(6), 575. https://doi.org/10.3390/min11060575