The Relation between Trace Element Composition of Cu-(Fe) Sulfides and Hydrothermal Alteration in a Porphyry Copper Deposit: Insights from the Chuquicamata Underground Mine, Chile
Abstract
:1. Introduction
2. Geological Background
2.1. Geology of the Chuquicamata Deposit
2.2. Hydrothermal Alteration and Mineralization
2.2.1. Background Potassic and Chloritic Alteration
2.2.2. Intense Potassic Alteration
2.2.3. Quartz-Sericite and Relict Intense Potassic Alteration
3. Samples and Methods
4. Results
4.1. Hydrothermal Alteration and Mineralization
4.2. Sulfide Textures and Mineral Inclusions
4.3. Major, Minor and Trace Elements Concentrations in Sulfide Minerals
4.3.1. Chalcopyrite
4.3.2. Bornite
4.3.3. Pyrite
5. Discussion
5.1. Incorporation of Trace Elements in Chalcopyrite, Bornite and Pyrite
5.2. Geochemical Signature of Cu-(Fe) Sulfides as a Function of Alteration
5.3. Implications for Sulfide Chemistrys as Vectors towards Cu Mineralization
6. Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- John, D.A.; Taylor, R.D. By-products of porphyry copper and molybdenum deposits. Rev. Econ. Geol. 2016, 18, 137–164. [Google Scholar]
- Cook, N.J.; Ciobanu, C.L.; George, L.L.; Zhu, Z.Y.; Wade, B.; Ehrig, K. Trace element analysis of minerals in magmatic-hydrothermal ores by laser ablation inductively-coupled plasma mass spectrometry: Approaches and opportunities. Minerals 2016, 6, 111. [Google Scholar] [CrossRef] [Green Version]
- Fontboté, L.; Kouzmanov, K.; Chiaradia, M.; Pokrovski, G.S. Sulfide minerals in hydrothermal deposits. Elements 2017, 13, 97–103. [Google Scholar] [CrossRef]
- Reich, M.; Large, R.; Deditius, A. New advances in trace element geochemistry of ore minerals and accessory phases. Ore Geol. Rev. 2017, 87, 1215–1217. [Google Scholar] [CrossRef]
- Large, D.J.; Sawlowocz, Z.; Spratt, J. A cobaltite-framboidal pyrite association from the Kupferschiefer; possible implications for trace element behaviour during the earliest stages of diagenesis. Mineral. Mag. 1999, 63, 353–361. [Google Scholar] [CrossRef]
- Pals, D.; Spry, P.; Chryssoulis, S. Invisible Gold and Tellurium in Arsenic-Rich Pyrite from the Emperor Gold Deposit, Fiji: Implications for Gold Distribution and Deposition. Econ. Geol. 2003, 98, 479–493. [Google Scholar] [CrossRef]
- Vaughan, J.P.; Kyin, A. Refractory gold ores in Archean greenstones, Western Australia: Mineralogy, gold paragenesis, metallurgical characterization and classification. Mineral. Mag. 2004, 68, 255–277. [Google Scholar] [CrossRef]
- Palenik, C.S.; Utsunomiya, S.; Reich, M.; Kesler, S.E.; Ewing, R.C. “Invisible” gold revealed: Direct imaging of gold nanoparticles in a Carlin-type deposit. Am. Miner. 2004, 89, 1359–1366. [Google Scholar] [CrossRef]
- Reich, M.; Kesler, S.E.; Utsunomiya, S.; Palenik, C.S.; Chryssoulis, S.; Erwing, R.C. Solubility of gold in arsenian pyrite. Geochim. Cosmochim. Acta 2005, 69, 2781–2796. [Google Scholar] [CrossRef]
- Barker, S.L.L.; Hickey, K.A.; Cline, J.S.; Dipple, G.M.; Kilburn, M.R.; Vaughan, J.R.; Anthony Longo, A.A. Uncloaking invisible gold: Use of NanoSIMS to evaluate gold, trace elements, and sulfur isotopes in pyrite from Carlin-type gold deposits. Econ. Geol. 2009, 104, 897–904. [Google Scholar] [CrossRef]
- Large, R.R.; Danyushevsky, L.V.; Hollit, C.; Maslennikov, V.; Meffre, S.; Gilbert, S.E.; Bull, S.; Scott, R.J.; Emsbo, P.; Thomas, H.; et al. Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and Carlin-style sediment-hosted deposits. Econ. Geol. 2009, 104, 635–668. [Google Scholar] [CrossRef]
- Cook, N.J.; Ciobanu, C.L.; Danyushevsky, L.V.; Gilbert, S. Minor and trace elements in bornite and associated Cu-(Fe) sulfides: A LA-ICP-MS study. Geochim. Cosmochim. Acta 2011, 75, 6473–6496. [Google Scholar] [CrossRef]
- Godel, B.M.; Barnes, S.J.; Barnes, S.J. Deposition mechanisms of magmatic sulphide liquids: Evidence from high-resolution X-ray computed tomography and trace element chemistry of komatiite-hosted disseminated sulphides. J. Petrol. 2013, 54, 1455–1486. [Google Scholar] [CrossRef] [Green Version]
- Deditius, A.; Reich, M.; Kesler, S.E.; Utsunomiya, S.; Chryssoulis, S.; Walshe, J.L.; Hough, R.; Ewing, R.C. The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits. Geochim. Cosmochim. Acta 2014, 140, 644–670. [Google Scholar] [CrossRef] [Green Version]
- Gregory, D.D.; Large, R.R.; Halpin, J.A.; Baturina, E.L.; Lyons, T.W.; Wu, S.; Dantushevsky, L.; Sack, P.L.; Chappaz, A.; Maslennikov, V.V.; et al. Trace element content of sedimentary pyrite in black shales. Econ. Geol. 2015, 110, 1389–1410. [Google Scholar] [CrossRef]
- Gregory, D.D.; Large, R.R.; Halpin, J.A.; Steadman, J.A.; Hickman, A.H.; Ireland, T.R.; Holden, P. The chemical conditions of the late Archean Hamersley basin inferred from whole rock and pyrite geochemistry with Δ33S and δ34S isotope analyses. Geochim. Cosmochim. Acta 2015, 149, 223–250. [Google Scholar] [CrossRef]
- Gregory, D.D.; Large, R.R.; Bath, A.B.; Steadman, J.A.; Wu, S.; Danyushevsky, L.; Bull, S.W.; Holden, P.; Ireland, T.R. Trace Element Content of Pyrite from the Kapai Slate, St. Ives Gold District, Western Australia. Econ. Geol. 2016, 111, 1297–1320. [Google Scholar] [CrossRef]
- Wohlgemuth-Ueberwasser, C.C.; Viljoen, F.; Petersen, S.; Vorster, C. Distribution and solubility limits of trace elements in hydrothermal black smoker sulfides: An in-situ LA-ICP-MS study. Geochim. Cosmochim. Acta 2015, 159, 16–41. [Google Scholar] [CrossRef]
- George, L.L.; Cook, N.J.; Ciobanu, C.L. Partitioning of trace elements in co-crystallized sphalerite-galena-chalcopyrite hydrothermal ores. Ore Geol. Rev. 2016, 77, 97–116. [Google Scholar] [CrossRef]
- George, L.L.; Cook, N.J.; Crowe, B.B.P.; Ciobanu, C.L. Trace elements in hydrothermal chalcopyrite. Mineral. Mag. 2018, 82, 59–88. [Google Scholar] [CrossRef]
- Kusebauch, C.; Gleeson, S.A.; Oelze, M. Coupled partitioning of Au and As into pyrite controls formation of giant Au deposits. Sci. Adv. 2019, 5, eaav5891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kesler, S.E.; Chryssoulis, S.L.; Simon, G. Gold in porphyry copper deposits: Its abundance and fate. Ore Geol. Rev. 2002, 21, 103–124. [Google Scholar] [CrossRef]
- Arif, J.; Baker, T. Gold paragenesis and chemistry at Batu Hijau, Indonesia: Implications for gold-rich porphyry copper deposits. Min. Depos. 2004, 39, 523–535. [Google Scholar] [CrossRef]
- Pašava, J.; Vymazalova, A.; Kosler, J.; Koneev, R.; Jukov, A.V.; Khalmatov, R.A. Platinum-group elements in ores from the Kalmakyr porphyry Cu-Au-Mo deposit, Uzbekistan: Bulk geochemical and laser ablation ICP-MS data. Miner. Depos. 2010, 45, 411–418. [Google Scholar] [CrossRef]
- McFall, K.A.; Naden, J.; Roberts, S.; Baker, T.; Spratt, J.; McDonald, I. Platinum-group minerals in the Skouries Cu-Au (Pd, Pt, Te) porphyry deposit. Ore Geol. Rev. 2018, 99, 344–364. [Google Scholar] [CrossRef]
- Crespo, J.; Reich, M.; Barra, F.; Verdugo, J.J.; Martínez, C. Critical metal particles in ore sulfides from the Río Blanco porphyry Cu-Mo deposit, Chile. Minerals 2018, 8, 519. [Google Scholar] [CrossRef] [Green Version]
- Crespo, J.; Reich, M.; Barra, F.; Verdugo, J.J.; Martínez, C.; Leisen, M.; Romero, R.; Morata, D.; Marquardt, C. Ocurrence and distribution of silver in the world-class Río Blanco porphyry Cu-Mo deposit, Central Chile. Econ. Geol. 2020, 115, 1619–1644. [Google Scholar] [CrossRef]
- Hanley, J.J.; MacKenzie, M.K. Incorporation of platinum-group elements and cobalt into subsidiary pyrite in alkali Cu-Au porphyry deposits: Significant implications for precious metal distribution in felsic magmatic-hydrothermal systems. In AGU Spring Meeting Abstracts; American Geophysical Union: Washington, DC, USA, 2009; Volume 2009, p. V14A-03. [Google Scholar]
- Reich, M.; Deditius, A.; Chryssoulis, S.; Li, J.W.; Ma, C.Q.; Parada, M.A.; Barra, F.; Mittermayr, F. Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: A SIMS/EMPA trace element study. Geochim. Cosmochim. Acta 2013, 104, 42–62. [Google Scholar] [CrossRef]
- Cioacă, M.E.; Munteanu, M.; Qi, L.; Costin, G. Trace element concentrations in porphyry copper deposits from Metalliferi Mountains, Romania: A reconnaissance study. Ore Geol. Rev. 2014, 63, 22–39. [Google Scholar] [CrossRef]
- Peterson, E.C.; Mavrogenes, J.A. Linking high-grade gold mineralization to earthquake-induced fault-valve processes in the Porgera gold deposit, Papua New Guinea. Geology 2014, 42, 383–386. [Google Scholar] [CrossRef]
- Zwahlen, C.; Cioldi, S.; Wagner, T.; Rey, R.; Heinrich, C. The porphyry Cu-(Mo-Au) deposit at Altar (Argentina): Tracing gold distribution by vein mapping and LA-ICP-MS mineral analysis. Econ. Geol. 2014, 109, 1341–1358. [Google Scholar] [CrossRef] [Green Version]
- Franchini, M.; McFarlane, C.; Maydagán, L.; Reich, M.; Lentz, D.R.; Meinret, L.; Bouhier, V. Trace metals in pyrite and marcasite from the Agua Rica porphyry-high sulfidation epithermal deposit, Catamarca, Argentina: Textural features and metal zoning at the porphyry to epithermal transition. Ore Geol. Rev. 2015, 66, 366–387. [Google Scholar] [CrossRef]
- Tanner, D.; Henley, R.W.; Mavrogenes, J.A.; Holden, P. Sulfur isotope and trace element systematics of zoned pyrite crystals from the El Indio Au-Cu-Ag deposit, Chile. Contrib. Mineral. Petrol. 2016, 171, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Maydagán, L.; Franchini, M.; Lentz, D.; Pons, J.; McFarlane, C. Sulfide composition and isotopic signature of the Altar Cu-Au deposit, Argentina: Constraints on the evolution of the porphyry-epithermal system. Can. Miner. 2013, 51, 813–840. [Google Scholar] [CrossRef]
- Reich, M.; Palacios, C.; Barra, F.; Chryssoulis, S. “Invisible” silver in chalcopyrite and bornite from the Mantos Blancos copper deposit. Eur. J. Mineral. 2013, 25, 453–460. [Google Scholar] [CrossRef]
- Liu, R.; Chen, G.; Yang, J. Compositions of Cu-(Fe)-Sulfides in the 109 Reduced Granite-Related Cu Deposit, Xinjiang, Northwest China: Implications to the Characteristics of Ore-Forming Fluids. Geofluids 2020, 1–11. [Google Scholar] [CrossRef]
- Reich, M.; Román, N.; Barra, F.; Morata, D. Silver-Rich Chalcopyrite from the Active Cerro Pabellón Geothermal System, Northern Chile. Minerals 2020, 10, 113. [Google Scholar] [CrossRef] [Green Version]
- CODELCO, Memoria Anual. 2018. Available online: https://www.codelco.com/memoria2018/site/docs/20190405/20190405152423/memoria_anual_codelco_2018.pdf (accessed on 15 March 2021).
- Boric, R.; Díaz, F.; Maksaev, V. Geología y Yacimientos Metalíferos de la Región de Antofagasta. Serv. Nac. Geol. Min. Bol. 1990, 40, 246. [Google Scholar]
- Lindsay, D.D.; Zentilli, M.; Rojas, J. Evolution of an active ductile to brittle shear system controlling mineralization at the Chuquicamata porphyry copper deposit, northern Chile. Int. Geol. Rev. 1995, 37, 945–958. [Google Scholar] [CrossRef]
- Dilles, J.H.; Tomlinson, A.J.; Martin, M.W.; Blanco, N. El Abra and Fortuna Complexes: A porphyry copper batholith sinistrally displaced by the Falla Oeste. In Actas VIII Congreso Geológico Chileno; SERNAGEOMIN: Antofagasta, Chile, 1997; Volume 3, pp. 1883–1887. [Google Scholar]
- Sillitoe, R.H. Epochs of intrusion-related copper mineralization in the Andes. J. S. Am. Earth Sci. 1998, 1, 89–108. [Google Scholar] [CrossRef]
- Sillitoe, R.H.; Perelló, J. Andean copper province: Tectonomagmatic settings, deposit types, metallogeny, exploration, and discovery. In 100th Aniversary Volume; Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., Richards, J.P., Eds.; Society of Economic Geologists: Littleton, CO, USA, 2005; pp. 845–890. [Google Scholar]
- Ballard, J.R.; Palin, J.M.; Williams, I.S.; Campbell, I.H.; Faunes, A. Two ages of porphyry intrusion resolved for the super-giant Chuquicamata copper deposit of northern Chile by ELA-ICP-MS and SHRIMP. Geology 2001, 29, 383–386. [Google Scholar] [CrossRef]
- Rivera, S.; Alcota, H.; Proffett, J.; Díaz, J.; Leiva, G.; Vergara, M. Update of the Geologic Setting and Cu-Mo Deposits of the Chuquicamata District, Northern Chile. In Geology and Genesis of Major Copper Deposits and Districts of the World: A Tribute to Richard H. Sillitoe and J.W. Hedenquist; Harris, M., Camus, F., Eds.; Society of Economic Geologists: Littleton, CO, USA, 2012; Volume 16, pp. 19–54. [Google Scholar]
- Ossandón, G.; Fréraut, R.; Gustafson, L.; Lindsay, D.; Zentilli, M. Geology of the Chuquicamata Mine: A Progress Report. Econ. Geol. 2001, 96, 249–270. [Google Scholar] [CrossRef]
- Faunes, A.; Hintze, F.; Siña, A.; Véliz, H.; Vivanco, M. Chuquicamata, Core of a Planetary Scale Cu-Mo Anomaly. In Super Porphyry Copper and Gold Deposits: A Global Perspective; Porter, T.M., Ed.; PGC Publishing: Adelaide, Australia, 2005; Volume 1, pp. 151–174. [Google Scholar]
- Lindsay, D.D. Structural Control and Anisotropy of Mineralization within the Chuquicamata Porphyry Copper Deposit, Northern Chile. Ph.D. Thesis, Dalhousie University, Halifax, NS, Canada, 1997; p. 404, Unpublished. [Google Scholar]
- Campbell, I.H.; Ballard, J.R.; Palin, J.M.; Allen, C.; Faunes, A. U-Pb zircon geochronology of granitic rocks from the Chuquicamata-El Abra porphyry copper belt of Northern Chile: Excimer laser ablation ICP-MS analysis. Econ. Geol. 2006, 101, 1327–1344. [Google Scholar] [CrossRef]
- Zentilli, M.; Maksaev, V.; Boric, R.; Wilson, J. Spatial coincidence and similar geochemistry of Late Triassic and Eocene-Oligocene magmatism in the Andes of northern Chile: Evidence from the MMH porphyry type Cu-Mo deposit, Chuquicamata District. Int. J. Earth Sci. 2018, 107, 1097–1126. [Google Scholar] [CrossRef]
- Reynolds, P.; Ravenhurst, C.; Zentilli, M.; Lindsay, D.D. High precision 40Ar/39Ar dating of two consecutive hydrothermal events in the Chuquicamata porphyry copper system, Chile. Chem. Geol. 1998, 148, 45–60. [Google Scholar] [CrossRef]
- Barra, F.; Alcota, H.; Rivera, S.; Valencia, V.; Munizaga, F.; Maksaev, V. Timing and formation of porphyry Cu-Mo mineralization in the Chuquicamata district, northern Chile: New constraints from the Toki cluster. Miner. Depos. 2013, 48, 629–651. [Google Scholar] [CrossRef]
- Mathur, R.; Ruiz, J.; Munizaga, F. Insights into Andean metallogenesis from the perspective of Re-Os analyses of sulfides. Extended Abstract Volume (CD Version). In South American Symposium on Isotope Geology; Sociedad Geológica de Chile: Santiago, Chile, 2001; Volume 3, pp. 34–36. [Google Scholar]
- Sillitoe, R.H.; Mckee, E.H. Age of Supergene Oxidation and Enrichment in the Chilean Porphyry Copper Province. Econ. Geol. 1996, 91, 164–179. [Google Scholar] [CrossRef]
- Reich, M.; Snyder, G.T.; Álvarez, F.; Pérez, A.; Palacios, C.; Vargas, G.; Cameron, E.M.; Muramatsu, Y.; Fehn, U. Using iodine isotopes to constrain supergene fluid sources in arid regions: Insights from the Chuquicamata oxide blanket. Econ. Geol. 2013, 108, 163–171. [Google Scholar] [CrossRef]
- Román, N.; Reich, M.; Leisen, M.; Morata, D.; Barra, F. Geochemical and micro-textural fingerprints of boiling in pyrite. Geochim. Cosmochim. Acta 2019, 246, 60–85. [Google Scholar] [CrossRef]
- Longerich, H.P.; Jackson, S.E.; Günther, D. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. J. Anal. At. Spectrom. 1996, 11, 899–904. [Google Scholar] [CrossRef]
- Wilson, S.A.; Ridley, W.L.; Koenig, A.E. Development of sulfide calibration standards for the laser ablation inductively-coupled plasma mass spectrometry technique. J. Anal. At. Spectrom. 2002, 17, 406–409. [Google Scholar] [CrossRef]
- Jochum, K.P.; Willbold, M.; Raczek, I.; Stoll, B.; Herwing, K. Chemical Characterisation of the USGS Reference Glasses and BIR-1G Using EMPA, ID-TIMS, ID-ICP-MS and LA-ICP-MS. Geostand. Newslett. 2005, 29, 285–302. [Google Scholar] [CrossRef]
- Paton, C.; Hellstrom, J.; Woodhead, J.; Hergt, J. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 2011, 26, 2508–2518. [Google Scholar] [CrossRef]
- Arnott, A. Evolution of the Hydrothermal Alteration at the Chuquicamata Porphyry Copper System, Northern Chile. Ph.D. Thesis, Dalhousie University, Halifax, NS, Canada, 2003; p. 455, Unpublished. [Google Scholar]
- Demané, E.; Borquez, K.; Realini, G. Informe Geológico Actualización Modelos de Cobre, Molibdeno y Aresénico PND 2020, División Chuquicamata Superintendencia de Geología Gerencia de Recursos Mineros y Desarrollo: Internal Report CODELCO; Superintendencia de Geología: Calama, Chile, 2018. [Google Scholar]
- Carvalho, J.; Relvas, J.; Pinto, A.; Frenzel, M.; Krause, J.; Gutzmer, J.; Pacheco, N.; Fonseca, R.; Santos, S.; Caetano, P.; et al. Indium and selenium distribution in the Neves-Corvo deposit, Iberian Pyrite Belt, Portugal. Mineral. Mag. 2018, 82, S5–S41. [Google Scholar] [CrossRef] [Green Version]
- Kieft, K.; Damman, H. Indium-bearing chalcopyrite and sphalerite from the Gasborn area, West Bergslagen, central Sweden. Mineral. Mag. 1990, 54, 109–112. [Google Scholar] [CrossRef] [Green Version]
- Huston, D.; Sie, S.; Suter, G.; Cooke, D.; Both, R. Trace elements in sulfide minerals from eastern Australian volcanic-hosted massive sulfide deposits; Part I, Proton microprobe analyses of pyrite, chalcopyrite, and sphalerite, and Part II, Selenium levels in pyrite; comparison with delta 34S values and implications for the source of sulfur in volcanogenic hydrothermal systems. Econ. Geol. 1995, 90, 1167–1196. [Google Scholar]
- Sinclair, W.D.; Kooiman, G.; Martin, D.; Kjarsgaard, I.M. Geology, geochemistry and mineralogy of indium resources at Mount Pleasant, New Brunswick, Canada. Ore Geol. Rev. 2006, 28, 123–145. [Google Scholar] [CrossRef]
- Belissont, R.; Munoz, M.; Boiron, M.C.; Luais, B.; Mathon, O. Germanium Crystal Chemistry in Cu-Bearing Sulfides from Micro-XRF Mapping and Micro-XANES Spectroscopy. Minerals 2019, 9, 227. [Google Scholar] [CrossRef] [Green Version]
- Sugaki, A.; Kitakaze, A.; Harada, H. Synthesis of minerals in the Cu-Fe-Bi-S system under hydrothermal condition and their phase relations. Bull. Mineral. 1981, 104, 484–495. [Google Scholar] [CrossRef]
- Sugaki, A.; Kitakaze, A.; Harada, H. Hydrothermal synthesis and phase relations of the polymetallic sulfide system, especially on the Cu-Fe-Bi-S system. In Materials Science of the Earth’s Interior; Sungawa, I., Ed.; Terra Publ: Tokyo, Japan, 1984; pp. 545–583. [Google Scholar]
- Deditius, A.P.; Utsunomiya, S.; Ewing, R.; Kesler, S.E. Nanoscale “liquid” inclusions of As-Fe-S in arsenian pyrite. Am. Mineral. 2009, 94, 391–394. [Google Scholar] [CrossRef]
- Vaughan, J.P.; Craig, J.R. Mineral Chemistry of Metal Sulfides; Cambridge University Press: Cambridge, UK, 1978. [Google Scholar]
- Tossell, J.A.; Vaughan, D.J.; Burdett, J.K. Pyrite, marcasite, and arsenopyrite type minerals: Crystal chemical and structural principles. Phys. Chem. Miner. 1981, 7, 177–184. [Google Scholar] [CrossRef]
- Abraitis, P.K.; Pattrick, R.A.D.; Vaughan, D.J. Variations in the compositional, textural and electrical properties of natural pyrite: A review. Int. J. Miner. Process. 2004, 74, 41–59. [Google Scholar] [CrossRef]
- Gustafson, L.B.; Hunt, J.P. The porphyry copper deposit at El Salvador, Chile. Econ. Geol. 1975, 70, 875–912. [Google Scholar] [CrossRef]
- Einaudi, M.; Hedenquist, J.; Inan, E. Sulfidation state of hydrothermal fluids: The porphyry-epithermal transition and beyond. In Volcanic, Geothermal and Ore-Forming Fluids: Rulers and Witnesses of Processes within the Earth; Simmons, S.F., Graham, I.J., Eds.; Society of Economic Geologists: Littleton, CO, USA, 2003; Volume 10, pp. 285–313. [Google Scholar]
- Richards, J. Cumulative factors in the generation of giant calc-alkaline porphyry Cu deposits. In Super Porphyry Copper and Gold Deposits: A Global Perspective; Porter, T.M., Ed.; PGC Publishing: Linden Park, South Australia, 2005; Volume 1, pp. 7–25. [Google Scholar]
- Bodnar, R.; Lecumberri-Sanchez, P.; Moncada, D.; Steele-Macinnis, M. Fluid inclusions in Hydrothermal Ore Deposits. In Treatise Cheochem, 2nd ed.; Holland, H.D., Turekian, K.K., Eds.; Elsevier: Oxford, UK, 2014; Volume 13, pp. 119–142. [Google Scholar]
- Dilles, J.; Einaudi, M. Wall-rock alteration and hydrothermal flow paths about the Ann-Mason porphyry copper deposits, Nevada; a 6 km vertical reconstruction. Econ. Geol. 1992, 87, 1963–2001. [Google Scholar] [CrossRef]
- Corbett, G.J.; Leach, T.M. Southwest Pacific Rim Gold-Copper Systems: Structure, Alteration and Mineralization; Society of Economic Geologists: Littleton, CO, USA, 1998; Volume 6, p. 240. [Google Scholar]
- John, D.A.; Ayuso, R.A.; Barton, M.D.; Blakely, R.J.; Bodnar, R.J.; Dilles, J.H.; Gray, F.; Graybeal, F.T.; Mars, J.C.; McPhee, D.K.; et al. Porphyry Copper Deposit Model, Chap. B of Mineral Deposit Models for Resource Assessment: U.S. Geological Survey Scientific Investigations Report 2010–5070-B; Survey U.S.G: Reston, VA, USA, 2010; p. 169. [Google Scholar]
- Ulrich, T.; Heinrich, C. Geology and genesis of the Bajo de la Alumbrera porphyry Cu-Au deposit, Argentina. Econ. Geol. 2001, 96, 1743–1774. [Google Scholar] [CrossRef]
- Rusk, B.G.; Reed, M.H.; Dilles, J.H. Fluid inclusion evidence for magmatic-hydrothermal fluid evolution in the porphyry copper-molybdenum deposit at Butte, Montana. Econ. Geol. 2008, 103, 307–334. [Google Scholar] [CrossRef]
- Auclair, G.; Fouquet, Y.; Bohn, M. Distribution of selenium in high-temperature hydrothermal sulfide deposits at 13° North, East Pacific Rise. Can. Min. 1987, 25, 577–587. [Google Scholar]
- Qian, Z.; Xinzhi, Z.; Jiayong, P.; Shuxun, S. Geochemical Enrichment and Mineralization of Indium. Chin. J. Geochem. 1998, 17, 221–225. [Google Scholar] [CrossRef]
- Schwarz-Schampera, U.; Herzig, P.M. Indium: Geology, Mineralogy, and Economics; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Frenzel, M.; Hirsch, T.; Gutzmer, J. Gallium, germanium, indium, and other trace and minor elements in sphalerite as a function of deposit type—A meta-analysis. Ore Geol. Rev. 2016, 76, 52–78. [Google Scholar] [CrossRef]
- Yamamoto, M.; Kase, K.; Tsutsumi, M. Fractionation of Sulfur Isotopes and Selenium between Coexisting Sulfide Minerals from the Besshi Deposit, Central Shikoku, Japan. Miner. Depos. 1984, 19, 237–242. [Google Scholar] [CrossRef]
- Layton-Matthews, D.; Peter, J.M.; Scott, S.D.; Leybourne, M. Distribution, mineralogy, and geochemistry of selenium in felsic volcanic-hosted massive sulfide deposits of the Finlayson Lake district, Yukon Territory, Canada. Econ. Geol. 2008, 103, 61–88. [Google Scholar] [CrossRef]
- Keith, M.; Smith, D.; Jenkin, G.; Holwell, D.; Dye, M. A review of Te and Se systematics in hydrothermal pyrite from precious metal deposits: Insights into ore-forming processes. Ore Geol. Rev. 2018, 96, 269–282. [Google Scholar] [CrossRef]
- Loges, A.; Testemale, D.; Huotari, S.; Honkanen, A.P.; Potapkin, V.; Wagner, T. Hydrothermal fluoride and chloride complexation of indium: An EXAFS study. Geophys. Res. Abstr. 2017, 19, 5392. [Google Scholar]
- Pokrovski, G.; Roux, J.; Ferlat, G.; Jonchiere, R.; Seitsonen, A.; Vuilleumier, R.; Hazemann, J.L. Silver in geological fluids from in situ X-ray absorption spectroscopy and first-principles molecular dynamics. Geochim. Cosmochim. Acta 2013, 106, 501–523. [Google Scholar] [CrossRef] [Green Version]
- Bhalla, P.; Holtz, F.; Linnen, R.L.; Behrens, H. Solubility of cassiterite in evolved granitic melts: Effect of T, fO2, and additional volatiles. Lithos 2005, 80, 387–400. [Google Scholar] [CrossRef]
- Migdisov, A.A.; Williams-Jones, A.E. An experimental study of cassiterite solubility in HCl-bearing water vapour at temperatures up to 350 °C. Implications for tin ore formation. Chem. Geol. 2005, 217, 29–40. [Google Scholar] [CrossRef]
- Huston, D.; Relvas, J.; Gemmell, J.; Drieberg, S. The role of granites in volcanic-hosted massive sulphide ore-forming systems: An assessment of magmatic-hydrothermal contributions. Miner. Depos. 2011, 46, 473–507. [Google Scholar] [CrossRef]
- Migdisov, A.A.; Zezin, D.; Williams-Jones, A.E. An experimental study of cobalt (II) complexation in Cl- and H2S-bearing hydrothermal solutions. Geochim. Cosmochim. Acta 2011, 75, 4065–4079. [Google Scholar] [CrossRef]
- Liu, W.; Borg, S.; Testemale, D.; Etschmann, B.; Hazemann, J.L.; Brugger, J. Speciation and thermodynamic properties for cobalt chloride complexes in hydrothermal fluids at 35–440 °C and 600 bar: An in-situ XAS study. Geochim. Cosmochim. Acta 2011, 75, 1227–1248. [Google Scholar] [CrossRef]
- Brugger, J.; Liu, W.; Etschmann, B.; Mei, Y.; Sherman, D.; Testemale, D. A review of the coordination chemistry of hydrothermal systems, or do coordination changes make ore deposits? Chem. Geol. 2016, 447, 219–253. [Google Scholar] [CrossRef]
- Liu, W.; Migdisov, A.; Williams-Jones, A. The stability of aqueous nickel (II) chloride complexes in hydrothermal solutions: Results of UV-visible spectroscopic experiments. Geochim. Cosmochim. Acta 2012, 94, 276–290. [Google Scholar] [CrossRef]
- Jiang, J.; Zhu, Y. Geology and geochemistry of the Jianchaling hydrothermal nickel deposit: T-pH-ƒO2- ƒS2 conditions and nickel precipitation mechanism. Ore Geol. Rev. 2017, 91, 216–235. [Google Scholar] [CrossRef]
- Zotov, A.V.; Kudrin, A.V.; Levin, K.A.; Shikina, N.D.; Var’yash, L.N. Experimental studies of the solubility and complexing of selected ore elements (Au, Ag, Cu, Mo, As, Sb, Hg) in aqueous solutions. In Fluids in the Crust Equilibrium and Transport; Shmulovich, K.I., Yardley, B.W.D., Gonchar, G.G., Eds.; Chapman & Hall: London, UK, 1995; pp. 95–138. [Google Scholar]
- Liu, W.; McPhail, D.C. Thermodynamic properties of copper chloride complexes and copper transport in magmatic-hydrothermal solutions. Chem. Geol. 2005, 221, 21–39. [Google Scholar] [CrossRef]
- Brugger, J.; Etschmann, B.; Liu, W.; Testemale, D.; Hazemann, J.L.; Emerich, H.; Van Beek, W.; Proux, O. An XAS study of the structure and thermodynamics of Cu (I) chloride complexes in brines up to high temperature (400 °C, 600 bar). Geochim. Cosmochim. Acta 2007, 71, 4920–4941. [Google Scholar] [CrossRef]
- Yin, Y.; Zajacz, Z. The solubility of silver in magmatic fluids: Implications for silver transfer to the magmatic-hydrothermal ore-forming environment. Geochim. Cosmochim. Acta 2018, 238, 235–251. [Google Scholar] [CrossRef]
- Mukherjee, I.; Large, R. Application of pyrite trace element chemistry to exploration for SEDEX style Zn-Pb deposits: McArthur Basin, Northern Territory, Australia. Ore Geol. Rev. 2017, 81, 1249–1270. [Google Scholar] [CrossRef]
- Soltani, A.; McFarlane, C.; Lentz, D.; Walker, J. Assessment of pyrite composition by LA-ICP-MS techniques from massive sulfide deposits of the Bathurst Mining Camp, Canada: From textural and chemical evolution to its application as a vectoring tool for the exploration of VMS deposit. Ore Geol. Rev. 2018, 92, 656–671. [Google Scholar] [CrossRef]
- Baker, T.; Mustard, R.; Brown, V.; Pearson, N.; Stanley, C.R.; Radford, N.W.; Butler, I. Textural and chemical zonation of pyrite at Pajingo: A potential vector to epithermal gold veins. Geochem. Explor. Environ. Anal. 2006, 6, 283–293. [Google Scholar] [CrossRef]
- Kouhestani, H.; Ghaderi, M.; Large, R.; Zaw, K. Texture and chemistry of pyrite at Chah Zard epithermal gold-silver deposit, Iran. Ore Geol. Rev. 2017, 84, 80–101. [Google Scholar] [CrossRef]
- Gregory, D.D.; Cracknell, M.J.; Large, R.R.; McGoldrick, P.; Kuhn, S.; Maslennikov, V.V.; Baker, M.J.; Fox, N.; Belousov, I.; Figueroa, M.C.; et al. Distinguishing Ore Deposit Type and Barren Sedimentary Pyrite Using Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Trace Element Data and Statistical Analysis of Large Data Sets. Econ. Geol. 2019, 114, 771–786. [Google Scholar] [CrossRef]
- Wilkinson, J.; Chang, Z.; Cooke, D.; Baker, M.; Wilkinson, C.; Inglis, S.; Chen, H.; Gemmell, J. The chlorite proximitor: A new tool for detecting porphyry ore deposits. J. Geochem. Explor. 2015, 152, 10–26. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, J.J.; Cooke, D.R.; Baker, M.J.; Chang, Z.; Wilkinson, C.C.; Chen, H.; Fox, N.; Hollings, P.; White, N.C.; Gemmell, J.B.; et al. Porphyry indicator minerals and their mineral chemistry as vectoring and fertility tools. In Application of Indicator Mineral Methods to Bedrock and Sediments; Geological Survey of Canada: Ottawa, Canada, 2017; p. 90. [Google Scholar]
- Cooke, D.R.; Agnew, P.; Hollings, P.; Baker, M.; Chang, Z.; Wilkinson, J.J.; White, N.; Zhang, L.; Thompson, J.; Gemmell, J.B.; et al. Porphyry indicator minerals (PIMS) and porphyry vectoring and fertility tools (PVFTS)—Indicators of mineralization styles and recorders of Hypogene geochemical dispersion halos. In Proceedings of the Decennial Mineral Exploration Conferences 17, Toronto, ON, Canada, 22–25 October 2017. [Google Scholar]
- Cooke, D.; Agnew, P.; Hollings, P.; Baker, M.; Chang, Z.; Wilkinson, J.; Ahmed, A.; White, N.; Zhang, L.; Thompson, J.; et al. Recent advances in the application of mineral chemistry to exploration for porphyry copper-gold-molybdenum deposits: Detecting the geochemical fingerprints and footprints of hypogene mineralization and alteration. Geochem. Explor. Environ. Anal. 2020, 20, 176. [Google Scholar] [CrossRef]
- Pacey, A.; Wilkinson, J.; Owens, J.; Priest, D.; Cooke, D.; Millar, I. The Anatomy of an Alkalic Porphyry Cu-Au System: Geology and Alteration at Northparkes Mines, New South Wales, Australia. Econ. Geol. 2019, 114, 441–472. [Google Scholar] [CrossRef]
- Kouzmanov, K.; Pokrovski, G.S. Hydrothermal Controls on Metal Distribution in Porphyry Cu (-Mo-Au) Systems; Society of Economic Geologists: Littleton, CO, USA, 2012; Volume 16, pp. 573–618. [Google Scholar]
- Audétat, A. The Metal Content of Magmatic-Hydrothermal Fluids and Its Relationship to Mineralization Potential. Econ. Geol. 2019, 114, 1033–1056. [Google Scholar] [CrossRef]
CHALCOPYRITE | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Element | Ga | Se | Ag | In | Sn | Te | W | Au | Pb | Bi |
Points analysed | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 |
Measurements a.d.l | 17 | 26 | 151 | 173 | 155 | 8 | 11 | 19 | 113 | 117 |
m.d.l (ppm) | 1.80 | 9.80 | 0.80 | 0.06 | 0.77 | 0.10 | 0.10 | 0.06 | 0.23 | 0.23 |
Median concentration (ppm) | 19.00 | 275.00 | 8.90 | 5.90 | 25.30 | 2.40 | 0.24 | 0.25 | 4.40 | 1.86 |
Q1 (ppm) | 14.95 | 30.74 | 3.98 | 3.17 | 16.30 | 0.312 | 0.10 | 0.13 | 1.73 | 1.04 |
Q3 (ppm) | 24.05 | 620.48 | 15.00 | 7.90 | 39.80 | 3.99 | 0.69 | 0.52 | 11.50 | 2.94 |
90% value (ppm) | 34.20 | 12,600.00 | 23.08 | 11.24 | 52.06 | 6.60 | 2.40 | 0.74 | 24.82 | 5.76 |
Min (ppm) | 11.20 | 10.00 | 0.82 | 1.08 | 1.20 | 0.10 | 0.05 | 0.01 | 0.74 | 0.24 |
Max (ppm) | 43.00 | 22,000.00 | 45.10 | 22.80 | 68.20 | 6.60 | 3.80 | 1.26 | 83.00 | 25.90 |
BORNITE | ||||||||||
Element | Zn | Se | Ag | Cd | In | Sn | Te | W | Pb | Bi |
Points analysed | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 |
Measurements a.d.l | 33 | 8 | 79 | 35 | 39 | 60 | 12 | 6 | 59 | 80 |
m.d.l (ppm) | 8.5 | 15 | 0.82 | 0.1 | 0.1 | 0.89 | 0.27 | 0.06 | 0.60 | 0.27 |
Median concentration (ppm) | 31.15 | 485.00 | 191.30 | 10.80 | 0.88 | 49.10 | 0.86 | 0.16 | 7.10 | 267.50 |
Q1 (ppm) | 22.34 | 279.27 | 131.50 | 8.89 | 0.77 | 14.67 | 0.49 | 0.07 | 4.42 | 236.00 |
Q3 (ppm) | 44.90 | 651.97 | 247.39 | 13.30 | 1.02 | 89.00 | 2.00 | 0.33 | 8.74 | 308.71 |
90% value (ppm) | 77.80 | 770.00 | 291.60 | 17.60 | 1.28 | 115.80 | 23.11 | 18.90 | 12.62 | 1054.60 |
Min (ppm) | 9.20 | 119.00 | 81.00 | 0.11 | 0.44 | 1.29 | 0.32 | 0.02 | 0.67 | 182.00 |
Max (ppm) | 810.00 | 770.00 | 752.00 | 56.00 | 2.70 | 352.00 | 31.00 | 18.90 | 43.00 | 2960.00 |
PYRITE | ||||||||||
Element | Co | Ni | Cu | Ge | Se | Ag | Sn | Te | Pb | Bi |
Points analysed | 190 | 190 | 190 | 190 | 190 | 190 | 190 | 190 | 190 | 190 |
Measurements a.d.l | 158 | 116 | 152 | 88 | 35 | 53 | 20 | 20 | 64 | 94 |
m.d.l (ppm) | 0.45 | 0.81 | 0.79 | 1.30 | 4.70 | 0.12 | 0.19 | 0.01 | 0.13 | 0.11 |
Median concentration (ppm) | 45.50 | 33.80 | 60.30 | 2.50 | 93.00 | 6.40 | 16.95 | 0.66 | 10.45 | 1.02 |
Q1 (ppm) | 11.33 | 5.32 | 15.00 | 2.02 | 33.00 | 1.59 | 0.81 | 0.18 | 0.75 | 0.31 |
Q3 (ppm) | 204.88 | 102.98 | 280.00 | 3.10 | 200.00 | 28.67 | 30.25 | 4.50 | 91.39 | 9.50 |
90% value (ppm) | 483.70 | 241.30 | 2428.00 | 4.73 | 484.00 | 75.20 | 41.91 | 9.60 | 405.00 | 36.56 |
Min (ppm) | 0.71 | 1.18 | 0.96 | 1.32 | 5.00 | 0.20 | 0.20 | 0.02 | 0.15 | 0.04 |
Max (ppm) | 1530.00 | 960.00 | 9700.00 | 10.10 | 2700.00 | 450.00 | 47.00 | 23.00 | 2250.00 | 460.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivas-Romero, C.; Reich, M.; Barra, F.; Gregory, D.; Pichott, S. The Relation between Trace Element Composition of Cu-(Fe) Sulfides and Hydrothermal Alteration in a Porphyry Copper Deposit: Insights from the Chuquicamata Underground Mine, Chile. Minerals 2021, 11, 671. https://doi.org/10.3390/min11070671
Rivas-Romero C, Reich M, Barra F, Gregory D, Pichott S. The Relation between Trace Element Composition of Cu-(Fe) Sulfides and Hydrothermal Alteration in a Porphyry Copper Deposit: Insights from the Chuquicamata Underground Mine, Chile. Minerals. 2021; 11(7):671. https://doi.org/10.3390/min11070671
Chicago/Turabian StyleRivas-Romero, Constanza, Martin Reich, Fernando Barra, Daniel Gregory, and Sergio Pichott. 2021. "The Relation between Trace Element Composition of Cu-(Fe) Sulfides and Hydrothermal Alteration in a Porphyry Copper Deposit: Insights from the Chuquicamata Underground Mine, Chile" Minerals 11, no. 7: 671. https://doi.org/10.3390/min11070671
APA StyleRivas-Romero, C., Reich, M., Barra, F., Gregory, D., & Pichott, S. (2021). The Relation between Trace Element Composition of Cu-(Fe) Sulfides and Hydrothermal Alteration in a Porphyry Copper Deposit: Insights from the Chuquicamata Underground Mine, Chile. Minerals, 11(7), 671. https://doi.org/10.3390/min11070671