Petrogenesis and Geodynamic Implications of Miocene Felsic Magmatic Rocks in the Wuyu Basin, Southern Gangdese Belt, Qinghai-Tibet Plateau
Abstract
:1. Introduction
2. Geological Background and Samples
3. Petrologic Characteristics
4. Analytical Methods
4.1. Whole-Rock Major and Trace Element Analyses
4.2. Sr-Nd Isotopes
4.3. LA-MC-ICP-MS Zircon U-Pb Dating and Hf Isotopes
5. Results
5.1. LA-ICP-MS Zircon U-Pb Age
5.2. Whole Rock Geochemical Composition
5.3. Sr-Nd (Bulk Rock) and Hf (Zircon) Isotopic Data
5.4. Crustal Thickness
6. Discussion
6.1. Origin and Petrogenesis of The Zongdangcun Group Adakitic Rock
6.2. Source Region for The Miocene Adakitic Rocks
6.3. Tectonic Implication
7. Conclusions
- The Tortonian age of the acidic magmatic rocks of the Zongdangcun Formation in the Wuyu Basin in central Gangdese, southern Tibet, is approximately 10.3 ± 0.2 Ma. These Miocene rocks display the geochemical characteristics of adakites.
- The analysis of elemental geochemical data and isotope ratios and the estimation of crustal thickness with Sr/Y and (La/Yb)N values indicate that the post-collisional magmatic rocks in the middle Gangdese belt resulted from the partial melting of the thickened lower crust (essentially formed by the lower crust of the Lhasa block, with a minor contribution from the ancient Indian crust.). The cause of the melting may have been the upwelling of hot asthenospheric material at the bottom of the Indian plate and the lowering of the lower crustal melting curve caused by the infiltration of fluids released from the Indian plate.
- The bulk-rock Sr-Nd and zircon Hf isotopic compositions of adakitic rocks formed during the post-collisional times reflect the relative depletion of adakitic magma in the eastern section and the relative enrichment in the western section of this period. This implies that there may be more lower Indian crust involved in the formation of Miocene adakitic rocks from the east to the west Gangdese belt.
- The hot asthenosphere beneath the subducted crust tearing along the front edge of the continental Indian plate and upwelling at the high-angle subduction position of the eastern segment of the plate resulted in the thickening of the lower crust and subsequent melting, thereby forming Miocene adakitic magma on the southern margin of the Gangdese belt. The difference in the contribution ratio of the ancient Indian crust in the adakitic magma formed by the segmented subduction plate in the east-west trending segment may be related to the change in the subduction angle of the Indian plate. The tearing and segmented subduction of the front edge of the Indian plate is a possible model for the formation of the post-collisional Gangdese adakitic rocks.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yin, A.; Harrison, T.M. Geologic evolution of the Himalayan-Tibetan orogen. Annu. Rev. Earth Planet. Sci. 2000, 28, 211–280. [Google Scholar] [CrossRef] [Green Version]
- Allègre, C.J.; Courtillot, V.; Tapponnier, P.; Hirn, A.; Mattauer, M.; Coulon, C.; Jaeger, J.J.; Achache, J.; Schä, R.U.; Marcoux, J.; et al. Structure and evolution of the Himalaya-Tibet orogenic belt. Nature 1984, 307, 17–22. [Google Scholar] [CrossRef]
- Chung, S.L.; Chu, M.F.; Zhang, Y.Q.; Xie, Y.W.; Lo, C.H.; Lee, T.Y.; Lan, C.Y.; Li, X.H.; Zhang, Q.; Wang, Y.Z. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth Sci. Rev. 2005, 68, 173–196. [Google Scholar] [CrossRef]
- Ji, W.Q.; Wu, F.Y.; Chung, S.L.; Li, J.X.; Liu, Z.C. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chem. Geol. 2009, 262, 229–245. [Google Scholar] [CrossRef]
- Zhu, D.C.; Zhao, Z.D.; Niu, Y.L.; Mo, X.X.; Chung, S.L.; Hou, Z.Q.; Wang, L.Q.; Wu, F.Y. The Lhasa terrane: Record of a microcontinent and its histories of drift and growth. Earth Planet. Sci. Lett. 2011, 301, 241–255. [Google Scholar] [CrossRef]
- Zhu, D.C.; Zhao, Z.D.; Niu, Y.L.; Dilek, Y.; Hou, Z.Q.; Mo, X.X. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Res. 2013, 23, 1429–1454. [Google Scholar] [CrossRef]
- Zhu, D.C.; Wang, Q.; Zhao, Z.D.; Chung, S.L.; Cawood, P.A.; Ni, Y.L.; Liu, S.A.; Wu, F.Y.; Mo, X.X. Magmatic record of India-Asia collision. Sci. Rep. 2015, 5, 14289. [Google Scholar] [CrossRef] [Green Version]
- Zhu, D.C.; Wang, Q.; Chung, S.L.; Cawood, P.A.; Zhao, Z.D. Gangdese magmatism in southern Tibet and India-Asia convergence since 120 Ma. In Himalayan Tectonics: A Modern Synthesis; Treloar, P.J., Searle, M.P., Eds.; Geological Society; Special Publications: London, UK, 2018; p. 483. [Google Scholar]
- Wang, C.; Ding, L.; Zhang, L.Y.; Kapp, P.; Pullen, A.; Yue, Y.H. Petrogenesis of Middle-Late Triassic volcanic rocks from the Gangdese belt, southern Lhasa terrane: Implications for early subduction of Neo-Tethyan oceanic lithosphere. Lithos 2016, 262, 320–333. [Google Scholar] [CrossRef]
- Defant, M.J.; Drummond, M.S. Mount St. Helens: Potential example of the partial melting of the subducted lithosphere in a volcanic arc. Geology 1993, 21, 547–550. [Google Scholar] [CrossRef]
- Martin, H. Adakitic magmas: Modern analogues of Archaean granitoids. Lithos 1999, 46, 411–429. [Google Scholar] [CrossRef]
- Chung, S.L.; Liu, D.Y.; Ji, J.Q.; Chu, M.F.; Lee, H.Y.; Wen, D.J.; Lo, C.H.; Lee, T.Y.; Qian, Q.; Zhang, Q. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet. Geology 2003, 31, 1021–1024. [Google Scholar] [CrossRef] [Green Version]
- Hou, Z.Q.; Gao, Y.F.; Qu, X.M.; Rui, Z.Y.; Mo, X.X. Origin ofadakitic intrusives generated during Mid-Miocene east-west extension in southern Tibet. Earth Planet. Sci. Lett. 2004, 220, 139–155. [Google Scholar] [CrossRef]
- Guo, Z.F.; Wilson, M.; Liu, J.Q. Post-collisional adakites in south Tibet: Products of partial melting of subduction-modified lower crust. Lithos 2007, 96, 205–224. [Google Scholar] [CrossRef]
- Xu, W.C.; Zhang, H.F.; Guo, L.; Yuan, H.L. Miocene high Sr/Y magmatism, South Tibet: Product of partial melting of subducted Indian continental crust and its tectonic implication. Lithos 2010, 114, 293–306. [Google Scholar] [CrossRef]
- Chen, J.L.; Xu, J.F.; Zhao, W.X.; Dong, Y.H.; Wang, B.D.; Kang, Z.Q. Geochemical variations in Miocene adakitic rocks from the western and eastern Lhasa terrane: Implications for lower crustal flow beneath the Southern Tibetan Plateau. Lithos 2011, 125, 928–939. [Google Scholar] [CrossRef]
- Zhang, Z.M.; Dong, X.; Xiang, H.X.; Ding, H.X.; He, Z.Y.; Liou, J.G. Reworking of the Gangdese magmatic arc, southeastern Tibet: Postcollisional metamorphism and anatexis. J. Metamorph. Geol. 2015, 33, 1–21. [Google Scholar] [CrossRef]
- Yang, Z.M.; Goldfarb, R.; Chang, Z.S. Generation of postcollisional porphyry copper deposits in southern Tibet triggered by subduction of the Indian continental plate. In Tectonics and Metallogeny of the Tethyan Orogenic Belt; Richards, J.P., Ed.; Society of Economic Geologists: Littleton, CO, USA, 2016; Volume 19, pp. 279–300. [Google Scholar]
- Zeng, Y.C.; Chen, J.L.; Xu, J.F.; Lei, M.; Xiong, Q.W. Origin of Miocene Cu-bearing porphyries in the Zhunuo region of the southern Lhasa subterrane: Constraints from geochronology and geochemistry. Gondwana Res. 2017, 41, 51–64. [Google Scholar] [CrossRef]
- Qu, X.M.; Hou, Z.Q.; Li, Y.G. Melt components derived from a subducted slab in late orogenic ore-bearing porphyries in the Gangdese copper belt, southern Tibetan Plateau. Lithos 2004, 74, 131–148. [Google Scholar] [CrossRef]
- Gao, Y.F.; Yang, Z.S.; Santosh, M.; Hou, Z.Q.; Wei, R.H.; Tian, S.H. Adakitic rocks from slabmelt-modified mantle sources in the continental collision zone of southern Tibet. Lithos 2010, 119, 651–663. [Google Scholar] [CrossRef]
- Yin, A. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth Sci. Rev. 2006, 76, 1–131. [Google Scholar] [CrossRef]
- Yang, Z.M.; Lu, Y.J.; Hou, Z.Q.; Chang, Z.S. High-Mg diorite from Qulong in southern Tibet: Implications for the genesis of adakite-like intrusions and associated porphyry Cu deposits in collisional orogens. J. Petrol. 2015, 56, 227–254. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.M.; Santosh, M. Tectonic evolution of Tibet and surrounding regions. Gondwana Res. 2012, 21, 1–3. [Google Scholar] [CrossRef]
- Gehrels, G.; Kapp, P.; De Celles, P.; Pullen, A.; Blakey, R.; Weislogel, A.; Ding, L.; Guynn, J.; Martin, A.; Mc Quarrie, N.; et al. Detrital zircon geochronology of pre-tertiary strata in the Tibetan Himalayan orogen. Tectonics 2011, 30, TC5016. [Google Scholar] [CrossRef]
- Zhang, Z.M.; Ding, L.; Zhao, Z.D.; Santosh, M. Tectonic evolution and dynamics of the Tibetan Plateau. Gondwana Res. 2017, 41, 1–8. [Google Scholar] [CrossRef]
- Dewey, J.F.; Shackelton, R.M.; Chang, C.F.; Sun, Y.Y. The tectonicevolution of the Tibetan Plateau. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 1988, 327, 379–413. [Google Scholar]
- Pan, G.T.; Wang, L.Q.; Li, R.S.; Yuan, S.H.; Ji, W.H.; Yin, F.G.; Zhang, W.P.; Wang, B.D. Tectonic evolution of the Qinghai-Tibet Plateau. J. Asian Earth Sci. 2012, 53, 3–14. [Google Scholar] [CrossRef]
- Xu, Z.Q.; Wang, Q.; Li, Z.H.; Li, H.Q.; Cai, Z.H.; Liang, F.H.; Dong, H.W.; Cao, H.; Chen, X.J.; Huang, X.M.; et al. Indo-Asian collison: Tectonic transition from compress to strike slip. Acta Geol. Sin. 2016, 90, 1–23, (In Chinese with English abstract). [Google Scholar]
- Xu, Z.Q.; Yang, J.S.; Li, H.B.; Ji, S.C.; Zhang, Z.M.; Liu, Y. On the tectonics of the India-Asia collision. Acta Geol. Sin. 2011, 85, 1–33, (In Chinese with English abstract). [Google Scholar]
- Hou, Z.Q.; Cook, N.J. Metallogenesis of the Tibetan collisional orogen: A review and introduction to the special issue. Ore Geol. Rev. 2009, 36, 2–24. [Google Scholar] [CrossRef]
- Patriat, P.; Achache, J. Indian-Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates. Nature 1984, 311, 615–621. [Google Scholar] [CrossRef]
- Klootwijk, C.T.; Gee, J.S.; Peirce, J.W.; Smith, G.M.; McFadden, P.L. An early India-Asia contact: Paleomagnetic constraints from Ninetyeast Ridge, ODP Leg 121. Geology 1992, 20, 395–398. [Google Scholar] [CrossRef]
- Leech, M.L.; Singh, S.; Jain, A.K.; Klemperer, S.L.; Manickavasagam, R.M. The onset of India-Asia continental collision: Early, steep subduction required by the timing of UHP metamorphism in the western Himalaya. Earth Planet Sci. Lett. 2005, 234, 83–97. [Google Scholar] [CrossRef]
- Zhang, Z.M.; Ding, H.X.; Dong, X.; Tian, Z.L. The Gangdese arc magmatism: From Neo-Tethyan subdction to Indo-Asian collison. Earth Sci. Front. 2018, 25, 078–091, (In Chinese with English abstract). [Google Scholar]
- Zhang, Z.M.; Zhao, G.C.; Santosh, M.; Wang, J.L.; Dong, X.; Shen, K. Late Cretaceous charnockite with adakitic afinities from the Gangdese mid-oceanic ridge subduction. Gondwana Res. 2010, 17, 615–631. [Google Scholar] [CrossRef]
- Ma, L.; Wang, Q.; Wyman, D.A.; Li, Z.X.; Jiang, Z.Q.; Yang, J.H.; Gou, G.N.; Guo, H.F. Late Cretaceous (100–89 Ma) magnesian charnockites with adakitic affinitiesin the Milin Area, Eastern Gangdese: Partial melting of subducted oceanic crust and implications for crustal growth in Southern Tibet. Lithos 2013, 175/176, 315–332. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.C.; Hou, Z.Q.; Gong, Y.L.; Liang, W.; Sun, Q.Z.; Zhang, S.; Fu, Q.; Huang, K.X.; Li, Q.Y.; Li, W. Petrogenesis of Cretaceous adakite-like in trusions of the Gangdese Plutonic Belt, southern Tibet: Implications and for mid-ocean ridge subduction and crustal growth. Lithos 2014, 190–191, 240–263. [Google Scholar] [CrossRef]
- Weller, O.M.; Stonge, M.R.; Rayner, N.; Searle, M.P.; Waters, D.J. Micoene magmatism in the Western Nyainaentanglha Mountains of southern Tibet: An exhumed bright spot. Lithos 2016, 245, 147–160. [Google Scholar] [CrossRef]
- Mo, X.X.; Dong, G.C.; Zhao, Z.D.; Guo, T.Y.; Wang, L.L.; Chen, T. Timing of magma mixing in the Gangdisê magmatic belt during the India-Asian collision: Zircon SHRIMP U-Pb dating. Acta Geol. Sin. 2005, 79, 66–76. [Google Scholar]
- Mo, X.X.; Hou, Z.Q.; Niu, Y.L.; Dong, G.C.; Qu, X.M.; Zhao, Z.D.; Yang, Z.M. Mantle contributions to crustal thickening during continental collision: Evidence from Cenozoic igneous rocks in southern Tibet. Lithos 2007, 96, 225–242. [Google Scholar] [CrossRef]
- Chu, M.F.; Chung, S.L.; Song, B.; Liu, D.Y.; O’Reilly, S.Y.; Pearson, N.J.; Ji, J.Q.; Wen, D.J. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology 2006, 34, 745–748. [Google Scholar] [CrossRef]
- Zhu, D.C.; Zhao, Z.D.; Pan, G.T.; Lee, H.Y.; Kang, Z.Q.; Liao, Z.L.; Wang, L.Q.; Li, G.M.; Dong, G.C.; Liu, B. Early cretaceous subductionrelated adakite-like rocks of the Gangdese Belt, southern Tibet: Products of slab melting and subsequent melt-peridotite interaction? J. Asian Earth Sci. 2009, 34, 298–309. [Google Scholar] [CrossRef]
- Turner, S.; Arnaud, N.; Liu, J.; Rogers, N.; Hawkesworth, C.; Harris, N.; Kelley, S.; Van Calsteren, P.; Deng, W. Postcollision, shoshonitic volcanism on the Tibetan Plateau: Implications for convective thinning of the lithosphere and the source of ocean island basalts. J. Petrol. 1996, 37, 45–71. [Google Scholar] [CrossRef]
- Miller, C.; Schuster, R.; Klotzli, U.; Frank, W.; Purtscheller, F. Post-collisional potassic and ultrapotassic magmatism in SW Tibet: Geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis. J. Petrol. 1999, 40, 1399–1424. [Google Scholar] [CrossRef]
- Williams, H.M.; Turner, S.; Pearce, G.A.; Kelley, S.P.; Harris, N.B.W. Nature of the source regions for post-collisional, potassic magmatism in southern and northern Tibet from geochemical variations and inverse element modeling. J. Petrol. 2004, 45, 555–607. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.D.; Mo, X.X.; Dilek, Y.; Niu, Y.L.; De Paolo, D.J.; Robinson, P.; Zhu, D.C.; Sun, C.G.; Dong, G.C.; Zhou, S.; et al. Geochemical and Sr-Nd-Pb-O isotopic compositions of the postcollisional ultrapotassic magmatism in SW Tibet: Petrogenesis and implications for India intra-continental subduction beneath southern Tibet. Lithos 2009, 113, 190–212. [Google Scholar] [CrossRef]
- Zheng, Y.C.; Hou, Z.Q.; Li, Q.Y.; Sun, Q.Z.; Liang, W.; Fu, Q.; Li, W.; Huang, K.X. Origin of Late Oligocene adakitic intrusives in the southeastern Lhasa terrane: Evidence from in situ zircon U-Pb dating, Hf-O isotopes, and whole-rock geochemistry. Lithos 2012, 148, 296–311. [Google Scholar] [CrossRef]
- Sun, C.G.; Zhao, Z.D.; Mo, X.X.; Zhu, D.C.; Dong, G.C.; Zhou, S.; Chen, H.H.; Xie, L.W.; Yang, Y.H.; Sun, J.F.; et al. Enriched mantle source and petrogenesis of Sailipu ultrapotassic rocks in southweatern Tibetan Plateau: Constraints from zircon U-Pb geochronology and Hf isotopic compositions. Acta Petrol. Sin. 2008, 24, 249–264. [Google Scholar]
- Gao, Y.F.; Hou, Z.Q.; Kamber, B.S.; Wei, R.H.; Meng, X.J.; Zhao, R.S. Adakite-like porphyries from the southern Tibetan continental collision zones: Evidence for slab melt metasomatism. Contrib. Mineral. Petrol. 2007, 153, 105–120. [Google Scholar] [CrossRef]
- Xie, L.W.; Zhan, Y.; Zhnag, H.; Sun, J.; Wu, F. In situ simultaneous determination of trace elements, U–Pb and Lu–Hf isotopes in zircon and baddeleyite. Chin. Sci. Bull. 2008, 53, 1565–1573. [Google Scholar] [CrossRef] [Green Version]
- Yuan, H.L.; Gao, S.; Liu, X.M.; Li, H.M.; Gunther, D.; Wu, F.Y. Accurate U–Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geostand. Geoanal. Res. 2004, 28, 353–370. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, Z.; Gao, S.; Günther, D.; Xu, J.; Gao, C.; Chen, H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Vavra, G. On the kinematics of zircon growth and its petrogenetic significance:a cathodoluminescence study. Contrib. Miner. Pet. 1990, 106, 90–99. [Google Scholar] [CrossRef]
- Hanchar, J.M.; Miller, C.F. Zircon zonation patterns as revealed by cathod oluminescence and backscattered electron images: Implications for intepretation of complex crustal histories. Chem. Geol. 1993, 110, 1–13. [Google Scholar] [CrossRef]
- Corfu, F.; Hanchar, J.M.; Hoskin, P.W.O.; Kinny, P. Atlas of zircon textures. Rev. Mineral. Geochem. 2003, 53, 469–500. [Google Scholar] [CrossRef]
- Wu, Y.B.; Zheng, Y.F. Genesis of zircon and its constraints on interpretation of U-Pb age. Chin. Sci. Bull. 2004, 49, 1554–1569. [Google Scholar] [CrossRef]
- Maniar, P.D.; Piccoli, P. Tectonic Discrimination of Granitoids. Geol. Soc. Am. Bull. 1989, 101, 635–643. [Google Scholar] [CrossRef]
- Rickwood, P.C. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos 1989, 22, 247–263. [Google Scholar] [CrossRef]
- Le Maitre, R.W. Igneous Rocks: A Classification and Glossary of Terms; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Xu, Q.; Zeng, L.S.; Gao, J.H.; Gao, L.; Wang, Y.F.; Hu, Z.P.; Zhao, L.H. Geochemical characteristics and genesis of the Miocene high Sr/Y intermediate-felsic magmatic rocks in eastern Gangdese batholith, southern Tibet. Acta Petrol. Sin. 2019, 35, 1627–1646. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell Scientific Publication: Oxford, UK, 1985; 312p. [Google Scholar]
- Defant, M.J.; Drummond, M.S. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 1990, 347, 662–665. [Google Scholar] [CrossRef]
- Kepezhinskas, P.K.; Defant, M.J.; Drummond, M.S. Na metasomatism in the island-arc mantle by slab melt-peridotite interaction: Evidence from mantle xenoliths in the North Kamchatka Arc. J. Petrol. 1995, 36, 1505–1527. [Google Scholar]
- Martin, H.; Smithies, R.H.; Rapp, R.; Moyen, J.F.; Champion, D. An Overview of Adakite, Tonalite-Ttrondhjemite-Granodiorite (TTG), and Sanukitoid: Relationships and Some Implications for Crustal Evolution. Lithos 2005, 79, 1–24. [Google Scholar] [CrossRef]
- Defant, M.J. Pavel Kepezhinskas. In Evidence Suggests Slab Melting in Arc Magmas; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2001; Volume 82, pp. 65–69. [Google Scholar]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Kinny, P.D.; Compston, W.; Williams, I.S. A Reconnaissance Ion-probe Study of Hafnium Isotopes in Zircons. Geochim. Et Cosmochim. Acta 1991, 55, 849–859. [Google Scholar] [CrossRef]
- Amelin, Y.; Lee, D.C.; Halliday, A.N.; Pidgeon, R.T. Nature of the Earth’s Earliest Crust from Hafnium Isotopes in Single Detrital Zircons. Nature 1999, 399, 252–255. [Google Scholar] [CrossRef] [Green Version]
- Vervoort, J.D.; Blichert-Toft, J. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochim. et Cosmochim. Acta 1999, 63, 533–556. [Google Scholar] [CrossRef]
- Leeman, W.P. The influence of crustal structure on compositions of subduction-related magmas. J. Volcanol. Geotherm. Res. 1983, 18, 561–588. [Google Scholar] [CrossRef]
- Lee, C.T.A. Copper conundrums. Nat. Geosci. 2014, 7, 10–11. [Google Scholar] [CrossRef]
- Farner, M.J.; Lee, C.T.A. Effects of crustal thickness on magmatic differentiation in subduction zone volcanism: A global study. Earth Planet. Sci. Lett. 2017, 470, 96–107. [Google Scholar] [CrossRef]
- Chapman, J.B.; Ducea, M.N.; De Celles, P.G.; Profeta, L. Tracking changes in crustal thickness during orogenic evolution with Sr/Y: An example from the North American Cordillera. Geology 2015, 43, 919–922. [Google Scholar] [CrossRef]
- Profeta, L.; Ducea, M.N.; Chapman, J.B.; Paterson, S.R.; Gonzales, S.M.H.; Kirsch, M.; Petrescu, L.; De Celles, P.G. Quantifying crustal thickness over time in magmatic arcs. Sci. Rep. 2015, 5, 17786. [Google Scholar] [CrossRef] [Green Version]
- Hirn, A.; Lepine, J.C.; Jobert, G.; Sapin, M.; Wittlinger, G.; Xu, Z.X.; Gao, E.Y.; Wang, X.J.; Teng, J.W.; Xiong, S.B.; et al. Crustal structure and variability of the Himalayan border of Tibet. Nature 1984, 307, 23–25. [Google Scholar] [CrossRef]
- Nábělek, J.; Hetényi, G.; Vergne, J.; Sapkota, S.; Kafle, B.; Jiang, M.; Su, H.P.; Chen, J.; Huang, B.S.; the Hi-CLIMB Team. Underplating in the Himalaya-Tibet collision zone revealed by the Hi-CLIMB experiment. Science 2009, 325, 1371–1374. [Google Scholar] [CrossRef]
- Green, T.H. Experimental studies of trace-element partitioning applicable to igneous petrogenesis—Sedona 16 years later. Chem. Geol. 1994, 117, 1–36. [Google Scholar] [CrossRef]
- Foley, S.F.; Jackson, S.E.; Fryer, B.J.; Greenough, J.D.; Jenner, G.A. Trace element partition coefficients for clinopyroxene and phlogopite in an alkaline lamprophyre from Newfoundland by LAM-ICP-MS. Geochim. Cosmochim. Acta 1996, 60, 629–638. [Google Scholar] [CrossRef]
- Turner, S.; Hawkesworth, C.; Liu, J.; Rogers, N.; Kelley, S.; Van Calsteren, P. Timing of Tibetan uplift constrained by analysis of volcanic rocks. Nature 1993, 364, 50–54. [Google Scholar] [CrossRef]
- Williams, H.M.; Turner, S.; Kelley, S.; Harris, N. Age and composition of dikes in Southern Tibet: New constraints on the timing of east-west extension and its relationship to postcollisional volcanism. Geology 2001, 29, 339–342. [Google Scholar] [CrossRef]
- DeCelles, P.G.; Robinson, D.M.; Zandt, G. Implications of shortening in the Himalayan fold-thrust belt for uplift of the Tibetan Plateau. Tectonics 2002, 21, 1062. [Google Scholar] [CrossRef]
- Kohn, M.; Parkinson, C.D. Petrologic case for Eocene slab breakoff during the Indo-Asian collision. Geology 2002, 30, 591–594. [Google Scholar] [CrossRef]
- Ji, W.Q.; Wu, F.Y.; Chung, S.L.; Wang, X.C.; Liu, C.Z.; Li, Q.L.; Liu, Z.C.; Liu, X.C.; Wang, J.G. Eocene Neo-Tethyan slab breakoff constrained by 45 Ma oceanic island basalt-type magmatism in southern Tibet. Geology 2016, 44, 283–286. [Google Scholar] [CrossRef] [Green Version]
- Castillo, P.R.; Janney, P.E.; Solidum, R.U. Petrology and Geochemistry of Camiguin Island, Southern Philippines: Insights to the Source of Adakites and Other Lavas in a Complex Arc Setting. Contrib. Mineral. Petrol. 1999, 134, 33–51. [Google Scholar] [CrossRef]
- Macpherson, C.G.; Dreher, S.T.; Thirlwall, M.F. Adakites without slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines. Earth Planet. Sci. Lett. 2006, 243, 581–593. [Google Scholar] [CrossRef] [Green Version]
- Kadioglu, Y.K.; Dilek, Y. Structure and Geochemistry of the Adakitic Horoz Granitoid, Bolkar Mountains, South-central Turkey, and Its Tectonomagmatic Evolution. Int. Geol. Rev. 2010, 52, 505–535. [Google Scholar] [CrossRef]
- Stern, R.A.; Hanson, G.N. Archean high-Mg granodiorite: A derivative of light rare earth element-enriched monzodiorite of mantle origin. J. Petrol. 1991, 32, 201–238. [Google Scholar] [CrossRef]
- Atherton, M.P.; Petford, N. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature 1993, 362, 144–146. [Google Scholar] [CrossRef]
- Xu, J.F.; Shinjo, R.; Defant, M.J.; Wang, Q.; Rapp, R.P. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust? Geology 2002, 30, 1111–1114. [Google Scholar] [CrossRef]
- Wang, J.; Hattori, K.H.; Kilian, R.; Stern, C.R. Metasomatism of subarc mantle peridotites below southernmost South America: Reduction of fO2 by slab-melt. Contrib Miner. Pet. 2007, 153, 607–624. [Google Scholar] [CrossRef]
- Tatsumi, Y. High-Mg andesites in the Setouchi volcanic belt, Southwestern Japan: Analogy to Archean magmatism and continental crust formation? Annu. Rev. Earth Planet. Sci. 2006, 34, 467–499. [Google Scholar] [CrossRef]
- Ding, L.; Kapp, P.; Zhong, D.; Deng, W. Cenozoic volcanism in Tibet: Evidence for a transition from oceanic to continental subduction. J. Petrol. 2003, 44, 1833–1865. [Google Scholar] [CrossRef] [Green Version]
- Mo, X.X.; Niu, Y.L.; Dong, G.C.; Zhao, Z.D.; Hou, Z.Q.; Zhou, S.; Ke, S. Contribution of syncollisional felsic magmatism to continental crust growth: A case study of the Paleogene Linzizong volcanic Succession in southern Tibet. Chem. Geol. 2008, 250, 49–67. [Google Scholar] [CrossRef]
- Stern, C.R.; Kilian, R. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral volcanic zone. Contrib. Mineral. Petrol. 1996, 123, 263–281. [Google Scholar] [CrossRef]
- Condie, K.C. TTGs and adakites: Are they both slab melts? Lithos 2005, 80, 33–44. [Google Scholar] [CrossRef]
- Liu, D.; Zhao, Z.; De Paolo, D.J.; Zhu, D.C.; Meng, F.Y.; Shi, Q.S.; Wang, Q. Potassic volcanic rocks and adakitic intrusions in southern Tibet: Insights into mantle–crust interaction and mass transfer from Indian plate. Lithos 2017, 268–271, 48–64. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.F.; Hou, Z.Q.; Wei, R.H.; Meng, X.G.; Yang, Z.S. Eocene high-MgO volcanism in southern Tibet: New constraints for mantle source characteristics and deep processes. Lithos 2008, 105, 63–72. [Google Scholar] [CrossRef]
- Sen, C.; Dunn, T. Dehydration melting of a basaltic composition amphibolite at 1.5 GPa and 2.0 GPa: Implications for the origin of adakites. Contrib. Mineral. Petrol. 1994, 117, 394–409. [Google Scholar] [CrossRef]
- Rapp, R.P.; Watson, E.B. Dehydration melting of metabasalt at 8–32 kbar: Implications for continental growth and crust-mantle recycling. J. Petrol. 1995, 36, 891–931. [Google Scholar] [CrossRef]
- Wood, B.J.; Turner, S.P. Origin of primitive high-Mg andesite: Constraints from natural examples and experiments. Earth Planet. Sci. Lett. 2009, 283, 59–66. [Google Scholar] [CrossRef]
- Wang, Y.; Deng, T.; Biasatti, D. Ancient diets indicate significant uplift of southern Tibet after ca. 7 Ma. Geology 2006, 34, 309–312. [Google Scholar] [CrossRef]
- Jiang, Z.Q.; Wang, Q.; Wyman, D.A.; Tang, G.J.; Jia, X.H.; Yang, Y.H.; Yu, H.X. Origin of 30 Ma Chongmuda adakitic intrusive rocks in the southern Gangdese region, southern Tibet: Partial melting of the northward subducted Indian continent crust? Geochimica 2011, 40, 126–146, (In Chinese with English abstract). [Google Scholar]
- Lee, H.Y.; Chung, S.L.; Wang, Y.B.; Zhu, D.C.; Yang, J.H.; Song, B.; Liu, D.Y.; Wu, F.Y. Age, petrogenesis and geological significance of the Linzizong volcanic successions in the Linzhou basin, southern Tibet: Evidence from zircon U–Pb dates and Hf isotopes. Acta Petrol. Sin. 2007, 23, 493–500, (In Chinese with English abstract). [Google Scholar]
- Ma, L.; Wang, B.D.; Jiang, Z.Q.; Wang, Q.; Li, Z.X.; Wyman, D.A.; Zhao, S.R.; Yang, J.H.; Gou, G.N.; Guo, H.F. Petrogenesis of the Early Eocene adakitic rocks in the Napuri area, southern Lhasa: Partial melting of thickened lower crust during slab break-off and implications for crustal thickening in southern Tibet. Lithos 2014, 196, 321–338. [Google Scholar] [CrossRef]
- Zhang, H.; Harris, N.; Parrish, R.; Kelley, S.; Zhang, L.; Rogers, N.; Argles, T.; King, J. Causes and consequences of protracted melting of the mid-crust exposed in the North Himalayan antiform. Earth Planet. Sci. Lett. 2004, 228, 195–212. [Google Scholar] [CrossRef]
- Zeng, L.; Gao, L.; Xie, K.; Hu, G. Concurrence of Mid-Miocene high Sr/Y granite and leucogranite in the Yardoi gneiss dome, Tethyan Himalaya, Southern Tibet. Mineral. Mag. 2011, 75, 2245. [Google Scholar]
- Zeng, L.; Gao, L.; Tang, S.; Hou, K.; Guo, C.; Hu, G. Eocene magmatism in the Tethyan Himalaya, southern Tibet. In Tectonics of the Himalaya; Mukherjee, S., Carosi, R., van der Beek, P.A., Mukherjee, B.K., Robinson, D.M., Eds.; Geological Society of London, Special Publications: London, UK, 2015; Volume 412, pp. 287–316. [Google Scholar] [CrossRef]
- Owens, T.J.; Zandt, G. Implications of crustal property variations for models of Tibetan Plateau evolution. Nature 1997, 387, 37–43. [Google Scholar] [CrossRef]
- Zheng, Y.F.; Zhao, Z.F.; Chen, Y.X. Continental subduction channel processes: Plate interface interaction during continental collision. Chin. Sci. Bull. 2013, 58, 4371–4377. [Google Scholar] [CrossRef] [Green Version]
- Chung, S.L.; Chu, M.F.; Ji, J.Q.; O’Reilly, S.Y.; Pearson, N.J.; Liu, D.Y.; Lee, T.Y.; Lo, C.H. The nature and timing of crustal thickening in Southern Tibet. Tectonophysics 2009, 477, 36–48. [Google Scholar] [CrossRef]
- Ji, W.Q.; Wu, F.Y.; Liu, C.Z.; Chung, S.L. Early Eocene crustal thickening in southern Tibet: New age and geochemical constraints from the Gangdese batholith. J. Asian Earth Sci. 2012, 53, 82–95. [Google Scholar] [CrossRef]
- Chu, M.; Chung, S.; O’Reilly, S.Y.; Pearson, N.J.; Wu, F.; Li, X.; Liu, D.; Ji, J.; Chu, C.; Lee, H. India’s hidden inputs to Tibetan orogeny revealed by Hf isotopes of Transhimalayan zircons and host rocks. Earth Planet. Sci. Lett. 2011, 307, 479–486. [Google Scholar] [CrossRef]
- Wang, C.S.; Zhao, X.X.; Liu, Z.F.; Lippert, P.C.; Graham, S.A.; Coe, R.S.; Yi, H.S.; Zhu, L.D.; Liu, S.; Li, Y.L. Constrains on the early uplift history of the Tibetan Plateau. Proc. Natl. Acad. Sci. USA 2008, 105, 4987–4992. [Google Scholar] [CrossRef] [Green Version]
- Hou, Z.Q.; Zheng, Y.C.; Yang, Z.M.; Rui, Z.Y.; Zhao, Z.D.; Jiang, S.H.; Qu, X.M.; Sun, Q.Z. Contribution of mantle components within juvenile lower-crust to collisional zone porphyry Cu systems in Tibet. Miner. Depos. 2013, 48, 173–192. [Google Scholar] [CrossRef]
- Guo, Z.; Wilson, M.; Zhang, M.; Cheng, Z.; Zhang, L. Post-collisional ultrapotassic mafic magmatism in South Tibet: Products of partial melting of pyroxenite in the mantle wedge induced by roll-back and delamination of the subducted Indian continental lithosphere slab. J. Petrol. 2015, 56, 1365–1406. [Google Scholar] [CrossRef]
- Jobert, N.; Journet, B.; Jobert, G.; Hirn, A.; Sun, K.Z. Deep structure of southern Tibet inferred from the dispersion of Rayleigh waves through a long-period seismic network. Nature 1985, 313, 386–388. [Google Scholar] [CrossRef]
- Nelson, K.D.; Zhao, W.J.; Brown, L.D.; Kuo, J.; Che, J.K.; Liu, X.W.; Klemperer, S.L.; Makovsky, Y.; Meissner, R.; Mechie, J.; et al. Partially molten middle crust beneath southern Tibet: Synthesis of project INDEPTH results. Science 1996, 274, 1684–1688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guan, Q.; Zhu, D.; Zhao, Z.; Dong, G.; Zhang, L.; Li, X.; Liu, M.; Mo, X.; Liu, Y.; Yuan, H. Crustal thickening prior to 38 Ma in southern Tibet: Evidence from lower crust-derived adakitic magmatism in the Gangdese Batholith. Gondwana Res. 2012, 21, 288–299. [Google Scholar] [CrossRef]
- Nomade, S.; Renne, P.R.; Mo, X.; Zhao, Z.; Zhou, S. Miocene volcanism in the Lhasa block, Tibet: Spatial trends and geodynamic implications. Earth Planet. Sci. Lett. 2004, 221, 227–243. [Google Scholar] [CrossRef]
- Hou, Z.; Zhao, Z.; Gao, Y.; Yang, Z.; Jiang, W. Tearing and dischronal subduction of the Indian continental slab: Evidence from Cenozoic Gangdese volcanomagmatic rocks in south Tibet. Yanshi Xuebao 2006, 22, 761–774. [Google Scholar]
- Wen, D.R.; Chung, S.L.; Song, B.; Lizuka, Y.; Yang, H.J.; Ji, J.; Liu, D.; Gallet, S. Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics, SE Tibet: Petrogenesis and tectonic implications. Lithos 2008, 105, 1–11. [Google Scholar] [CrossRef]
- Zhao, W.J.; Nelson, K.D.; Che, J.; Quo, J.; Lu, D.; Wu, C.; Liu, X. Deep seismic reflection evidence for continental underthrusting beneath southern Tibet. Nature 1993, 366, 557–559. [Google Scholar] [CrossRef]
- Zhao, W.J.; Kumar, P.; Mechie, J.; Kind, R.; Meissner, R.; Wu, Z.H.; Shi, D.N.; Su, H.P.; Xue, G.Q.; Karplus, M.; et al. Tibetan plate overriding the Asian plate in central and northern Tibet. Nat. Geosci. 2011, 4, 870–873. [Google Scholar] [CrossRef]
- Zhao, J.M.; Yuan, X.H.; Liu, H.B.; Kumar, P.; Pei, S.P.; Kind, R.; Zhang, Z.J.; Teng, J.W.; Ding, L.; Gao, X.; et al. The boundary between the Indian and Asian tectonic plates below Tibet. Proc. Natl. Acad. Sci. USA 2010, 107, 11229–11233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.; Van der Hilst, R.D.; Meltzer, A.S.; Engdahl, E.R. Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma. Earth Planet. Sci. Lett. 2008, 274, 157–168. [Google Scholar] [CrossRef]
Spot | Pb (ppm) | Th (ppm) | U (ppm) | Th/U | 207Pb/206Pb | 207Pb/235U | 206Pb/238U | 208Pb/232Th | 207Pb/206Pb | 207Pb/235U | 206Pb/238U | 208Pb/232Th | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ratio | 1σ | Ratio | 1σ | Ratio | 1σ | Ratio | 1σ | Age (Ma) | 1σ | Age (Ma) | 1σ | Age (Ma) | 1σ | Age (Ma) | 1σ | |||||
PM21-JD1-01 | 3.89 | 1385 | 1920 | 0.72 | 0.0449 | 0.0073 | 0.0099 | 0.0016 | 0.0016 | 0.0000 | 0.0004 | 0.0000 | error | 10.0159 | 1.6394 | 10.4707 | 0.2979 | 7.8505 | 0.9331 | |
PM21-JD1-02 | 5.49 | 1231 | 2755 | 0.45 | 0.0452 | 0.0057 | 0.0100 | 0.0012 | 0.0016 | 0.0000 | 0.0005 | 0.0001 | error | 10.1242 | 1.2166 | 10.4943 | 0.2927 | 10.0574 | 1.2202 | |
PM21-JD1-03 | 7.32 | 612 | 1400 | 0.44 | 0.0430 | 0.0043 | 0.0254 | 0.0026 | 0.0043 | 0.0001 | 0.0012 | 0.0001 | error | 25.4626 | 2.5443 | 27.4721 | 0.5654 | 24.1125 | 2.4168 | |
PM21-JD1-04 | 2.78 | 686 | 1373 | 0.50 | 0.0457 | 0.0090 | 0.0099 | 0.0018 | 0.0016 | 0.0001 | 0.0006 | 0.0001 | error | 9.9801 | 1.8571 | 10.4289 | 0.3729 | 11.6017 | 1.4836 | |
PM21-JD1-05 | 3.90 | 633 | 2062 | 0.31 | 0.0370 | 0.0089 | 0.0081 | 0.0020 | 0.0016 | 0.0001 | 0.0005 | 0.0001 | error | error | 8.1978 | 1.9731 | 10.1857 | 0.4704 | 9.7415 | 2.0176 |
PM21-JD1-06 | 3.84 | 1216 | 1847 | 0.66 | 0.0572 | 0.0070 | 0.0125 | 0.0015 | 0.0016 | 0.0001 | 0.0004 | 0.0001 | 498.1900 | 269.4100 | 12.6180 | 1.4625 | 10.4340 | 0.3429 | 8.4172 | 1.0141 |
PM21-JD1-07 | 7.70 | 1298 | 4021 | 0.32 | 0.0484 | 0.0045 | 0.0107 | 0.0011 | 0.0016 | 0.0000 | 0.0005 | 0.0001 | 116.7550 | 207.3750 | 10.8467 | 1.0988 | 10.4441 | 0.2861 | 9.1572 | 1.0158 |
PM21-JD1-08 | 2.56 | 1189 | 1107 | 1.07 | 0.0631 | 0.0186 | 0.0131 | 0.0032 | 0.0016 | 0.0001 | 0.0004 | 0.0001 | 722.2300 | 516.6550 | 13.2505 | 3.1765 | 10.1775 | 0.6741 | 7.8937 | 1.3825 |
PM21-JD1-09 | 2.33 | 952 | 1054 | 0.90 | 0.0485 | 0.0089 | 0.0108 | 0.0020 | 0.0016 | 0.0001 | 0.0004 | 0.0001 | 124.1600 | 381.4350 | 10.9306 | 2.0207 | 10.5332 | 0.4127 | 8.0998 | 1.0799 |
PM21-JD1-10 | 1.54 | 550 | 664 | 0.83 | 0.0594 | 0.0384 | 0.0122 | 0.0080 | 0.0017 | 0.0002 | 0.0005 | 0.0002 | 588.9150 | 994.4200 | 12.3348 | 7.9922 | 10.6310 | 1.0528 | 9.9172 | 3.0567 |
PM21-JD1-11 | 3.63 | 1255 | 1553 | 0.81 | 0.0988 | 0.0184 | 0.0213 | 0.0041 | 0.0016 | 0.0001 | 0.0005 | 0.0001 | 2000.0000 | 354.1650 | 21.4058 | 4.0366 | 10.0046 | 0.5749 | 10.6556 | 1.6824 |
PM21-JD1-12 | 4.29 | 957 | 1828 | 0.52 | 0.0665 | 0.0192 | 0.0160 | 0.0049 | 0.0016 | 0.0003 | 0.0005 | 0.0001 | 833.3300 | 633.7475 | 16.1406 | 4.9341 | 10.3387 | 1.6744 | 10.1272 | 1.7239 |
PM21-JD1-13 | 4.42 | 1146 | 2158 | 0.53 | 0.0407 | 0.0075 | 0.0085 | 0.0016 | 0.0016 | 0.0001 | 0.0004 | 0.0001 | error | 8.6414 | 1.6388 | 10.1813 | 0.3497 | 8.2260 | 1.2960 | |
PM21-JD1-14 | 3.56 | 777 | 1798 | 0.43 | 0.0512 | 0.0073 | 0.0108 | 0.0015 | 0.0016 | 0.0001 | 0.0004 | 0.0001 | 250.0650 | 299.9700 | 10.9099 | 1.4647 | 10.2159 | 0.3366 | 8.6969 | 1.1061 |
PM21-JD1-15 | 7.72 | 2499 | 3415 | 0.73 | 0.0498 | 0.0134 | 0.0110 | 0.0029 | 0.0016 | 0.0001 | 0.0005 | 0.0001 | 187.1200 | 529.5550 | 11.0592 | 2.9282 | 10.2982 | 0.4850 | 9.4229 | 1.5143 |
PM21-JD1-16 | 6.86 | 2613 | 2998 | 0.87 | 0.0575 | 0.0250 | 0.0121 | 0.0047 | 0.0016 | 0.0001 | 0.0004 | 0.0001 | 509.3000 | 749.0250 | 12.2414 | 4.7493 | 10.1826 | 0.6638 | 8.2315 | 1.2801 |
PM21-JD1-17 | 3.36 | 994 | 1592 | 0.62 | 0.0571 | 0.0087 | 0.0123 | 0.0019 | 0.0016 | 0.0001 | 0.0004 | 0.0001 | 494.4850 | 339.6150 | 12.3906 | 1.8630 | 10.4338 | 0.4645 | 8.2867 | 1.1481 |
PM21-JD1-18 | 10.36 | 1660 | 5264 | 0.32 | 0.0475 | 0.0043 | 0.0103 | 0.0009 | 0.0016 | 0.0000 | 0.0004 | 0.0001 | 76.0200 | 199.9700 | 10.4404 | 0.9241 | 10.2150 | 0.2200 | 8.4395 | 1.0328 |
PM21-JD1-19 | 3.38 | 917 | 1556 | 0.59 | 0.0553 | 0.0101 | 0.0117 | 0.0021 | 0.0016 | 0.0001 | 0.0004 | 0.0001 | 433.3800 | 357.3600 | 11.8534 | 2.0950 | 10.2050 | 0.4820 | 8.8238 | 1.4958 |
PM21-JD1-20 | 2.17 | 671 | 942 | 0.71 | 0.0643 | 0.0110 | 0.0136 | 0.0022 | 0.0016 | 0.0001 | 0.0005 | 0.0001 | 753.7100 | 367.1025 | 13.6885 | 2.1611 | 10.4385 | 0.4521 | 10.1665 | 1.5644 |
PM21-JD1-21 | 3.76 | 913 | 1909 | 0.48 | 0.0510 | 0.0068 | 0.0108 | 0.0014 | 0.0016 | 0.0001 | 0.0004 | 0.0001 | 238.9550 | 281.4550 | 10.8638 | 1.3906 | 9.9878 | 0.3598 | 7.5948 | 1.2334 |
PM21-JD1-22 | 5.78 | 896 | 2996 | 0.30 | 0.0629 | 0.0135 | 0.0136 | 0.0031 | 0.0015 | 0.0001 | 0.0006 | 0.0001 | 705.5650 | 468.4775 | 13.6672 | 3.0616 | 9.9708 | 0.4021 | 11.7081 | 2.8853 |
PM21-JD1-23 | 3.40 | 473 | 1545 | 0.31 | 0.0503 | 0.0067 | 0.0129 | 0.0019 | 0.0019 | 0.0001 | 0.0006 | 0.0001 | 209.3300 | 290.7100 | 13.0450 | 1.8706 | 11.9857 | 0.4758 | 12.5874 | 1.6950 |
PM21-JD1-24 | 6.41 | 702 | 3492 | 0.20 | 0.0440 | 0.0070 | 0.0093 | 0.0015 | 0.0015 | 0.0001 | 0.0004 | 0.0001 | error | 9.4110 | 1.4967 | 9.9842 | 0.3320 | 8.4437 | 1.6980 | |
PM21-JD1-25 | 6.96 | 1162 | 3939 | 0.30 | 0.0500 | 0.0053 | 0.0099 | 0.0010 | 0.0015 | 0.0000 | 0.0004 | 0.0001 | 194.5250 | 238.8550 | 10.0044 | 1.0150 | 9.3565 | 0.2568 | 8.1900 | 1.0642 |
PM21-JD1-26 | 5.98 | 1576 | 3036 | 0.52 | 0.0518 | 0.0072 | 0.0107 | 0.0014 | 0.0015 | 0.0000 | 0.0004 | 0.0001 | 275.9900 | 288.8600 | 10.7579 | 1.3883 | 9.7602 | 0.2804 | 9.0247 | 1.1651 |
PM21-JD1-27 | 3.35 | 2230 | 904 | 2.47 | 0.1482 | 0.0517 | 0.0331 | 0.0108 | 0.0016 | 0.0002 | 0.0005 | 0.0001 | 2325.0050 | 629.4700 | 33.0804 | 10.6336 | 10.6060 | 1.2051 | 10.4401 | 1.2160 |
PM21-JD1-28 | 5.06 | 3010 | 2030 | 1.48 | 0.0552 | 0.0174 | 0.0113 | 0.0033 | 0.0016 | 0.0001 | 0.0004 | 0.0001 | 420.4200 | 582.3550 | 11.4517 | 3.3615 | 10.0263 | 0.7478 | 8.2309 | 1.6536 |
PM21-JD1-29 | 11.69 | 7367 | 3593 | 2.05 | 0.0512 | 0.0058 | 0.0130 | 0.0015 | 0.0019 | 0.0001 | 0.0005 | 0.0001 | 250.0650 | 249.9750 | 13.0651 | 1.4953 | 11.9324 | 0.4515 | 10.5252 | 1.5226 |
PM21-JD1-30 | 2.76 | 822 | 1309 | 0.63 | 0.0537 | 0.0088 | 0.0119 | 0.0020 | 0.0017 | 0.0001 | 0.0004 | 0.0001 | 366.7200 | 327.7350 | 12.0370 | 1.9872 | 10.6484 | 0.4546 | 8.1357 | 1.9308 |
PM21-JD1-31 | 1.69 | 372 | 788 | 0.47 | 0.0407 | 0.0110 | 0.0096 | 0.0025 | 0.0018 | 0.0001 | 0.0005 | 0.0001 | error | 9.7208 | 2.5474 | 11.3482 | 0.4683 | 10.2954 | 1.8062 | |
PM21-JD1-32 | 3.92 | 1980 | 1638 | 1.21 | 0.0433 | 0.0065 | 0.0095 | 0.0014 | 0.0016 | 0.0000 | 0.0004 | 0.0000 | error | 9.5684 | 1.4360 | 10.1311 | 0.3060 | 8.0332 | 0.8119 | |
PM21-JD1-33 | 9.43 | 2114 | 4918 | 0.43 | 0.0494 | 0.0049 | 0.0104 | 0.0009 | 0.0016 | 0.0000 | 0.0003 | 0.0000 | 164.9000 | 224.0400 | 10.4764 | 0.9243 | 10.0015 | 0.2749 | 7.0168 | 0.8464 |
PM21-JD1-34 | 6.85 | 2257 | 1498 | 1.51 | 0.0484 | 0.0063 | 0.0196 | 0.0025 | 0.0029 | 0.0001 | 0.0007 | 0.0001 | 120.4600 | 277.7400 | 19.6934 | 2.5385 | 18.9102 | 0.6182 | 14.1629 | 1.3537 |
PM21-JD1-35 | 2.70 | 253 | 1423 | 0.18 | 0.0517 | 0.0073 | 0.0117 | 0.0017 | 0.0017 | 0.0001 | 0.0006 | 0.0001 | 333.3900 | 231.4600 | 11.8002 | 1.6860 | 10.7698 | 0.4094 | 11.5635 | 1.8038 |
PM21-JD1-36 | 7.19 | 1334 | 3669 | 0.36 | 0.0678 | 0.0101 | 0.0143 | 0.0022 | 0.0016 | 0.0001 | 0.0004 | 0.0001 | 861.1050 | 312.9475 | 14.4451 | 2.1872 | 10.0135 | 0.4200 | 8.4582 | 1.6327 |
PM21-JD1-37 | 3.65 | 1204 | 1656 | 0.73 | 0.0543 | 0.0076 | 0.0119 | 0.0016 | 0.0016 | 0.0001 | 0.0004 | 0.0001 | 383.3850 | 319.2450 | 12.0543 | 1.5564 | 10.6156 | 0.3727 | 8.4842 | 1.1241 |
PM21-JD1-38 | 4.09 | 1716 | 1856 | 0.92 | 0.0551 | 0.0089 | 0.0116 | 0.0017 | 0.0016 | 0.0001 | 0.0004 | 0.0000 | 416.7150 | 364.7700 | 11.6668 | 1.7216 | 10.2338 | 0.3484 | 7.1273 | 0.7010 |
PM21-JD1-39 | 11.35 | 5410 | 5006 | 1.08 | 0.0515 | 0.0044 | 0.0109 | 0.0010 | 0.0015 | 0.0000 | 0.0004 | 0.0000 | 264.8800 | 198.1225 | 11.0475 | 0.9592 | 9.9779 | 0.2100 | 7.3946 | 0.6281 |
PM21-JD1-40 | 4.68 | 2192 | 1983 | 1.11 | 0.0519 | 0.0085 | 0.0112 | 0.0018 | 0.0016 | 0.0001 | 0.0004 | 0.0000 | 279.6900 | 336.9950 | 11.3361 | 1.7729 | 10.2435 | 0.3848 | 7.8654 | 0.8354 |
Simple | PM20-10-Bb1 | PM21-10-Bb1 | PM24-1-Bb1 | PM24-4-Bb1 | PM24-5-Bb1 | PM21-Bb2 | PM21-Bb3 | PM21-Bb4 | PM21-Bb5 * | PM21-Bb8 | PM21-4-Bb1 | PM21-6-Bb1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 (wt%) | 69.13 | 69.18 | 68.41 | 68.57 | 68.27 | 71.01 | 71.37 | 70.02 | 68.95 | 69.17 | 68.90 | 69.32 |
TiO2 | 0.33 | 0.41 | 0.36 | 0.35 | 0.33 | 0.31 | 0.28 | 0.30 | 0.31 | 0.30 | 0.32 | 0.28 |
Al2O3% | 15.33 | 15.26 | 15.54 | 15.87 | 15.17 | 15.09 | 15.03 | 15.29 | 15.01 | 14.93 | 15.41 | 14.98 |
TFe2O3% | 2.16 | 2.33 | 2.23 | 2.30 | 2.31 | 1.83 | 1.86 | 1.57 | 1.77 | 1.90 | 2.38 | 2.07 |
MnO | 0.06 | 0.03 | 0.03 | 0.03 | 0.04 | 0.03 | 0.03 | 0.04 | 0.03 | 0.03 | 0.03 | 0.04 |
MgO% | 0.58 | 0.50 | 0.66 | 0.68 | 0.62 | 0.57 | 0.52 | 0.69 | 0.56 | 0.60 | 0.53 | 0.58 |
CaO% | 1.92 | 2.27 | 2.40 | 1.94 | 2.72 | 1.86 | 1.68 | 2.11 | 2.13 | 2.07 | 1.87 | 1.75 |
Na2O% | 3.80 | 3.58 | 3.66 | 3.61 | 3.59 | 3.46 | 3.56 | 2.88 | 2.91 | 2.91 | 3.53 | 4.03 |
K2O% | 4.87 | 4.03 | 4.71 | 4.87 | 4.40 | 4.16 | 4.55 | 4.35 | 4.44 | 4.52 | 4.10 | 3.95 |
P2O5 | 0.12 | 0.12 | 0.13 | 0.11 | 0.13 | 0.12 | 0.12 | 0.10 | 0.14 | 0.12 | 0.12 | 0.12 |
LOI% | 1.50 | 2.14 | 1.70 | 1.47 | 2.62 | 0.90 | 0.35 | 2.40 | 2.32 | 2.43 | 1.22 | 1.14 |
Mg# | 32.46 | 27.71 | 34.51 | 34.57 | 32.31 | 35.70 | 33.26 | 43.93 | 36.06 | 36.02 | 28.42 | 33.31 |
Rb(ppm) | 291.86 | 221.19 | 213.43 | 263.49 | 187.26 | 203.00 | 222.00 | 210.00 | 214.00 | 220.00 | 195.00 | 180.00 |
Ba | 1068.93 | 1055.32 | 1144.15 | 1107.62 | 1101.29 | 924.00 | 900.00 | 886.00 | 891.00 | 875.00 | 942.00 | 854.00 |
Th | 52.69 | 47.88 | 58.41 | 52.76 | 50.42 | 48.40 | 45.20 | 48.90 | 48.00 | 48.20 | 48.20 | 46.50 |
U | 6.37 | 4.61 | 6.07 | 5.52 | 5.79 | 3.54 | 4.20 | 7.70 | 7.56 | 8.01 | 2.07 | 3.82 |
Ta | 1.39 | 0.77 | 0.95 | 1.31 | 0.87 | 1.04 | 1.02 | 0.90 | 1.14 | 1.10 | 0.92 | 0.79 |
Nb | 15.06 | 11.23 | 11.48 | 13.48 | 10.17 | 11.30 | 11.10 | 11.80 | 10.40 | 11.60 | 10.60 | 9.94 |
Sr | 477.74 | 604.07 | 548.25 | 498.35 | 522.19 | 604.00 | 572.00 | 732.00 | 728.00 | 778.00 | 620.00 | 574.00 |
P | 512.10 | 518.30 | 581.20 | 481.90 | 547.90 | 515.02 | 523.75 | 449.55 | 589.22 | 523.75 | 506.29 | 519.39 |
Zr | 81.76 | 105.10 | 94.58 | 73.96 | 89.56 | 168.00 | 162.00 | 162.00 | 166.00 | 169.00 | 184.00 | 197.00 |
Hf | 3.79 | 3.79 | 3.48 | 3.23 | 3.29 | 4.50 | 4.40 | 4.50 | 4.40 | 4.50 | 5.00 | 7.60 |
Y | 11.43 | 9.96 | 10.39 | 9.32 | 9.58 | 11.80 | 9.95 | 11.00 | 11.10 | 11.70 | 11.60 | 10.60 |
Sc | 2.49 | 2.15 | 2.55 | 2.48 | 2.29 | 2.37 | 1.77 | 2.53 | 2.34 | 2.15 | 2.34 | 2.42 |
V | 30.02 | 37.70 | 34.57 | 33.75 | 31.10 | 33.02 | 30.78 | 30.03 | 32.17 | 34.43 | 30.11 | 31.15 |
Cr | 24.71 | 21.09 | 18.96 | 16.36 | 18.35 | 21.74 | 23.81 | 19.33 | 16.46 | 17.42 | 15.22 | 17.13 |
Co | 3.57 | 2.76 | 3.71 | 4.08 | 4.54 | 3.65 | 3.64 | 4.22 | 3.16 | 3.77 | 2.98 | 4.32 |
Ni | 5.36 | 5.41 | 5.86 | 5.33 | 6.49 | 5.41 | 5.33 | 5.49 | 5.46 | 5.93 | 6.02 | 6.21 |
La | 59.54 | 59.03 | 62.01 | 54.72 | 58.89 | 57.60 | 49.00 | 51.30 | 49.40 | 52.60 | 55.00 | 52.40 |
Ce | 98.99 | 95.97 | 99.17 | 85.33 | 90.82 | 106.00 | 90.00 | 95.90 | 92.40 | 97.60 | 102.00 | 94.20 |
Pr | 10.90 | 10.42 | 11.12 | 9.88 | 10.12 | 11.00 | 9.50 | 10.40 | 9.96 | 10.70 | 10.80 | 10.20 |
Nd | 39.32 | 36.94 | 40.38 | 34.07 | 35.59 | 38.10 | 32.60 | 35.60 | 34.40 | 36.80 | 37.40 | 34.90 |
Sm | 5.79 | 5.33 | 5.80 | 4.84 | 5.07 | 5.49 | 4.67 | 5.23 | 5.06 | 5.38 | 5.40 | 5.12 |
Eu | 1.21 | 1.33 | 1.35 | 1.35 | 1.34 | 1.15 | 1.08 | 1.10 | 1.14 | 1.17 | 1.19 | 1.12 |
Gd | 4.35 | 4.28 | 4.55 | 3.82 | 3.92 | 4.70 | 4.03 | 4.48 | 4.30 | 4.66 | 4.77 | 4.39 |
Tb | 0.59 | 0.55 | 0.56 | 0.52 | 0.49 | 0.52 | 0.44 | 0.50 | 0.48 | 0.51 | 0.52 | 0.49 |
Dy | 2.02 | 1.86 | 1.91 | 1.75 | 1.64 | 2.30 | 1.90 | 2.24 | 2.13 | 2.24 | 2.31 | 2.18 |
Ho | 0.36 | 0.33 | 0.34 | 0.31 | 0.30 | 0.37 | 0.30 | 0.36 | 0.35 | 0.36 | 0.36 | 0.36 |
Er | 1.25 | 1.13 | 1.23 | 1.13 | 1.12 | 1.16 | 1.00 | 1.10 | 1.08 | 1.14 | 1.16 | 1.08 |
Tm | 0.16 | 0.13 | 0.15 | 0.13 | 0.12 | 0.16 | 0.14 | 0.16 | 0.16 | 0.16 | 0.15 | 0.14 |
Yb | 0.95 | 0.79 | 0.82 | 0.80 | 0.75 | 1.02 | 0.87 | 0.94 | 1.00 | 1.06 | 0.98 | 0.90 |
Lu | 0.16 | 0.13 | 0.16 | 0.15 | 0.14 | 0.14 | 0.12 | 0.14 | 0.14 | 0.15 | 0.14 | 0.13 |
ΣREE | 225.60 | 218.21 | 229.55 | 198.79 | 210.33 | 229.71 | 195.65 | 209.45 | 202.00 | 214.53 | 222.18 | 207.61 |
LREE | 215.76 | 209.02 | 219.84 | 190.18 | 201.84 | 219.34 | 186.85 | 199.53 | 192.36 | 204.25 | 211.79 | 197.94 |
HREE | 9.85 | 9.19 | 9.71 | 8.61 | 8.49 | 10.37 | 8.80 | 9.92 | 9.64 | 10.28 | 10.39 | 9.67 |
LREE/HREE | 21.91 | 22.75 | 22.64 | 22.09 | 23.77 | 21.15 | 21.23 | 20.11 | 19.95 | 19.87 | 20.38 | 20.47 |
LaN/YbN | 44.77 | 53.80 | 54.18 | 49.12 | 56.25 | 40.51 | 40.40 | 39.15 | 35.43 | 35.59 | 40.26 | 41.76 |
δEu | 0.71 | 0.82 | 0.78 | 0.93 | 0.88 | 0.67 | 0.74 | 0.68 | 0.73 | 0.70 | 0.70 | 0.70 |
δCe | 0.88 | 0.87 | 0.86 | 0.83 | 0.84 | 0.97 | 0.96 | 0.96 | 0.96 | 0.95 | 0.96 | 0.94 |
Sample | Rb ppm | Sr ppm | 87Rb/86Sr | 87Sr/86Sr | (87Sr/86Sr)i | Sm ppm | Nd ppm | 147Sm/144Nd | 143Nd/144Nd | εNd(t) | TDM | T2DM |
---|---|---|---|---|---|---|---|---|---|---|---|---|
PM20-10-Bb1 | 291.86 | 477.74 | 1.76774 | 0.709064 | 0.708806 | 5.79 | 39.32 | 0.088945549 | 0.512286 | −6.73 | 1057 | 1374 |
PM21-10-Bb1 | 221.19 | 604.07 | 1.05954 | 0.708442 | 0.708287 | 5.33 | 36.94 | 0.087177326 | 0.512288 | −6.68 | 1040 | 1371 |
PM24-1-Bb1 | 213.43 | 548.25 | 1.12645 | 0.708635 | 0.708471 | 5.80 | 40.38 | 0.086796746 | 0.512284 | −6.76 | 1042 | 1377 |
Sample | Age (Ga) | 176Yb/177Hf | 2σ | 176Lu/177Hf | 2σ | 176Hf/177Hf | 2σ | TDM (Ga) | T2DM (Ga) | Hf(i) | εHf(0) | εHf(t) | 2σ | fLu/Hf |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PM21-JD1-1 | 0.0105 | 0.033373 | 0.000867 | 0.001171 | 0.000028 | 0.282792 | 0.000023 | 0.66 | 1.04 | 0.282792 | 0.70 | 0.92 | 0.81 | −0.96 |
PM21-JD1-2 | 0.0105 | 0.018638 | 0.000056 | 0.000619 | 0.000007 | 0.282800 | 0.000021 | 0.63 | 1.02 | 0.282800 | 0.98 | 1.21 | 0.75 | −0.98 |
PM21-JD1-4 | 0.0104 | 0.021760 | 0.000485 | 0.000682 | 0.000013 | 0.282782 | 0.000021 | 0.66 | 1.06 | 0.282782 | 0.36 | 0.58 | 0.73 | −0.98 |
PM21-JD1-5 | 0.0102 | 0.018659 | 0.000048 | 0.000647 | 0.000002 | 0.282796 | 0.000018 | 0.64 | 1.03 | 0.282796 | 0.86 | 1.08 | 0.64 | −0.98 |
PM21-JD1-6 | 0.0104 | 0.046085 | 0.001602 | 0.001391 | 0.000061 | 0.282657 | 0.000028 | 0.85 | 1.34 | 0.282657 | −4.07 | −3.85 | 1.01 | −0.96 |
PM21-JD1-7 | 0.0104 | 0.045220 | 0.000237 | 0.001276 | 0.000006 | 0.282743 | 0.000023 | 0.73 | 1.15 | 0.282742 | −1.04 | −0.82 | 0.80 | −0.96 |
PM21-JD1-9 | 0.0105 | 0.024186 | 0.000112 | 0.000671 | 0.000002 | 0.282647 | 0.000022 | 0.85 | 1.36 | 0.282647 | −4.41 | −4.19 | 0.78 | −0.98 |
PM21-JD1-13 | 0.0102 | 0.012335 | 0.000181 | 0.000382 | 0.000005 | 0.282800 | 0.000020 | 0.63 | 1.02 | 0.282800 | 0.99 | 1.21 | 0.69 | −0.99 |
PM21-JD1-14 | 0.0102 | 0.023904 | 0.000677 | 0.000654 | 0.000017 | 0.282753 | 0.000025 | 0.70 | 1.12 | 0.282753 | −0.67 | −0.46 | 0.88 | −0.98 |
PM21-JD1-15 | 0.0103 | 0.083510 | 0.000518 | 0.002139 | 0.000012 | 0.282764 | 0.000028 | 0.71 | 1.10 | 0.282763 | −0.30 | −0.09 | 1.00 | −0.94 |
PM21-JD1-16 | 0.0102 | 0.031547 | 0.000490 | 0.000937 | 0.000014 | 0.282736 | 0.000025 | 0.73 | 1.16 | 0.282735 | −1.29 | −1.07 | 0.87 | −0.97 |
PM21-JD1-17 | 0.0104 | 0.029805 | 0.000490 | 0.001050 | 0.000020 | 0.282813 | 0.000027 | 0.62 | 0.99 | 0.282813 | 1.45 | 1.67 | 0.96 | −0.97 |
PM21-JD1-18 | 0.0102 | 0.030783 | 0.000788 | 0.000999 | 0.000029 | 0.282793 | 0.000023 | 0.65 | 1.03 | 0.282793 | 0.74 | 0.96 | 0.81 | −0.97 |
PM21-JD1-19 | 0.0102 | 0.025492 | 0.000234 | 0.000976 | 0.000008 | 0.282816 | 0.000038 | 0.62 | 0.98 | 0.282815 | 1.54 | 1.76 | 1.36 | −0.97 |
PM21-JD1-20 | 0.0104 | 0.016714 | 0.000087 | 0.000545 | 0.000010 | 0.282756 | 0.000027 | 0.69 | 1.12 | 0.282756 | −0.55 | −0.33 | 0.96 | −0.98 |
PM21-JD1-21 | 0.0100 | 0.026894 | 0.000162 | 0.001030 | 0.000008 | 0.282729 | 0.000021 | 0.74 | 1.18 | 0.282728 | −1.53 | −1.32 | 0.73 | −0.97 |
PM21-JD1-23 | 0.0120 | 0.029601 | 0.000749 | 0.000930 | 0.000026 | 0.282699 | 0.000022 | 0.78 | 1.24 | 0.282699 | −2.58 | −2.32 | 0.76 | −0.97 |
PM21-JD1-24 | 0.0100 | 0.040209 | 0.000458 | 0.001382 | 0.000016 | 0.282774 | 0.000021 | 0.68 | 1.08 | 0.282773 | 0.06 | 0.27 | 0.74 | −0.96 |
PM21-JD1-26 | 0.0098 | 0.036028 | 0.000528 | 0.001025 | 0.000007 | 0.282774 | 0.000024 | 0.68 | 1.08 | 0.282774 | 0.07 | 0.28 | 0.86 | −0.97 |
PM21-JD1-28 | 0.0100 | 0.027640 | 0.000600 | 0.000701 | 0.000013 | 0.282776 | 0.000026 | 0.67 | 1.07 | 0.282776 | 0.15 | 0.36 | 0.90 | −0.98 |
PM21-JD1-30 | 0.0106 | 0.020169 | 0.000440 | 0.000791 | 0.000015 | 0.282790 | 0.000025 | 0.65 | 1.04 | 0.282790 | 0.63 | 0.86 | 0.89 | −0.98 |
PM21-JD1-31 | 0.0113 | 0.007948 | 0.000102 | 0.000238 | 0.000002 | 0.282691 | 0.000022 | 0.78 | 1.26 | 0.282691 | −2.86 | −2.61 | 0.76 | −0.99 |
PM21-JD1-32 | 0.0101 | 0.040298 | 0.000988 | 0.001317 | 0.000027 | 0.282815 | 0.000031 | 0.62 | 0.98 | 0.282815 | 1.54 | 1.75 | 1.08 | −0.96 |
PM21-JD1-33 | 0.0100 | 0.070652 | 0.002432 | 0.002179 | 0.000048 | 0.282791 | 0.000025 | 0.67 | 1.04 | 0.282790 | 0.66 | 0.87 | 0.87 | −0.93 |
PM21-JD1-35 | 0.0108 | 0.019444 | 0.000324 | 0.000511 | 0.000007 | 0.282739 | 0.000020 | 0.72 | 1.16 | 0.282739 | −1.18 | −0.95 | 0.70 | −0.98 |
PM21-JD1-37 | 0.0106 | 0.056193 | 0.001160 | 0.001349 | 0.000025 | 0.282956 | 0.000027 | 0.42 | 0.66 | 0.282956 | 6.50 | 6.72 | 0.95 | −0.96 |
PM21-JD1-38 | 0.0102 | 0.038387 | 0.000275 | 0.001250 | 0.000011 | 0.282794 | 0.000025 | 0.65 | 1.03 | 0.282794 | 0.78 | 1.00 | 0.88 | −0.96 |
PM21-JD1-39 | 0.0100 | 0.064006 | 0.000778 | 0.001629 | 0.000015 | 0.282791 | 0.000021 | 0.66 | 1.04 | 0.282791 | 0.67 | 0.88 | 0.73 | −0.95 |
PM21-JD1-40 | 0.0102 | 0.020273 | 0.000642 | 0.000561 | 0.000015 | 0.282699 | 0.000020 | 0.77 | 1.24 | 0.282699 | −2.57 | −2.35 | 0.71 | −0.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Hou, M.; Xiong, F.; Tang, H.; Shao, G. Petrogenesis and Geodynamic Implications of Miocene Felsic Magmatic Rocks in the Wuyu Basin, Southern Gangdese Belt, Qinghai-Tibet Plateau. Minerals 2021, 11, 655. https://doi.org/10.3390/min11060655
Chen H, Hou M, Xiong F, Tang H, Shao G. Petrogenesis and Geodynamic Implications of Miocene Felsic Magmatic Rocks in the Wuyu Basin, Southern Gangdese Belt, Qinghai-Tibet Plateau. Minerals. 2021; 11(6):655. https://doi.org/10.3390/min11060655
Chicago/Turabian StyleChen, Hanzhi, Mingcai Hou, Fuhao Xiong, Hongwei Tang, and Gangqiang Shao. 2021. "Petrogenesis and Geodynamic Implications of Miocene Felsic Magmatic Rocks in the Wuyu Basin, Southern Gangdese Belt, Qinghai-Tibet Plateau" Minerals 11, no. 6: 655. https://doi.org/10.3390/min11060655
APA StyleChen, H., Hou, M., Xiong, F., Tang, H., & Shao, G. (2021). Petrogenesis and Geodynamic Implications of Miocene Felsic Magmatic Rocks in the Wuyu Basin, Southern Gangdese Belt, Qinghai-Tibet Plateau. Minerals, 11(6), 655. https://doi.org/10.3390/min11060655