Basic Characteristics of Coal Gangue in a Small-Scale Mining Site and Risk Assessment of Radioactive Elements for the Surrounding Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Physical Geography
2.2. Sample Collection
2.3. Sample Pretreatment
2.4. Test Methods
2.4.1. X-Ray Fluorescence Spectroscopy (XRF)
2.4.2. X-Ray Diffractometer (XRD)
2.4.3. Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
2.4.4. Sequential Chemical Extraction Procedure
2.5. Cumulative Index Method
3. Results and Discussion
3.1. Mineral Composition of Coal Gangue
3.2. Element Specific Activity Characteristics
3.3. The Modes of Occurrence
3.3.1. The Modes of Occurrence for U Element
3.3.2. The Modes of Occurrence for Th Element
3.4. Potential Ecological Risk Assessment of Radioactive Elements
3.5. Ecological Effectiveness Evaluation of Radioactive Elements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, M.; Gui, H.; Hu, R.; Zhao, H.; Li, J.; Yu, H.; Fang, H. Hydrogeochemical Characteristics and Water Quality Evaluation of Carboniferous Taiyuan Formation Limestone Water in Sulin Mining Area in Northern Anhui, China. Int. J. Environ. Res. Public Heal. 2019, 16, 2512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, F.; Liu, S.; Chen, L.; Wang, C.; Liao, H.; Wu, Y.; Wang, N. Investigation and analysis of the content of natural radionuclides at coal mines in China. Radiat. Prot. 2007, 171–180. (In Chinese) [Google Scholar]
- Walencik-Łata, A.; Smołka-Danielowska, D. 234U, 238U, 226Ra, 228Ra and 40K concentrations in feed coal and its combustion products during technological processes in the Upper Silesian Industrial Region, Poland. Environ. Pollut. 2020, 267, 115462. [Google Scholar] [CrossRef] [PubMed]
- Turhan, Ş.; Gören, E.; Garad, A.; Altıkulaç, A.; Kurnaz, A.; Duran, C.; Özdemir, A. Radiometric measurement of lignite coal and its by-products and assessment of the us bility of fly ash as raw materials in Turkey. Radiochim. Acta. 2018, 106, 611–621. [Google Scholar] [CrossRef]
- Guillén, J.; Muñoz-Serrano, A.; Baeza, A.S.; Salas, A. Speciation of naturally occurring radionuclides in Mediterranean soils: Bioavailabilty assessment. Environ. Sci. Pollut. Res. 2017, 25, 6772–6782. [Google Scholar] [CrossRef] [PubMed]
- Pappa, F.; Tsabaris, C.; Patiris, D.; Eleftheriou, G.; Ioannidou, A.; Androulakaki, E.; Vlastou, R. Temporal investigation of radionuclides and heavy metals in a coastal mining area at Ierissos Gulf, Greece. Environ. Sci. Pollut. Res. 2019, 26, 27457–27469. [Google Scholar] [CrossRef]
- Carvalho, F.; Oliveira, J.; Malta, M. Radioactivity in Iberian Rivers with uranium mining activities in their catchment areas. Procedia Earth Planet. Sci. 2014, 8, 48–52. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Liu, G.; Cheng, S.; Fang, T.; Lam, P. The Environmental Geochemistry of Trace Elements and Naturally Radionuclides in a Coal Gangue Brick-Making Plant. Sci. Rep. 2014, 4, srep06221. [Google Scholar] [CrossRef] [Green Version]
- Habib, M.; Basuki, T.; Miyashita, S.; Bekelesi, W.; Nakashima, S.; Techato, K.; Phoungthong, K. Assessment of natural radioactivity in coals and coal combustion residues from a coal-based thermoelectric plant in Bangladesh: Implications for radiological health hazards. Environ. Monit. Assess. 2019, 191, 1–20. [Google Scholar]
- Habib, M.; Basuki, T.; Miyashita, S.; Bekelesi, W.; Nakashima, S.; Phoungthong, K.; Techato, K. Distribution of naturally occurring radionuclides in soil around a coal-based power plant and their potential radiological risk assessment. Radiochim. Acta. 2019, 107, 243–259. [Google Scholar] [CrossRef]
- Kříbek, B.; Sracek, O.; Mihaljevič, M.; Knésl, I.; Majer, V. Geochemistry and environmental impact of neutral drainage from an uraniferous coal waste heap. J. Geochem. Explor. 2018, 191, 1–21. [Google Scholar] [CrossRef]
- Noli, F.; Tsamos, P. Seasonal variations of natural radionuclides, minor and trace elements in lake sediments and water in a lignite mining area of North-Western Greece. Environ. Sci. Pollut. Res. 2017, 25, 12222–12233. [Google Scholar] [CrossRef] [PubMed]
- Chałupnik, S.; Wysocka, M.; Janson, E.; Chmielewska, I.; Wiesner, M. Long term changes in the concentration of radium in discharge waters of coal mines and Upper Silesian rivers. J. Environ. Radioact. 2017, 171, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Luneva, E. Radionuclides in Surface Waters, Bottom Sediments, and Hydrobionts in the Neman River. Inland Water Biol. 2018, 11, 97–102. [Google Scholar] [CrossRef]
- Tessier, A.; Campbell, P.G.C.; Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 1979, 51, 844–851. [Google Scholar] [CrossRef]
- Hu, G.; Liu, G.; Wu, D.; Fu, B. Geochemical behavior of hazardous volatile elements in coals with different geological origin during combustion. Fuel 2018, 233, 361–376. [Google Scholar] [CrossRef]
- Muller, G. Index of Geoaccumulation in Sediments of the Rhine River. Geo J. 1969, 2, 109–118. [Google Scholar]
- Allard, T.; Ildefonse, P.; Beaucaire, C.; Calas, G. Structural chemistry of uranium associated with Si, Al, Fe gels in a granitic uranium mine. Chem. Geol. 1999, 158, 81–103. [Google Scholar] [CrossRef]
- Zhu, B.; Sun, Y.; Xie, C. Spectroscopic study on Xingyi coal gangue in Guizhou under different calcination temperatures. J. China Coal Soc. 2008, 33, 1049–1052. (In Chinese) [Google Scholar]
- Bu, N.; Liu, X.; Song, S.; Liu, J.; Yang, Q.; Li, R.; Zheng, F.; Yan, L.; Zhen, Q.; Zhang, J. Synthesis of NaY zeolite from coal gangue and its characterization for lead removal from aqueous solution. Adv. Powder Technol. 2020, 31, 2699–2710. [Google Scholar] [CrossRef]
- Li, T. Study on Geochemical Characteristics and Utilization of Coal Gangue in Huainan Mining Area; University of Science and Technology of China: Hefei, China, 2015. (In Chinese) [Google Scholar]
- Chen, Y.; Li, S.; Zhou, C. Material Composition Features and Reclaim Evaluation of Coal Gangue in Huainan Mining Area. Coal Geol. China 2011, 23, 20–23. (In Chinese) [Google Scholar]
- Marziali, L.; Valsecchi, L.; Schiavon, A.; Mastroianni, D.; Viganò, L. Vertical profiles of trace elements in a sediment core from the Lambro River (northern Italy): Historical trends and pollutant transport to the Adriatic Sea. Sci. Total. Environ. 2021, 782, 146766. [Google Scholar] [CrossRef]
- Abiriga, D.; Vestgarden, L.; Klempe, H. Groundwater contamination from a municipal landfill: Effect of age, landfill closure, and season on groundwater chemistry. Sci. Total. Environ. 2020, 737, 140307. [Google Scholar] [CrossRef]
- Liu, L.; Huang, L.; Huang, R.; Lin, H.; Wang, D. Immobilization of heavy metals in biochar derived from co-pyrolysis of sewage sludge and calcium sulfate. J. Hazard. Mater. 2021, 403, 123648. [Google Scholar] [CrossRef]
- Finkelman, R.; Palmer, C.; Wang, P. Quantification of the modes of occurrence of 42 elements in coal. Int. J. Coal Geol. 2018, 185, 138–160. [Google Scholar] [CrossRef]
- Li, C.; Zheng, L.; Jiang, C.; Chen, X.; Ding, S. Characteristics of leaching of heavy metals from low-sulfur coal gangue under different conditions. Int. J. Coal Sci. Technol. 2021, 2021, 1–10. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, H.; Gao, L.; Zheng, L.; Peng, Z. Petrological and mineralogical characterizations and chemical composition of coal ashes from power plants in Yanzhou mining district, China. Fuel Process. Technol. 2004, 85, 1635–1646. [Google Scholar] [CrossRef]
- Veerasamy, N.; Murugan, R.; Kasar, S.; Inoue, K.; Kavasi, N.; Balakrishnan, S.; Arae, H.; Fukushi, M.; Sahoo, S. Geochemical characterization of monazite sands based on rare earth elements, thorium and uranium from a natural high background radiation area in Tamil Nadu, India. J. Environ. Radioact. 2021, 232, 106565. [Google Scholar] [CrossRef] [PubMed]
- Braun, J.; Pagel, M.; Herbilln, A.; Rosin, C. Mobilization and redistribution of REEs and thorium in a syenitic lateritic profile: A mass balance study. Geochim. Et Cosmochim. Acta 1993, 57, 4419–4434. [Google Scholar] [CrossRef]
- Samouhos, M.; Godelitsas, A.; Nomikou, C.; Taxiarchou, M.; Tsakiridis, P.; Zavašnik, J.; Gamaletsos, P.; Apostolikas, A. New insights into nanomineralogy and geochemistry of Ni-laterite ores from central Greece (Larymna and Evia deposits). Geochemistry 2019, 79, 268–279. [Google Scholar] [CrossRef]
- Yu, X.; Song, Y.; Wei, G.; Yu, G.; Gao, Y.; Xiao, F.; Ma, M. Pollution Characteristics of U and Th in Soil and Plant Screening in Light Rare Earth Tailings. Environ. Sci. Technol. 2020, 43, 26–30. (In Chinese) [Google Scholar]
- Martínez-Aguirre, A.; León, M.; Ivanovich, M. U and Th speciation in river sediments. Sci. Total. Environ. 1995, 173–174, 203–209. [Google Scholar] [CrossRef]
- Guo, P.; Duan, T.; Song, X.; Chen, H. Evaluation of a sequential extraction for the speciation of thorium in soils from Baotou area, Inner Mongolia. Talanta 2007, 71, 778–783. [Google Scholar] [CrossRef] [PubMed]
Igeo | Grade | Contamination Degree | Igeo | Grade | Contamination Degree |
---|---|---|---|---|---|
<0 | 0 | pollution-free | 3–4 | 4 | Strong pollution |
0–1 | 1 | Mild to moderate pollution | 4–5 | 5 | Strong to serious pollution |
1–2 | 2 | Moderate pollution | >5 | 6 | Serious pollution |
2–3 | 3 | Moderate to strong pollution |
Sample | Number | Percentage (%) | |||||||
---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | K2O | Na2O | TiO2 | ||
Coal gangue | gs-1 | 52.27 | 26.12 | 8.23 | 9.05 | 0.87 | 0.74 | 1.35 | 0.99 |
gs-2 | 52.4 | 25.8 | 7.27 | 10.22 | 0.81 | 0.84 | 1.23 | 1.04 | |
gs-3 | 52.55 | 25.73 | 6.45 | 11.18 | 1.01 | 0.92 | 0.83 | 0.91 | |
Average | 52.41 | 25.88 | 7.32 | 10.15 | 0.90 | 0.83 | 1.14 | 0.98 |
Sample | U | Th | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Exchangeable | Carbonate | Fe-Mn Oxide | Organic | Residual | Exchangeable | Carbonate | Fe-Mn Oxide | Organic | Residual | ||
Coal gangue | gs-1 | 10.34 | 23.76 | 8.34 | 12.34 | 45.22 | 9.43 | 7.84 | 21.01 | 11.51 | 50.21 |
gs-2 | 8.37 | 28.39 | 12.09 | 18.34 | 32.81 | 13.45 | 14.88 | 19.09 | 9.32 | 43.26 | |
Soil | s3-1 | 3.25 | 25.47 | 7.20 | 63.22 | 0.86 | 10.21 | 11.45 | 30.95 | 10.82 | 36.57 |
s3-2 | 4.27 | 28.76 | 13.56 | 45.23 | 8.18 | 8.68 | 17.56 | 25.76 | 8.56 | 39.44 | |
s3-3 | 2.03 | 35.81 | 12.34 | 46.19 | 3.63 | 8.03 | 8.77 | 30.32 | 10.5 | 42.38 | |
s6-1 | 9.39 | 33.24 | 2.12 | 50.32 | 4.93 | 7.21 | 12.35 | 24.27 | 4.63 | 51.54 | |
s6-2 | 6.67 | 35.74 | 8.98 | 44.21 | 4.40 | 5.35 | 10.42 | 15.62 | 13.32 | 55.29 | |
s6-3 | 5.35 | 45.12 | 7.21 | 42.17 | 0.15 | 10.35 | 15.43 | 19.34 | 8.26 | 46.62 | |
s9-1 | 4.89 | 23.13 | 12.31 | 50.48 | 9.19 | 11.74 | 9.75 | 12.11 | 4.18 | 62.22 | |
s9-2 | 8.27 | 26.76 | 9.92 | 45.69 | 9.36 | 5.77 | 6.32 | 20.32 | 9.14 | 58.45 | |
s9-3 | 7.54 | 30.34 | 3.18 | 40.12 | 18.82 | ND | 7.13 | 14.21 | 6.21 | 72.45 |
Element | Number | Upper | Middle | Lower |
---|---|---|---|---|
U | s1 | 0.0262 | −0.5124 | −0.8374 |
s2 | 0.0066 | −0.5716 | −0.8361 | |
s3 | −0.1247 | −0.6306 | −0.8343 | |
s4 | −0.0492 | −0.5245 | −0.8386 | |
s5 | −0.1952 | −0.5969 | −0.8461 | |
s6 | −0.0739 | −0.5417 | −0.8479 | |
s7 | −0.3270 | −0.6515 | −0.8643 | |
s8 | −0.4727 | −0.6021 | −0.8738 | |
s9 | −0.5512 | −0.6580 | −0.8738 | |
Th | s1 | 0.2061 | −0.1457 | −0.5813 |
s2 | 0.1661 | −0.1235 | −0.5324 | |
s3 | 0.0241 | −0.1462 | −0.5530 | |
s4 | 0.0485 | −0.1578 | −0.5303 | |
s5 | 0.0733 | −0.1393 | −0.5041 | |
s6 | −0.0204 | −0.1160 | −0.5503 | |
s7 | −0.0596 | −0.1850 | −0.5976 | |
s8 | −0.0685 | −0.1636 | −0.6127 | |
s9 | −0.0887 | −0.1778 | −0.6190 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, D.; Wang, Y.; Wang, M.; Wei, C.; Hu, G.; He, X.; Fu, W. Basic Characteristics of Coal Gangue in a Small-Scale Mining Site and Risk Assessment of Radioactive Elements for the Surrounding Soils. Minerals 2021, 11, 647. https://doi.org/10.3390/min11060647
Wu D, Wang Y, Wang M, Wei C, Hu G, He X, Fu W. Basic Characteristics of Coal Gangue in a Small-Scale Mining Site and Risk Assessment of Radioactive Elements for the Surrounding Soils. Minerals. 2021; 11(6):647. https://doi.org/10.3390/min11060647
Chicago/Turabian StyleWu, Dun, Yuanyuan Wang, Meichen Wang, Chao Wei, Guangqing Hu, Xiaoli He, and Wei Fu. 2021. "Basic Characteristics of Coal Gangue in a Small-Scale Mining Site and Risk Assessment of Radioactive Elements for the Surrounding Soils" Minerals 11, no. 6: 647. https://doi.org/10.3390/min11060647
APA StyleWu, D., Wang, Y., Wang, M., Wei, C., Hu, G., He, X., & Fu, W. (2021). Basic Characteristics of Coal Gangue in a Small-Scale Mining Site and Risk Assessment of Radioactive Elements for the Surrounding Soils. Minerals, 11(6), 647. https://doi.org/10.3390/min11060647