Differentiation of Trace Metal Contamination Level between Different Urban Functional Zones in Permafrost Affected Soils (the Example of Several Cities in the Yamal Region, Russian Arctic)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Locations and Their Anthropogenic Load
- —
- Salekhard—settlement foundation ~1595, town status 1938, total area 84.5 km2, population 51 thous. (2020), capital city of the Yamalo-Nenets Autonomous Okrug, chromite deposits, oil and gas industry;
- —
- Nadym—settlement foundation ~1597, town status 1972, total area 99.8 km2, population 45 thous. (2020), oil and gas industry;
- —
- Novy Urengoy—construction of a research station 1966, town status 1980, total area 111 km2, population 118 thous. (2020), oil and gas industry;
- —
- Gaz Sale—settlement, from 2025 will be included in Tazovskiy municipal area, total area 0.03 km2, population 1721 (2019), oil and gas industry;
- —
- Urengoy—construction of the geological station 1966, town status 1979, total area 2.8 km2, population 10 thous. (2020), oil and gas industry.
2.2. Sampling Strategy
2.3. Chemical Analyses and Data Processing
2.4. Variance Analysis and Data Visualization
3. Results and discussion
3.1. Bedrock Material
3.2. Main Soil Properties
3.3. Trace Metals Content
3.4. Multivariate Analysis of Variance and Correlation Analysis
3.5. Qualitative Assessment of Soil Contamination by Trace Metals
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The United Nations. The World’s Cities in 2018. Department of Economic and Social Affairs, Population Division, World Urban. Prospect; The United Nations: New York, NY, USA, 2018; pp. 1–34. [Google Scholar]
- Zamyatina, N.; Goncharov, R. Arctic urbanization: Tesilience in a condition of permanent instability—The case of Russian Arctic cities. In Resilience and Urban Disasters; Edward Elgar Publishing: Northampton, MA, USA, 2019. [Google Scholar]
- Moskalenko, N. Anthropogenic Changes of Ecosystems in the West-Siberian Gas Province; RAS Siberian Branch: Earth’s Cryosphere Institute Press: Novosibirsk, Russia, 2005; p. 357. ISBN 5-85941-131-6. (In Russian) [Google Scholar]
- Alekseev, V. Istoriia Iamala. Hist. Yamal 2010, 1, 420. (In Russian) [Google Scholar]
- Detter, G.F. Models for development of resources and territories of the Yamal-Nenets Autonomous District 1. Arkhangelsk Russ. 2017, 26, 89. [Google Scholar] [CrossRef]
- Agranat, G. Regional Problems of Research and Development of the North. Soviet Geogr. 1974, 15, 95–109. (In Russian) [Google Scholar] [CrossRef]
- Slavin, S.; Severa, O. The Development of the North; Moscow: Moscow, Russia, 1975; 198p. (In Russian) [Google Scholar]
- Maximova, D. Sustainable Development of the Russian Arctic Zone: Challenges & Opportunities. Arctic Yearbook 2018. 2018. Available online: https://arcticyearbook.com/images/yearbook/2018/Scholarly_Papers/21_AY2018_Maximova.pdf (accessed on 24 May 2021).
- Hardoy, J.E.; Mitlin, D.; Satterthwaite, D. Environmental Problems in an Urbanizing World: Finding Solutions in Cities in Africa, Asia and Latin America; Routledge: London, UK, 2019. [Google Scholar]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Xiang, W.-N.; Zhao, J. Urban ecology in China: Historical developments and future directions. Landsc. Urban Plan. 2014, 125, 222–233. [Google Scholar] [CrossRef]
- Sukopp, H. Urban Ecology—Scientific and Practical Aspects; Springer: Berlin, Germany, 1998; pp. 3–16. [Google Scholar] [CrossRef]
- Charzyński, P.; Hulisz, P.; Bednarek, R.M. Technogenic Soils of Poland; Polish Society of Soil Science Torun: Torun, Poland, 2013. [Google Scholar]
- Vasenev, V.; Dovletyarova, E.; Cheng, Z.; Prokof’eva, T.V.; Morel, J.L.; Ananyeva, N.D. Urbanization: Challenge and Opportunity for Soil Functions and Ecosystem Services. In Proceedings of the 9th SUITMA Congress, Moscow, Russia, 7–22 May 2018. [Google Scholar]
- Dutta, K.; Schuur, E.; Neff, J.; Zimov, S. Potential carbon release from permafrost soils of Northeastern Siberia. Glob. Chang. Biol. 2006, 12, 2336–2351. [Google Scholar] [CrossRef]
- Vasiliev, A.A.; Drozdov, D.S.; Gravis, A.G.; Malkova, G.V.; Nyland, K.E.; Streletskiy, D.A. Permafrost degradation in the western Russian arctic. Environ. Res. Lett. 2020, 15, 045001. [Google Scholar] [CrossRef]
- Stolbovoi, V.; Savin, I.; Sheremet, B.; Kolesnikova, L.; Gradusov, B.; Rojkov, V.; Shishov, L.; Sizov, V. Land Resources of Russia; National Snow and Ice Data Center: Boulder, CO, USA, 2002. [Google Scholar]
- Zubrzycki, S.; Kutzbach, L.; Pfeiffer, E.-M. Permafrost-affected soils and their carbon pools with a focus on the Russian Arctic. Solid Earth 2014, 5, 595–609. [Google Scholar] [CrossRef] [Green Version]
- Greinert, A. Functions of Soils in the Urban Environment. Soils within Cities. Global Approaches to their Sustainable Management; Schweizerbat Science Publishers: Stuttgart, Germany, 2017; pp. 43–52. [Google Scholar]
- Greinert, A. The heterogeneity of urban soils in the light of their properties. J. Soils Sediments 2015, 15, 1725–1737. [Google Scholar] [CrossRef] [Green Version]
- Kostecki, J.; Greinert, A.; Wasylewicz, R.; Adam, R.; Garbera, B.; Knap, P.; Ostapkowicz, M.; Stanisławiak, B. Spatial distribution of heavy metals in the topsoil on roundabouts in Zielona Góra, Poland. Environ. Prot. Nat. Resour. 2015, 26, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Greinert, A. Studies of Soils in the Zielona Góra Urban Area; Oficyna Wydawnicza Uniwersytetu Zielonogórskiego: Zielona Góra, Poland, 2003; p. 168. (In Polish) [Google Scholar]
- Greinert, A.; Kostecki, J. Anthropogenic materials as bedrock of Urban Technosols. In Proceedings of the International Congress on Soils of Urban, Industrial, Traffic, Mining and Military Areas, Moscow, Russia, 21–26 May 2017; pp. 11–20. [Google Scholar]
- Dube, A.; Zbytniewski, R.; Kowalkowski, T.; Cukrowska, E.; Buszewski, B. Adsorption and migration of heavy metals in soil. Pol. J. Environ. Stud. 2001, 10, 1–10. [Google Scholar]
- Yu, S.; Li, X.D. Distribution, availability, and sources of trace metals in different particle size fractions of urban soils in Hong Kong: Implications for assessing the risk to human health. Environ. Pollut. 2011, 159, 1317–1326. [Google Scholar]
- Ji, X.; Abakumov, E.; Polyakov, V. Assessments of pollution status and human health risk of heavy metals in permafrost-affected soils and lichens: A case-study in Yamal Peninsula, Russia Arctic. Hum. Ecol. Risk Assess. 2019, 25, 2142–2159. [Google Scholar] [CrossRef]
- Perevozchikov, B.; Kenig, V.; Lukin, A.; Ovechkin, A. Chromites of the Rai-Iz Massif in the polar urals (Russia). Geol. Ore Depos. 2005, 47, 206–222. [Google Scholar]
- Gordeev, V. Pollution of the Arctic. Reg. Environ. Chang. 2002, 3, 88–98. [Google Scholar] [CrossRef]
- Sidorchuk, A.; Grigorev, V. Soil erosion on the Yamal Peninsula (Russian Arctic) due to gas field exploitation. Adv. GeoEcology 1998, 31, 805–812. [Google Scholar]
- Newman, P. The environmental impact of cities. Environ. Urban. 2006, 18, 275–295. [Google Scholar] [CrossRef]
- FAO. World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Report; FAO Publications: Rome, Italy, 2014; Volume 106, p. 106. [Google Scholar]
- Black, C.A.; Evans, D.; White, J. Methods of Soil Analysis: Chemical and Microbiological Properties; American Society of Agronomy, Madison Inc.: Madison, WI, USA, 1965. [Google Scholar]
- Jenkinson, D.S.; Powlson, D.S. The effects of biocidal treatments on metabolism in soil—V: A method for measuring soil biomass. Soil Biol. Biochem. 1976, 8, 209–213. [Google Scholar] [CrossRef]
- ISO. Soil Quality–Determination of Cadmium, Chromium, Cobalt, Copper, Lead, Nickel and Zinc in Aqua Regia Extracts of Soil-Flame and Electrothermal Atomic Absorption Spectrometric Methods; German Institute for Standardization: Berlin, Germany, 1998. [Google Scholar]
- Jiang, F.; Ren, B.; Hursthouse, A.; Deng, R.; Wang, Z. Distribution, source identification, and ecological-health risks of potentially toxic elements (PTEs) in soil of thallium mine area (southwestern Guizhou, China). Environ. Sci. Pollut. Res. 2019, 26, 16556–16567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kowalska, J.B.; Mazurek, R.; Gąsiorek, M.; Zaleski, T. Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination—A review. Environ. Geochem. Health 2018, 40, 2395–2420. [Google Scholar] [CrossRef] [Green Version]
- Varol, M. Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. J. Hazard. Mater. 2011, 195, 355–364. [Google Scholar] [CrossRef]
- Chernova, O.; Beketskaya, O. Permissible and background concentrations of pollutants in environmental regulation (heavy metals and other chemical elements). Eurasian Soil Sci. 2011, 44, 1008–1017. [Google Scholar] [CrossRef]
- Moskovchenko, D.; Shamilishvilly, G.; Abakumov, E. Soil Biogeochemical Features of Nadym-Purovskiy Province (Western Siberia), Russia. Ecol. Balk. 2019, 11, 113–126. [Google Scholar]
- Gerasimova, A.S.; Polyakov, S.S.; Sergiev, V.I.; Trofimov, V.T. Engineering-Geological Map of the West Siberian Lowland; Nedra: Moscow, Russia, 1968. [Google Scholar]
- Arkhipov, S.; Isayeva, L.; Bespaly, V.; Glushkova, O. Glaciation of Siberia and north-east USSR. Quat. Sci. Rev. 1986, 5, 463–474. [Google Scholar] [CrossRef]
- Alekseev, I.; Abakumov, E. Permafrost-affected former agricultural soils of the Salekhard city (Central part of Yamal region). Czech Polar Rep. 2018, 8, 119–131. [Google Scholar] [CrossRef]
- Moskovchenko, D.; Kurchatova, A.; Fefilov, N.; Yurtaev, A. Concentrations of trace elements and iron in the Arctic soils of Belyi Island (the Kara Sea, Russia): Patterns of variation across landscapes. Environ. Monit. Assess. 2017, 189, 210. [Google Scholar] [CrossRef] [PubMed]
- Czarnowska, K. Total content of heavy metals in parent rocks as reference background levels of soils. Soil Sci. Annu. 1996, 47, 43–50. [Google Scholar]
- Jim, C.Y. Soil characteristics and management in an urban park in Hong Kong. Environ. Manag. 1998, 22, 683–695. [Google Scholar] [CrossRef] [PubMed]
- Hulisz, P.; Charzyński, P.; Greinert, A. Urban soil resources of medium-sized cities in Poland: A comparative case study of Toruń and Zielona Góra. J. Soils Sediments 2018, 18, 358–372. [Google Scholar] [CrossRef] [Green Version]
- Huot, H.; Simonnot, M.-O.; Marion, P.; Yvon, J.; De Donato, P.; Morel, J.-L. Characteristics and potential pedogenetic processes of a Technosol developing on iron industry deposits. J. Soils Sediments 2013, 13, 555–568. [Google Scholar] [CrossRef] [Green Version]
- Nehls, T.; Rokia, S.; Mekiffer, B.; Schwartz, C.; Wessolek, G. Contribution of bricks to urban soil properties. J. Soils Sediments 2013, 13, 575–584. [Google Scholar] [CrossRef]
- Huot, H.; Simonnot, M.-O.; Morel, J.L. Pedogenetic trends in soils formed in technogenic parent materials. Soil Sci. 2015, 180, 182–192. [Google Scholar] [CrossRef] [Green Version]
- Ji, X.; Abakumov, E.; Antcibor, I.; Tomashunas, V.; Knoblauch, C.; Zubzycki, S.; Pfeiffer, E.-M. Influence of anthropogenic activities on metals in arctic permafrost: A characterization of benchmark soils on the Yamal and Gydan peninsulas in Russia. Arch. Environ. Contam. Toxicol. 2019, 76, 540–553. [Google Scholar] [CrossRef] [PubMed]
- Alekseev, I.; Shamilishvilly, G.; Abakumov, E. Content of trace elements in selected permafrost-affected soils of Yamal region with different functional load. Polarforschung 2019, 88, 125–133. [Google Scholar]
- Alekseev, I.; Abakumov, E.; Petrova, A.; Vorona-Slivinskaya, L. Evaluation of the Ecotoxicological State of Selected Soils from Urban Environments of Russian Arctic with the Aim to Substantiate Reclamation and Restoration Strategies. In Proceedings of the MATEC Web of Conferences, St. Petersburg, Russia, 20–22 December 2018; p. 04001. [Google Scholar]
- Loiko, S.; Raudina, T.; Lim, A.; Kuzmina, D.; Kulizhskiy, S.; Pokrovsky, O. Microtopography controls of carbon and related elements distribution in the west siberian frozen bogs. Geosciences 2019, 9, 291. [Google Scholar] [CrossRef] [Green Version]
- Matyshak, G.V.; Goncharova, O.Y.; Moskalenko, N.G.; Walker, D.A.; Epstein, H.E.; Shur, Y. Contrasting Soil Thermal Regimes in the Forest-Tundra Transition Near Nadym, West Siberia, Russia. Permafr. Periglac. Process. 2017, 28, 108–118. [Google Scholar] [CrossRef]
- Vasil’evskaya, V. Soil Formation in the Western Siberian Tundras; USSR: Moscow, Russia, 1980. (In Russian) [Google Scholar]
- Polyakov, V.; Kozlov, A.; Suleymanov, A.; Abakumov, E. Soil pollution status of urban soils in St. Petersburg city, North-west of Russia. Soil Water Res. 2021. [Google Scholar] [CrossRef]
- Radomskaya, V.; Borodina, N. Assessment of anthropogenic contamination in an urban territory by the example of Blagoveshchensk city. Геoэкoлoгия. Инженерная геoлoгия. Гидрoгеoлoгия. Геoкриoлoгия 2019, 6, 79–93. (In Russian) [Google Scholar] [CrossRef] [Green Version]
- Strauss, J.; Schirrmeister, L.; Mangelsdorf, K.; Eichhorn, L.; Wetterich, S.; Herzschuh, U. Organic-matter quality of deep permafrost carbon–a study from Arctic Siberia. Biogeosciences 2015, 12, 2227–2245. [Google Scholar] [CrossRef] [Green Version]
- Walthert, L.; Zimmermann, S.; Blaser, P.; Luster, J.; Lüscher, P. Waldb öden der Schweiz, Band 1, Grundlagen und Region Jura; Swiss Federal Research Institute: Davos, Switzerland, 2004; p. 76. [Google Scholar]
- Vasil’chuk, Y.K.; Belik, A.D.; Vasil’chuk, A.C.; Budancteva, N.A.; Vasil’chuk, J.Y.; Ginzburg, A.P.; Bludushkina, L.B. Variations of the composition of pahs and the ratio of carbon and nitrogen in the soils of Batagaika thermoerosive carter in Northern Yakutia. Арктика и Антарктика 2020, 3, 100–114. (In Russian) [Google Scholar] [CrossRef]
- Gorbov, S.; Bezuglova, O. Specific features of organic matter in urban soils of Rostov-on-Don. Eurasian Soil Sci. 2014, 47, 792–800. [Google Scholar] [CrossRef]
- Lorenz, K.; Kandeler, E. Biochemical characterization of urban soil profiles from Stuttgart, Germany. Soil Biol. Biochem. 2005, 37, 1373–1385. [Google Scholar] [CrossRef]
- Sverdrup, L.E.; Nielsen, T.; Krogh, P.H. Soil ecotoxicity of polycyclic aromatic hydrocarbons in relation to soil sorption, lipophilicity, and water solubility. Environ. Sci. Technol. 2002, 36, 2429–2435. [Google Scholar] [CrossRef]
- Christensen, T.H. Cadmium soil sorption at low concentrations: VIII. Correlation with soil parameters. Water Air Soil Pollut. 1989, 44, 71–82. [Google Scholar] [CrossRef]
- Timofeev, I.; Kosheleva, N.; Kasimov, N. Contamination of soils by potentially toxic elements in the impact zone of tungsten-molybdenum ore mine in the Baikal region: A survey and risk assessment. Sci. Total Environ. 2018, 642, 63–76. [Google Scholar] [CrossRef]
- Targulian, V.O.; Goryachkin, S.V. Soil memory: Types of record, carriers, hierarchy and diversity. Rev. Mex. Cienc. Geológicas 2004, 21, 1–8. [Google Scholar]
- Krauss, M.; Wilcke, W. Sorption strength of persistent organic pollutants in particle-size fractions of urban soils. Soil Sci. Soc. Am. J. 2002, 66, 430–437. [Google Scholar] [CrossRef]
- Merdy, P.; Gharbi, L.T.; Lucas, Y. Pb, Cu and Cr interactions with soil: Sorption experiments and modelling. Colloids Surf. A Physicochem. Eng. Asp. 2009, 347, 192–199. [Google Scholar] [CrossRef]
- Pignatello, J.J. Sorption dynamics of organic compounds in soils and sediments. React. Mov. Org. Chem. Soils 1989, 22, 45–80. [Google Scholar]
- Gupta, S.K.; Chen, K.Y. Partitioning of trace metals in selective chemical fractions of nearshore sediments. Environ. Lett. 1975, 10, 129–158. [Google Scholar] [CrossRef]
- Lavado, R.; Rodriguez, M.; Scheiner, J.; Taboada, M.; Rubio, G.; Alvarez, R.; Alconada, M.; Zubillaga, M. Heavy metals in soils of Argentina: Comparison between urban and agricultural soils. Commun. Soil Sci. Plant Anal. 1998, 29, 1913–1917. [Google Scholar] [CrossRef]
- Markiewicz-Patkowska, J.; Hursthouse, A.; Przybyla-Kij, H. The interaction of heavy metals with urban soils: Sorption behaviour of Cd, Cu, Cr, Pb and Zn with a typical mixed brownfield deposit. Environ. Int. 2005, 31, 513–521. [Google Scholar] [CrossRef]
- Ross, S.M. Toxic Metals in Soil-Plant Systems; Wiley and Sons: New York, NY, USA, 1994. [Google Scholar]
- Yang, Q.; Li, Z.; Lu, X.; Duan, Q.; Huang, L.; Bi, J. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Sci. Total Environ. 2018, 642, 690–700. [Google Scholar] [CrossRef] [PubMed]
- Chary, N.S.; Kamala, C.; Raj, D.S.S. Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotoxicol. Environ. Saf. 2008, 69, 513–524. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.K.; Agrawal, M. Biological effects of heavy metals: An overview. J. Environ. Biol. 2005, 26, 301–313. [Google Scholar]
- Mohammed, A.S.; Kapri, A.; Goel, R. Heavy Metal Pollution: Source, Impact, and Remedies; Springer: Berlin, Germany, 2011; pp. 1–28. [Google Scholar]
- Duruibe, J.O.; Ogwuegbu, M.; Egwurugwu, J. Heavy metal pollution and human biotoxic effects. Int. J. Phys. Sci. 2007, 2, 112–118. [Google Scholar]
- Karim, Z.; Qureshi, B.A.; Mumtaz, M.; Qureshi, S. Heavy metal content in urban soils as an indicator of anthropogenic and natural influences on landscape of Karachi—A multivariate spatio-temporal analysis. Ecol. Indic. 2014, 42, 20–31. [Google Scholar] [CrossRef]
- Sokolov, I. Theoretical Problems of Genetic Pedology; Gumanitarnye Nauki: Novosibirsk, Russia, 2004. (In Russian) [Google Scholar]
- Galasso, J.L.; Siegel, F.R.; Kravitz, J.H. Heavy metals in eight 1965 cores from the Novaya Zemlya Trough, Kara Sea, Russian Arctic. Mar. Pollut. Bull. 2000, 40, 839–852. [Google Scholar] [CrossRef]
- Alekseev, I.; Abakumov, E.; Shamilishvili, G. Heavy Metals in Urban Soils of the Yamal Region. In Proceedings of the International Conference on Landscape Architecture to Support City Sustainable Development, Moscow, Russia, 12–14 September 2016; pp. 51–56. [Google Scholar]
- Zhurba, O.; Rukavishnikov, V.; Merinov, A.; Alekseyenko, A. The content of petroleum products, benzo (a) pyrene and heavy metals in soils of yamalnenets autonomous district and heavy metals in the hair of children. Gig. Sanit. 2016, 95, 521–524. [Google Scholar] [CrossRef]
- Sviridenko, S.P.; Pieterskih, A.S. Soil cover ecological condition on the yanao priuralsky area territory. Bull. KrasSAU 2012, 4, 67–79. [Google Scholar]
- Kukushkin, S.Y.; Opekunova, M.G.; Opekunov, A.Y.; Arestova, I.Y. Heavy metals in soils of the Nadym-Pur-Taz region. In Proceedings of the International Scientific-Practical Conference Dedicated to the 85th Anniversary of the Belarusian State University Department of Soil Science and the 80th anniversary of Doctor of Geographical Sciences, Minsk, Belarus, 20–23 September 2018; pp. 258–262. [Google Scholar]
City | Functional Zone | N | E | Site Description | Soil Name [31] |
---|---|---|---|---|---|
Urengoy | Mature | 65.972778 | 78.420278 | Tundra, 300 m from the road | Histic Podzol |
Residential | 65.964722 | 78.373333 | City, central part, near with school, residential courtyard, interquarter passage | Urbic Technosol | |
Park | 65.958889 | 78.366389 | Park, near church, square, parking, hospital | Urbic Technosol | |
Industrial | 65.969444 | 78.365 | Old repair base, many hangars, construction debris, former storage facilities, destroyed foundation | Urbic Technosol | |
Gaz Sale | Mature | 67.348333 | 79.016389 | Tundra, 150 m from the road | Histic Cryosol |
Industrial | 67.361111 | 78.990556 | Repair and storage base, on the watershed. | Urbic Technosol | |
Park | 67.366389 | 79.006111 | Park, square, next to the monument, near natural forests | Urbic Technosol | |
Industrial | 67.362222 | 79.005278 | In a residential yard, near wasteland, houses, road | Urbic Technosol | |
Salekhard | Mature | 66.572389 | 66.59875 | Tundra, vicinities of Salekhard | Histic Podzol |
Park | 66.523611 | 66.59166 | Angalskiy cape | Urbic Technosol | |
Industrial | 66.518055 | 66.65583 | Central park | Urbic Technosol | |
Residential | 66.569111 | 66.57180 | Sandlot | Urbic Technosol | |
Novy Urengoy | Mature | 66.077444 | 76.47794 | Mature tundra, pinus foreststand | Podzol |
Park | 66.110944 | 76.671917 | Northern part of city | Andic Podzol | |
Residential | 66.110944 | 76.671917 | Greening zone in residential block | Urbic Technosol | |
Industrial | 66.074694 | 76.587306 | On the way to new airport | Urbic Technosol | |
Nadym | Mature | 65.503889 | 72.648972 | Pine tundra stand on the way to airport | Histic Cryosol |
Park | 65.533944 | 72.521972 | Kozlova park (larch plantation) | Histic Cryosol | |
Industrial | 65.503889 | 72.548972 | M-Video block | Urbic Technosol | |
Residential | 65.548333 | 72.523389 | Topchevo residential block | Urbic Technosol |
Igeo | PI | PLI | |||
---|---|---|---|---|---|
Value | Soil Quality | Value | Soil Pollution | Value | Pollution Status |
Igeo < 0 | Unpolluted | PI < 1 | Absent | <1 | Denote perfection |
0 ≤ Igeo ≤ 1 | Unpolluted to moderately polluted | 1 < PI < 2 | Low | 1 | Only baseline levels of pollution |
1 ≤ Igeo ≤ 2 | Moderately polluted | 2 < PI < 3 | Moderate | >1 | Deterioration of soil quality |
2 ≤ Igeo ≤ 3 | Moderately to highly polluted | 3 < PI < 5 | Strong | ||
3 ≤ Igeo ≤ 4 | Highly polluted | PI > 5 | Very strong | ||
4 ≤ Igeo ≤ 5 | Highly to extremely high polluted | ||||
Igeo > 5 | Extremely high polluted |
Location | Pb | Cr | Cu | As | Ni | Zn | Cd | References |
---|---|---|---|---|---|---|---|---|
Pristine soils | ||||||||
Beliy Island | 5 | - | 4.77 | - | 10.97 | 13.52 | 0.13 | [50] |
0.5 | 23.5 | 2.9 | - | - | 20.9 | 0.8 | [39] | |
Gydan Peninsula | 14.85 | - | - | 18.2 | - | 92.45 | 0.07 | [50] |
5.96 | - | - | 3.18 | - | 31.06 | 0.12 | ||
4.14 | - | - | 0.74 | - | 36.43 | 0.1 | ||
Vicinities of Yar-Sale village | 1.5 | 3.1 | 2 | - | - | 4 | - | [83] |
The Floodplain of the River Poluy | 15 | 20.1 | 6.7 | - | 17.8 | 16.2 | 0.52 | [84] |
Anthropogenic affected and urban soils | ||||||||
Kharsaim | 36 | - | 11 | 2.6 | - | - | 0.39 | [82] |
2.3 | - | 1.6 | 0.8 | - | - | 0.10 | ||
Aksarka | 4.0 | - | 3.8 | 2.1 | - | - | 0.14 | |
10 | - | 5.5 | 2.4 | - | - | 0.20 | ||
Salekhard | 8.9 | - | 7.1 | 2.9 | - | - | 0.25 | |
6.2 | - | 6.3 | 3.0 | - | - | 0.27 | ||
Kharp | 7.9 | - | 73 | 2.7 | - | - | 0.24 | |
4.2 | - | 74 | 1.4 | - | - | 0.10 | ||
Labytnangi | 9.1 | - | 9.0 | 2.8 | - | - | 0.26 | |
6.2 | - | 6.2 | 2.4 | - | - | 0.14 | ||
9.5 | - | 9.5 | 3.1 | - | - | 0.16 | ||
Yar-Sale village | 1.5 | 1.7 | 2.1 | - | - | 3.7 | - | [83] |
1.8 | 2.1 | 2.8 | - | - | 32 | - | ||
1.8 | 1.0 | 2.4 | - | - | 3.1 | - | ||
1.8 | 1.2 | 2.4 | - | - | 2.2 | - | ||
1.7 | 3.2 | 2.4 | - | - | 4.6 | - | ||
1.3 | 2.8 | 2.0 | - | - | 4.2 | - | ||
1.6 | 2.2 | 2.1 | - | - | 7.2 | - | ||
Novy Urengoy | 10 | 18 | 9 | - | 13 | 32 | - | [85] |
Effect | df | F | p |
---|---|---|---|
City | 28 | 6.46 | <0.0001 |
Functional zone | 21 | 1.27 | 0.22 |
City × functional zone | 84 | 1.26 | 0.10 |
Effect | df | Pb | Cr | Cu | Cd | ||||
F | p | F | p | F | p | F | p | ||
City | 4 | 4.43 | 0.01 | 11.44 | <0.0001 | 1.55 | 0.21 | 0.86 | 0.50 |
Functional zone | 3 | 0.35 | 0.79 | 0.51 | 0.68 | 0.55 | 0.65 | 1.34 | 0.28 |
City × functional zone | 12 | 0.22 | 1.00 | 0.28 | 0.99 | 0.59 | 0.84 | 0.23 | 0.99 |
Effect | df | Ni | Zn | As | |||||
F | p | F | p | F | p | ||||
City | 4 | 6.04 | 0.001 | 0.48 | 0.75 | 4.03 | 0.01 | ||
Functional zone | 3 | 0.77 | 0.52 | 0.68 | 0.57 | 1.19 | 0.33 | ||
City × functional zone | 12 | 0.83 | 0.62 | 0.86 | 0.60 | 0.39 | 0.96 |
C | N | pH H2O | pHCaCl2 | BR | Pb | Cr | Cu | Cd | Ni | Zn | As | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
C | 1.00 | 0.97 | −0.42 | −0.46 | 0.06 | 0.45 | 0.37 | 0.19 | 0.22 | 0.30 | 0.44 | 0.61 |
N | 1.00 | −0.47 | −0.51 | 0.07 | 0.43 | 0.39 | 0.15 | 0.19 | 0.31 | 0.42 | 0.62 | |
pH H2O | 1.00 | 0.97 | −0.15 | −0.20 | −0.21 | 0.10 | 0.23 | −0.07 | −0.13 | −0.42 | ||
pH CaCl2 | 1.00 | −0.10 | −0.25 | −0.26 | 0.07 | 0.17 | −0.12 | −0.17 | −0.47 | |||
BR | 1.00 | 0.06 | 0.01 | 0.12 | −0.02 | −0.07 | 0.14 | −0.02 | ||||
Pb | 1.00 | 0.57 | 0.41 | 0.23 | 0.56 | 0.75 | 0.54 | |||||
Cr | 1.00 | 0.42 | −0.08 | 0.92 | 0.77 | 0.62 | ||||||
Cu | 1.00 | 0.20 | 0.50 | 0.58 | 0.21 | |||||||
Cd | 1.00 | −0.12 | −0.03 | 0.15 | ||||||||
Ni | 1.00 | 0.85 | 0.55 | |||||||||
Zn | 1.00 | 0.47 | ||||||||||
As | 1.00 |
City | Functional Zone | Igeo | ||||||
---|---|---|---|---|---|---|---|---|
Pb | Cr | Cu | Cd | Ni | Zn | As | ||
Gaz-Sale | Mature | −0.4 | 1.0 | −1.3 | −1.1 | −0.7 | −0.7 | −0.1 |
Industrial | −1.4 | −1.9 | −0.6 | 2.4 | −2.5 | −1.8 | −2.8 | |
Park | −3.0 | −1.7 | −4.3 | 1.4 | −3.1 | −3.2 | −2.9 | |
Residential | −2.8 | −2.3 | −4.7 | 1.0 | −4.2 | −3.3 | −3.1 | |
Nadum | Mature | −1.9 | −1.2 | −5.1 | 2.2 | −4.2 | −3.3 | −0.1 |
Industrial | 0.4 | −0.7 | −3.1 | 3.8 | −4.0 | −3.9 | 0.3 | |
Park | −2.9 | −2.5 | −5.4 | 0.9 | −5.3 | −3.9 | 0.7 | |
Residential | 0.6 | −1.8 | −4.1 | 2.7 | −4.1 | −3.0 | −0.7 | |
Novy Urengoy | Mature | −3.1 | −3.3 | −6.1 | 0.9 | −7.4 | −3.9 | −0.7 |
Industrial | −0.2 | 0.0 | −2.1 | 2.2 | −1.8 | 0.8 | −0.1 | |
Park | −0.9 | −1.5 | −2.7 | 2.7 | −3.5 | −2.1 | −0.7 | |
Residential | −2.2 | −1.4 | −4.3 | 2.5 | −3.6 | −3.4 | 0.7 | |
Salekhard | Mature | 1.6 | 2.9 | 0.1 | −1.4 | −0.9 | −1.3 | 1.2 |
Industrial | 2.0 | 3.7 | −1.1 | 2.7 | 0.0 | −1.1 | 1.9 | |
Park | 1.7 | 3.1 | −2.1 | 3.1 | −1.0 | −1.4 | 1.3 | |
Residential | 1.4 | 3.8 | 0.4 | 2.2 | 0.2 | −0.2 | 1.5 | |
Urengoy | Mature | 0.5 | −0.8 | −3.0 | 1.8 | −3.5 | −1.7 | −3.4 |
Industrial | −0.3 | −2.4 | −3.9 | 1.8 | −4.5 | −2.6 | −3.9 | |
Park | −4.4 | −0.1 | −3.7 | 1.2 | −2.9 | −2.4 | −2.5 | |
Residential | −1.2 | −2.3 | −4.1 | 1.9 | −4.9 | −2.5 | −3.4 |
City | Functional Zone | PI | PLI | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Pb | Cr | Cu | Cd | Ni | Zn | As | Value | Pollution Status | ||
Gaz-Sale | Mature | 1.14 | 2.93 | 0.60 | 0.70 | 0.91 | 0.91 | 1.37 | 1.07 | DSQ |
Industrial | 0.57 | 0.39 | 0.99 | 8.03 | 0.26 | 0.44 | 0.21 | 0.64 | DP | |
Park | 0.19 | 0.46 | 0.07 | 4.08 | 0.17 | 0.16 | 0.20 | 0.28 | DP | |
Residential | 0.21 | 0.31 | 0.06 | 3.10 | 0.08 | 0.16 | 0.18 | 0.22 | DP | |
Nadum | Mature | 0.40 | 0.65 | 0.04 | 7.04 | 0.08 | 0.16 | 1.43 | 0.39 | DP |
Industrial | 2.04 | 0.94 | 0.18 | 21.13 | 0.10 | 0.10 | 1.90 | 0.75 | DP | |
Park | 0.20 | 0.27 | 0.04 | 2.82 | 0.04 | 0.10 | 2.38 | 0.24 | DP | |
Residential | 2.20 | 0.43 | 0.09 | 9.86 | 0.09 | 0.19 | 0.95 | 0.53 | DP | |
Novy Urengoy | Mature | 0.18 | 0.15 | 0.02 | 2.82 | 0.01 | 0.10 | 0.95 | 0.15 | DP |
Industrial | 1.30 | 1.45 | 0.36 | 7.04 | 0.44 | 2.62 | 1.43 | 1.34 | DSQ | |
Park | 0.82 | 0.53 | 0.23 | 9.86 | 0.13 | 0.34 | 0.95 | 0.64 | DP | |
Residential | 0.32 | 0.58 | 0.08 | 8.45 | 0.12 | 0.14 | 2.38 | 0.47 | DP | |
Salekhard | Mature | 4.40 | 10.83 | 1.56 | 0.56 | 0.80 | 0.62 | 3.33 | 1.83 | DSQ |
Industrial | 6.00 | 20.00 | 0.71 | 9.86 | 1.53 | 0.72 | 5.71 | 3.41 | DSQ | |
Park | 5.00 | 13.00 | 0.35 | 12.68 | 0.74 | 0.59 | 3.81 | 2.42 | DSQ | |
Residential | 4.00 | 21.17 | 1.91 | 7.04 | 1.78 | 1.31 | 4.29 | 3.80 | DSQ | |
Urengoy | Mature | 2.12 | 0.85 | 0.19 | 5.35 | 0.13 | 0.46 | 0.14 | 0.55 | DP |
Industrial | 1.22 | 0.28 | 0.10 | 5.07 | 0.06 | 0.25 | 0.10 | 0.31 | DP | |
Park | 0.07 | 1.40 | 0.12 | 3.52 | 0.20 | 0.28 | 0.26 | 0.35 | DP | |
Residential | 0.67 | 0.30 | 0.09 | 5.77 | 0.05 | 0.26 | 0.14 | 0.29 | DP |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nizamutdinov, T.; Morgun, E.; Pechkin, A.; Kostecki, J.; Greinert, A.; Abakumov, E. Differentiation of Trace Metal Contamination Level between Different Urban Functional Zones in Permafrost Affected Soils (the Example of Several Cities in the Yamal Region, Russian Arctic). Minerals 2021, 11, 668. https://doi.org/10.3390/min11070668
Nizamutdinov T, Morgun E, Pechkin A, Kostecki J, Greinert A, Abakumov E. Differentiation of Trace Metal Contamination Level between Different Urban Functional Zones in Permafrost Affected Soils (the Example of Several Cities in the Yamal Region, Russian Arctic). Minerals. 2021; 11(7):668. https://doi.org/10.3390/min11070668
Chicago/Turabian StyleNizamutdinov, Timur, Eugenia Morgun, Alexandr Pechkin, Jakub Kostecki, Andrzej Greinert, and Evgeny Abakumov. 2021. "Differentiation of Trace Metal Contamination Level between Different Urban Functional Zones in Permafrost Affected Soils (the Example of Several Cities in the Yamal Region, Russian Arctic)" Minerals 11, no. 7: 668. https://doi.org/10.3390/min11070668
APA StyleNizamutdinov, T., Morgun, E., Pechkin, A., Kostecki, J., Greinert, A., & Abakumov, E. (2021). Differentiation of Trace Metal Contamination Level between Different Urban Functional Zones in Permafrost Affected Soils (the Example of Several Cities in the Yamal Region, Russian Arctic). Minerals, 11(7), 668. https://doi.org/10.3390/min11070668