Development of a New Solver to Model the Fish-Hook Effect in a Centrifugal Classifier
Abstract
:1. Introduction
2. Materials and Methods
2.1. Apparatus Description
2.2. Numerical Methodology
2.2.1. Governing Equations
2.2.2. Simulation Conditions
3. Results
3.1. General Flow Profile in Classifier
3.2. Particle Movement in Classifier
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CFD | Computational Fluid Dynamics |
DPM | Discrete Phase Model |
MP-PIC | Multiphase particle-in-cell |
MRF | Multi-frame of reference |
RANS | Reynolds-averaged Navier–Stokes |
References
- Shapiro, M.; Galperin, V. Air classification of solid particles: A review. Chem. Eng. Process 2005, 44, 279–285. [Google Scholar] [CrossRef]
- Batalović, V. Centrifugal separator, the new technical solution, application in mineral processing. Int. J. Miner. Process 2011, 100, 86–95. [Google Scholar] [CrossRef]
- Johansen, S.T.; de Silva, S.R. Some considerations regarding optimum flow fields for centrifugal air classification. Int. J. Miner. Process 1996, 44–45, 703–721. [Google Scholar] [CrossRef]
- Wang, X.; Ge, X.; Zhao, X.; Wang, Z. A model for performance of the centrifugal countercurrent air classifier. Powder Technol. 1998, 98, 171–176. [Google Scholar] [CrossRef]
- Galk, J.; Peukert, W.; Krahnen, J. Industrial classification in a new impeller wheel classifier. Powder Technol. 1999, 105, 186–189. [Google Scholar] [CrossRef]
- Leschonski, K. Classification of particles in the submicron range in an impeller wheel air classifier. KONA Powder Part. J. 1996, 14, 52–60. [Google Scholar] [CrossRef] [Green Version]
- Guizani, R.; Mhiri, H.; Bournot, P. Effects of the geometry of fine powder outlet on pressure drop and separation performances for dynamic separators. Powder Technol. 2017, 314, 599–607. [Google Scholar] [CrossRef]
- Xing, W.; Wang, Y.; Zhang, Y.; Yamane, Y.; Saga, M.; Lu, J.; Zhang, H.; Jin, Y. Experimental study on velocity field between two adjacent blades and gas-solid separation of a turbo air classifier. Powder Technol. 2015, 286, 240–245. [Google Scholar] [CrossRef]
- Ren, W.; Liu, J.; Yu, Y. Design of a rotor cage with non-radial arc blades for turbo air classifiers. Powder Technol. 2016, 292, 46–53. [Google Scholar] [CrossRef]
- Liu, R.; Liu, J.; Yuan, Y. Effects of axial inclined guide vanes on a turbo air classifier. Powder Technol. 2015, 280, 1–9. [Google Scholar] [CrossRef]
- Yu, Y.; Ren, W.; Liu, J. A new volute design method for the turbo air classifier. Powder Technol. 2019, 348, 65–69. [Google Scholar] [CrossRef]
- Sun, Z.; Sun, G.; Yang, X.; Yan, S. Effect of vertical vortex direction on flow field and performance of horizontal turbo air classifier. Chem. Ind. Eng. Prog. 2017, 36, 2045–2050. [Google Scholar] [CrossRef]
- Sun, Z.; Sun, G.; Xu, J. Effect of deflector on classification performance of horizontal turbo classifier. China Powder Sci. Technol. 2016, 22, 6–10. [Google Scholar]
- Kaczynski, J.; Kraft, M. Numerical Investigation of a particle seperation in a centrifugal air separator. Trans. Inst. Fluid-Flow Mach. 2017, 135, 57–71. [Google Scholar]
- Nagaswararo, K.; Medronho, R.A. Fish hook effect in centrifugal classifiers—A further analysis. Int. J. Miner. Process. 2014, 132, 43–58. [Google Scholar] [CrossRef]
- Neesse, T.; Dueck, J.; Minkov, L. Separation of finest particles in hydrocyclones. Miner. Eng. 2004, 17, 689–696. [Google Scholar] [CrossRef]
- Eswaraiah, C.; Angadi, S.I.; Mishra, B.K. Mechanism of particle separation and analysis of fish-hook phenomenon in a circulating air classifier. Powder Technol. 2012, 218, 57–63. [Google Scholar] [CrossRef]
- Guizani, R.; Mokni, I.; Mhiri, H.; Bournot, P. CFD modeling and analysis of the fish-hook effect on the rotor separator’s efficiency. Powder Technol. 2014, 264, 149–157. [Google Scholar] [CrossRef]
- Barimani, M.; Green, S.; Rogak, S. Particulate concentration distribution in centrifugal air classifiers. Miner Eng. 2018, 126, 44–51. [Google Scholar] [CrossRef]
- Caliskan, U.; Miskovic, S. A chimera approach for MP-PIC simulations of dense particulate flows using large parcel size relative to the computational cell size. Chem. Eng. J. Adv. 2021, 5, 100054. [Google Scholar] [CrossRef]
- Andrews, M.; O’Rourke, P.J. The multiphase particle-in-cell (MP-PIC) method for dense particulate flows. Int. J. Multiph. Flow 1996, 22, 379–402. [Google Scholar] [CrossRef]
- Harris, S.E.; Crighton, D.G. Solitons, solitary waves, and voidage disturbances in gas-fluidized beds. J. Fluid Mech. 1994, 266, 243–276. [Google Scholar] [CrossRef]
- Snider, D. An incompressible three-dimensional multiphase particle-in-cell model for dense particle flows. J. Comput. Phys. 2001, 170, 523–549. [Google Scholar] [CrossRef]
- O’Rourke, P.J.; Snider, D.M. An improved collision damping time for MP-PIC calculations of dense particle flows with applications to polydisperse sedimenting beds and colliding particle jets. Chem. Eng. Sci. 2010, 65, 6014–6028. [Google Scholar] [CrossRef]
- O’Rourke, P.J.; Snider, D.M. Inclusion of collisional return-to-isotropy in the MP-PIC method. Chem. Eng. Sci. 2012, 80, 39–54. [Google Scholar] [CrossRef]
- Ergun, S. Fluid flow through packed columns. Chem. Eng. Prog. 1952, 48, 89–94. [Google Scholar] [CrossRef]
- Wen, C.; Yu, Y.H. Mechanics of fluidization. Chem. Eng. Prog. Symp. Ser. 1966, 100–111. [Google Scholar]
- Tan, S.K.; Tang, A.T.H.; Leung, W.K.; Zwahlen, R.A. Three-Dimensional Pharyngeal Airway Changes After 2-Jaw OrthognathicSurgery with Segmentation in Dento-Skeletal Class III Patients. J. Craniofacial Surg. 2019, 30, 1533–1538. [Google Scholar] [CrossRef] [PubMed]
- Adamčík, M. Limit Modes of Particulate Materials Classifiers. Ph.D. Thesis, Brno University of Technology, Brno, Czechia, 2017. [Google Scholar]
Property | Unit | Size |
---|---|---|
material | - | dolomite |
density material | kg/m3 | 2860 |
median diameter material | m | 105 |
solid mass flow | kg/h | 2000–4000 |
air volume flow | m3/h | 3000 |
temperature air | °C | 50 |
classifier speed | rpm | 0–900 |
classifier diameter | m | 0.32 |
number of classifier blades | - | 36 |
Model | Name | Unit | Size |
---|---|---|---|
Explicit Packing Model Harris and Crighton | solid pressure constant | - | 8 |
empirical constant β | - | 2 | |
volume fraction of the dispersed phase at close packing | - | 0.6 | |
empirical constant ε | - | 0.00001 | |
Isotropy Model | volume fraction of the dispersed phase at close packing | - | 0.6 |
empirical constant ε | - | 0.9 | |
Restitution coefficient Particle wall collision | elasticity coefficient | - | 0.92 |
restitution coefficient | - | 0.1 |
Grid | Number of Elements | Pressure Loss in Simulation in Pa | Standard Deviation to Experiment in % |
---|---|---|---|
Coarse grid | 117k | 1240 | 18.5 |
Medium grid | 304k | 1408 | 7.5 |
Fine grid | 784k | 1417 | 7.0 |
Classifier Speed in rpm | Experimental | New Method with MPPIC | “Old” Method without Particle-Particle Interaction | |||
---|---|---|---|---|---|---|
d50 in µm | κ | d50 in µm | κ | d50 in µm | κ | |
300 | 150 | 0.41 | 131 | 0.56 | 133 | 0.59 |
600 | 60 | 0.49 | 56 | 0.66 | 55 | 0.69 |
900 | 39 | 0.61 | 38 | 0.69 | 38 | 0.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Betz, M.; Nirschl, H.; Gleiss, M. Development of a New Solver to Model the Fish-Hook Effect in a Centrifugal Classifier. Minerals 2021, 11, 663. https://doi.org/10.3390/min11070663
Betz M, Nirschl H, Gleiss M. Development of a New Solver to Model the Fish-Hook Effect in a Centrifugal Classifier. Minerals. 2021; 11(7):663. https://doi.org/10.3390/min11070663
Chicago/Turabian StyleBetz, Michael, Hermann Nirschl, and Marco Gleiss. 2021. "Development of a New Solver to Model the Fish-Hook Effect in a Centrifugal Classifier" Minerals 11, no. 7: 663. https://doi.org/10.3390/min11070663
APA StyleBetz, M., Nirschl, H., & Gleiss, M. (2021). Development of a New Solver to Model the Fish-Hook Effect in a Centrifugal Classifier. Minerals, 11(7), 663. https://doi.org/10.3390/min11070663