Respirable Coal Mine Dust: A Review of Respiratory Deposition, Regulations, and Characterization
Abstract
:1. Introduction
2. Respirable Dust Deposition in the Human Respiratory System
3. RCMD Exposure Health Risks and Global Disease Distribution
Authors | Proposed Model | Methodology | Results |
---|---|---|---|
Brown et al. [10] | Modifications to International Commission on Radiological Protection (ICRP) model | Experimental and mathematical modeling based on the ICRP human respiratory model |
|
Ghalati et al. [46] | Computational model | Lagrangian and Eulerian models |
|
Rahimi-Gorji et al. [49] | - | Laminar-to-turbulent airflow, transport and deposition of micro-particles was performed by Eddy Interaction Model (EIM) from the oral cavity up to generation G6 by two-phase flow simulation |
|
Nemati et al. [59] | A 5-lobe symmetric model | Simulation |
|
Su et al. [89] | - | Mobile Aerosol Lung Deposition Apparatus (MALDA) |
|
Choi & Kim [90] | Single-path trumpet model | Numerical method using Weibel’s lung model |
|
Asgharian, et al. [91] | Multiple-Path Particle Deposition (MPPD) model of lobar deposition | Mathematical formulation using lung structural geometry |
|
Global Distribution of RCMD Lung Diseases
4. RCMD Exposure Limits and Regulations in the Major Coal Producer Countries
Country | Production Ranking (% of World Production) * | Underground/Surface | Seam Properties | Common Underground Mining Method | Regulation Year | Dust Exposure Limits | Sampling | Reference | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Coal Type | Thickness | Coal (mg/m3) | Total Respirable PEL ** (mg/m3) | Silica Content PEL (mg/m3 or %) | |||||||
China | 1 (45.2%) | 90% U 10% S | 75%bituminous 20% anthracite | Deep thick | LW | 2002 | 2.5 | 4 | <10% | PGS | [23,94,95] |
India | 2 (9.9%) | 90% S 10% U | anthracite bituminous | thick short deep | R&P 10% LW | 1987 | 2 10/(% silica) | - | <5% >5% | Indian Device | [19,23] |
United States | 3 (8.9%) | 73% S 27% U | bituminous sub-bituminous | thin | R&P LW | 2016 | 1.5 | - | 0.1 mg/m3 | PGS | [23] |
Australia | 4 (6.5%) | 80% S 20% U | anthracite bituminous sub-bituminous | thick | 90% LW | 2020 | 1.5 | - | 0.05 mg/m3 | PGS (QL: Monitoring include travel time between mine entrance and coal face, NSW: Miner’s underground work period) | [105] |
Indonesia | 5 (6.2%) | Not available at the time of the review. | |||||||||
Russia | 6 (5.4%) | Not available at the time of this review. | |||||||||
South Africa | 7 (3.3%) | 51% U 49% S | sub-bituminous bituminous anthracite | relatively thin | 90% R&P LW | 1997 | 2 | - | <5% | PGS | [23,106] |
Germany | 8 (2.2%) | 3% U | bituminous anthracite | thin | LW | 1991 | - | 4 | 0.2–0.15 | AGS | [23,96] |
Poland | 9 (1.6%) | 53% U | anthracite | thin slanted | LW | 1985 | 0.3 1 | 4 | over 50% 2–50% | PGS | [23,34] |
Kazakhstan | 10 (1.5%) | -- | -- | -- | -- | -- | 1 2 4 10 | -- | >70% 10–70% 2–10% <2% | -- | [111] |
5. Progress in RCMD Monitoring
6. RCMD Characteristics and Characterization Techniques
Study | Sampling Locations (Sites) | No. of Samples | Instrument | Characteristic Technique | Results |
---|---|---|---|---|---|
Corn et al. (1972 & 1973) [109,117] | Western Pennsylvania (Mathies and Robena mines) | 6 | Horizontal Elutriator |
|
|
Morgan et al. (1973) [30] | Pennsylvania (8 mines), West Virginia (9 mines), Kentucky (3 mines), Virginia (2 mines), Alabama (2 mines), Illinois (2 mines), Utah (2 mines), Ohio (1 mine), Indiana (1 mine), Colorado (1 mine) | 9076 miners | A large field study to determine the prevalence of CWP and Fibrosis |
|
|
Stein and Corn (1975) [130] | Pennsylvania (Pittsburgh, Lower Freeport, and Lower Kittanning) | 8 | Millipore GS membrane filter |
|
|
Kriegseis and Scharmann, (1985) [131] | Germany (Ruhr coal field) | 1 | Bergbau-Forschung GmbH, Essen, with BAT II Infrared spectroscopy |
|
|
Lee (1986) [132] | Pennsylvania (4 mines) West Virginia (1 mine) Ohio (4 mines) | 99 | Cascade impactors |
|
|
Kim (1989) [113] | Appalachian bituminous coalfield (Upper Freeport, Pittsburgh, Kittanning, Coalburg, and Pocahontas) | 9 | Cascade impactors |
|
|
Grayson and Peng (1989) [119] | US (1mine) | 10 | Dorr-Oliver 10-mm cyclones and DuPont P2500 |
|
|
Wallace et al. (1994) [120] | Illinois (1 coal mine) Pennsylvania (6 coal mines and 1 clay mine) West Virginia (1 powdered tunnel quartz rock) | 10 | Not mentioned |
|
|
Harrison et al. (1997) [121] | Pennsylvania (7 mines) Illinois (2 mines) Colorado (1 mine) | 12 | Cyclone, filter, and impactor |
|
|
Sapko et al. (2007) [114] | MSHA’s Districts bituminous districts | 163 * | Sieve |
|
|
Jing et al. (2010) [9] | China (Jining and Shandong) | 4 | Laser particle size instrument(Beckman Coulter LS 13320, the United States) |
|
|
Sellaro et al. (2015) [21] | Central Appalachia (1 mine) | 3 | MSA Escort ELF pump with a Dorr-Oliver cyclone |
|
|
Johann-Essex et al. (2017) [22] | Central Appalachia (6 mines) Northern Appalachia (2 mines) | 210 | ELF sampling pumps and cyclones |
|
|
Sarver et al., (2019) [7] | Central Appalachia (6 mines) Northern Appalachia (2 mines) | 76 (sample sets) | Escort ELF air sampling pumps with 10-mm nylon Dorr-Oliver cyclones |
|
|
Sarver et al. (2020) [128] | Central Appalachia (15 mines) Northern Appalachia (5 mines) Mid-west/Illinois basin (2 mines) Western basin (2 mines) | 166 | Oliver cyclones |
|
|
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Hazard Prevention and Control in the Work Environment: Airborne Dust; Occupational and Environmental Health, Department of the Protection of the Human Environment: Geneva, Switzerland, 1999; WHO/SDE/OEH/99.14. [Google Scholar]
- Energy Information Administration (EIA). International Energy Statistics: Primary Coal Production. 2018. Available online: https://www.eia.gov/beta/international/rankings/#?pid=7&cy=20141T (accessed on 20 December 2019).
- McPherson, M.J. Subsurface Ventilation and Environmental Engineering; Virginia Polytechnic Institute and State University: Blacksburg, VA, USA, 1993. [Google Scholar]
- Colinet, J.F.; Rider, J.P.; Listak, J.M.; Organiscak, J.A.; Wolfe, A.L. Best Practices for Dust Control in Coal Mining. Department of Health and Human Services; Centers for Disease Control and Prevention National Institute for Occupational Safety and Health Office of Mine Safety and Health Research Pittsburgh: Pittsburgh, PA, USA, 2010. Available online: https://www.cdc.gov/niosh/mining/works/coversheet861.html (accessed on 30 January 2010).
- Scaggs, M.L. Development and Implication of a Standard Methodology for Respirable Coal Mine Dust Characterization with Thermogravimetric Analysis. Master’s Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2016. [Google Scholar]
- Nousiainen, T. Optical modeling of mineral dust particles: A review. J. Quant. Spectrosc. Radiat. Transf. 2009, 110, 1261–1279. [Google Scholar] [CrossRef]
- Sarver, E.; Kelesa, C.; Rezaee, M. Beyond conventional metrics: Comprehensive characterization of respirable coal mine dust. Int. J. Coal Geol. 2019, 207, 84–95. [Google Scholar] [CrossRef]
- Brondy, J.; Tutak, M. Exposure to harmful dusts on fully powered longwall coal mines in Poland. Int. J. Environ. Res. Public Health 2018, 15, 1846. [Google Scholar] [CrossRef] [Green Version]
- Jing, Y.; Xiukun, W.; Jianguang, G.; Gaiping, L. Surface characteristics and wetting mechanism of respirable coal dust. Min. Sci. Technol. 2010, 20, 365–371. [Google Scholar]
- Brown, J.S.; Gordon, T.; Price, O.; Asgharian, B. Thoracic and Respirable Particle Definitions for Human Health Risk Assessment; National Center for Environmental Assessment, US Environmental Protection Agency: Raleigh, NC, USA, 2013. [Google Scholar] [CrossRef] [Green Version]
- Laney, A.S.; Weissman, D.N. Respiratory diseases caused by coal mine dust. J. Occup. Environ. Med. 2014, 56, 18–22. [Google Scholar] [CrossRef] [Green Version]
- Beer, C.; Kolstad, H.A.; Søndergaard, K.; Bendstrup, E.; Heederik, D.; Olsen, K.E.; Omland, Ø.; Petsonk, E.; Sigsgaard, T.; Sherson, D.L. A systematic review of occupational exposure to coal dust and the risk of interstitial lung diseases. Eur. Clin. Respir. J. 2017, 4, 1264711. [Google Scholar] [CrossRef] [PubMed]
- International Organization for Standardization (ISO). Air Quality-Particle Size Fraction Definitions for Health-Related Sampling; ISO Standard 7708; International Organization for Standardization (ISO): Geneva, Switzerland, 1995. [Google Scholar]
- American Conference of Governmental Industrial Hygienists (ACGIH). Particle Size-Selective Sampling for Health-Related Aerosols; Vincent, J.H., Ed.; Air Sampling Procedures Committee: Cincinnati, OH, USA, 1999; ISBN 1-1882417-30-5. [Google Scholar]
- Occupational Safety and Health Administration. Occupational Exposure to Respirable Crystalline Silica—Review of Health Effects Literature and Preliminary Quantitative Risk Assessment; Occupational Safety and Health Administration: Washington, DC, USA, 2010; OSHA-2010-0034. [Google Scholar]
- Walton, W.H.; Dodgson, J.; Hadden, G.G.; Jacobsen, M. The Effect of Quartz and Other Non-Coal Dusts in Coal Workers’ Pneumoconiosis. In Inhaled Particles IV Part 2, Oxford ed.; Pergamon Press: Oxford, UK, 1977; pp. 669–689. [Google Scholar]
- National Institute for Occupational Safety and Health. Criteria for a Recommended Standard. Occupational Exposure to Respirable Coal Mine Dust; National Institute for Occupational Safety and Health: Cincinnati, OH, USA, 1995. [Google Scholar]
- International Agency for Research on Cancer. Monographs on the Evaluation of Carcinogenic Risks to Humans, Silica, Some Silicates, Coal Dust and Para-Aramid Fibrils; World Health Organization: Geneva, Switzerland, 1997; p. 68. [Google Scholar]
- Pandey, J.K.; Agarwal, D.; Gorain, S.; Dubey, R.K.; Vishwakarma, M.K.; Mishra, K.K.; Pal, A.K. Characterization of respirable dust exposure of different category of workers in Jharia Coalfields. Arab. J. Geosci. 2017, 10, 183. [Google Scholar] [CrossRef]
- Schatzel, S.J.; Stewart, B.W. A provenance study of mineral matter in coal from Appalachian basin coal mining regions and implications regarding the respirable health of underground coal workers: A geochemical and Nd isotope investigation. Int. J. Coal Geol. 2012, 94, 123–136. [Google Scholar] [CrossRef]
- Sellaro, R.; Sarver, E.; Baxter, D. A standard characterization methodology for respirable coal mine dust using SEM-EDX. Resources 2015, 4, 939–957. [Google Scholar] [CrossRef]
- Johann-Essex, V.; Keles, C.; Sarver, E. A computer-controlled SEM-EDX routine for characterizing respirable coal mine dust. Minerals 2017, 7, 15. [Google Scholar] [CrossRef] [Green Version]
- National Academies of Sciences, Engineering, and Medicine. Monitoring and Sampling Approaches to Assess Underground Coal Mine Dust Exposures; The National Academies Press: Washington, DC, USA, 2018; pp. 1–150. [Google Scholar] [CrossRef]
- Watts, W.F.; Cantrell, B.K.; Ambs, J.L.; Rubow, K.L. Diesel Exhaust Aerosol Levels in Underground Coal Mines. In Underground Mines: Measurement and Control of Particulate Emissions, Proceedings of the Bureau of Mines Information and Technology Transfer Seminar, Minneapolis, MN, USA, 29–30 September 1992; US Department of the Interior: Pittsburgh, PA, USA, 1992; pp. 31–39, IC 9324. [Google Scholar]
- Ping, C.; Guang, X. A review of the health effects and exposure-responsible relationship of diesel particulate matter for underground mines. Int. J. Min. Sci. Technol. 2017, 27, 831–838. [Google Scholar]
- Schatzel, S.J. Identifying Sources of Respirable Quartz and Silica Dust in Underground Coal Mines in Southern West Virginia, Western Virginia, and Eastern Kentucky; National Institute for Occupational Safety and Health, Pittsburgh Research Laboratory: Pittsburgh, PA, USA, 2009. [Google Scholar]
- Cullinan, P.; Muñoz, X.; Suojalehto, H.; Agius, R.; Jindal, S.; Sigsgaard, T.; Blomberg, A.; Charpin, D.; Annesi-Maesano, I.; Gulati, M.; et al. Occupational lung diseases: From old to novel exposures to effective preventive strategies. Lancet Respir. Med. 2017, 5, 445–455. [Google Scholar] [CrossRef]
- Almberg, K.S.; Halldin, C.N.; Blackley, D.J.; Laney, A.S.; Storey, E.; Rose, C.S.; Go, L.H.T.; Cohen, R.A. Progressive massive fibrosis resurgence identified in US coal miners filing for black lung benefits, 1970–2016. Ann. Am. Thorac. Soc. 2018, 15, 1420–1426. [Google Scholar] [CrossRef]
- Hall, N.B.; Blackley, D.J.; Halldin, C.N.; Laney, A.S. Current review of pneumoconiosis among US coal miners. Curr. Environ. Health Rep. 2019, 6, 137–147. [Google Scholar] [CrossRef]
- Morgan, W.K.; Burgess, D.B.; Jacobson, G.; O’Brien, R.J.; Pendergrass, E.P.; Reger, R.B.; Shoub, E.P. The prevalence of coal workers’ pneumoconiosis in US coal miners. Arch. Environ. Health Int. J. 1973, 27, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Hurley, J.F.; Burns, J.; Copland, L. Coalworkers’ simple pneumoconiosis and exposure to dust at 10 British coalmines. Br. J. Ind. Med. 1982, 39, 120–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heppleston, A.G. Prevalence and pathogenesis of pneumoconiosis in coal workers. Environ. Health Perspect. 1988, 78, 159–170. [Google Scholar] [CrossRef]
- Attfield, M.D.; Morring, K. An investigation into the relationship between coal workers’ pneumoconiosis and dust exposure in US coal miners. Am. Ind. Hyg. Assoc. 1992, 53, 486–492. [Google Scholar] [CrossRef] [PubMed]
- Marek, K.; Lebecki, K. Occurrence and prevention of coal miners’ pneumoconiosis in Poland. Am. J. Ind. Med. 1999, 36, 610–617. [Google Scholar] [CrossRef]
- Castranova, V.; Vallyathan, V. Silicosis and coal workers’ pneumoconiosis. Environ. Health Perspect. 2000, 108 (Suppl. 4), 675–684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, D.F.; Grayson, R.L.; Metz, E.A. Disease and illness in US mining, 1983–2001. J. Environ. Med. 2004, 46, 1272–1277. [Google Scholar]
- Vallyathan, V.; Landsittel, D.P.; Petsonk, E.L.; Kahn, J.; Parker, J.E.; Oslowy, K.T.; Green, F.H. The influence of dust standards on the prevalence and severity of coal worker’s pneumoconiosis at autopsy in the United States of America. Arch. Pathol. Lab. Med. 2011, 135, 1550–1556. [Google Scholar] [CrossRef] [Green Version]
- Gamble, J.F.; Reger, R.B.; Glenn, R.E. Rapidly progressing coal workers pneumoconiosis as a confounding risk factor in assessing coal mine dust safe exposure levels. J. Clin. Toxicol. 2011, S1, 3. [Google Scholar] [CrossRef] [Green Version]
- Beck, T.W. Coal Workers’ Pneumoconiosis in US Coal Mines; A Review of Exposures, Intervention and Outcomes. Master’s Thesis, University of Pittsburgh, Pittsburgh, PA, USA, 2014. [Google Scholar]
- Blackley, D.J.; Halldin, C.N.; Wang, M.L.; Laney, A.S. Small mine size is associated with lung function abnormality and pneumoconiosis among underground coal miners in Kentucky, Virginia and West Virginia. Occup. Environ. Med. 2014, 71, 690–694. [Google Scholar] [CrossRef]
- Huang, X.; Li, W.; Attfield, M.D.; Nadas, A.; Frenkel, K.; Finkelman, R.B. Mapping and prediction of coal workers’ pneumoconiosis with bioavailable iron content in the bituminous coals. Environ. Health Perspect. 2005, 113, 964–968. [Google Scholar] [CrossRef]
- Manojkumar, N.; Srimuruganandam, B.; Shiva Nagendra, S.M. Application of multiple-path particle dosimetry model for quantifying age specified deposition of particulate matter in human airway. Ecotoxicol. Environ. Saf. 2019, 168, 241–248. [Google Scholar] [CrossRef]
- Hinds, W. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles; Chapter 11; University of Virginia Library, Interlibrary Services: Charlottesville, VA, USA, 1999. [Google Scholar]
- International Commission on Radiological Protection (ICRP). Human Respiratory Tract Model for Radiological Protection; International Commission on Radiological Protection (ICRP): Ottawa, ON, Canada, 1994; p. 24. ISSN 0146-6453. [Google Scholar]
- Hofmann, W. Modelling inhaled particle deposition in the human lung-a review. J. Aerosol Sci. 2011, 42, 693–724. [Google Scholar] [CrossRef]
- FarhadiGhalati, P.; Keshavarzian, E.; Abouali, O.; Faramarzi, A.; Tu, J.; Shakibafard, A. Numerical analysis of micro-and nano-particle deposition in a realistic human upper airway. Comput. Biol. Med. 2012, 42, 39–49. [Google Scholar] [CrossRef]
- Ahookhosh, K.; Pourmehran, O.; Aminfara, H.; Mohammadpourfard, M.; Sarafraz, M.M.; Hamishehkar, H. Development of human respiratory airway models: A review. Eur. J. Pharm. Sci. 2020, 145, 105233. [Google Scholar] [CrossRef]
- Martonen, T.B.; Schroeter, J.D.; Hwang, D.; Fleming, J.S.; Conway, J.H. Human lung morphology model for particle deposition studies. Inhal. Toxicol. 2000, 12, 109–121. [Google Scholar] [CrossRef] [PubMed]
- Rahimi-Gorji, M.; Gorji, T.B.; Gorji-Bandpy, M. Details of regional particle deposition and airflow structures in a realistic model of human tracheobronchial airways: Two-phase flow simulation. Comput. Biol. Med. 2016, 74, 1–17. [Google Scholar] [CrossRef]
- Rajput, P.; Izhar, S.; Gupta, T. Deposition modeling of ambient aerosols in human respiratory system: Health implication of fine particles penetration into pulmonary region. Atmos. Pollut. Res. 2019, 10, 334–343. [Google Scholar] [CrossRef]
- Islam, M.S.; Paul, G.; Ong, H.X.; Young, P.M.; Gu, Y.T.; Saha, S.C. A review of respiratory anatomical development, air flow characterization and particle deposition. Int. J. Environ. Res. Public Health 2020, 17, 380. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.S.; Zeman, K.L.; Bennett, W.D. Ultrafine particle deposition and clearance in the healthy and obstructed lung. Am. J. Respir. Crit. Care Med. 2002, 166, 1240–1247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martonen, T.B.; Rosati, J.A.; Isaacs, K.K. Modeling Deposition of Inhaled Particles. In Aerosols Handbook; Chapter 8; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Weibel, E.R. Geometric and Dimensional Airway Models of Conductive, Transitory and Respiratory Zones of the Human Lung. In Morphometry of the Human Lung; Academic Press: Cambridge, UK, 1963; pp. 136–142. [Google Scholar]
- Soni, B.; Arra, N.; Aliabadi, S. Mesh Refinement Study of Flow and Particle Deposition in Human Lung Airway Model. In Proceedings of the 20th American Institute of Aeronautics and Astronautics (AIAA), Computational Fluid Dynamics Conference, Honolulu, HI, USA, 27–30 June 2011. [Google Scholar]
- Nemati, H.; Saidi, M.S.; Hosseini, V. Modeling particle deposition in the respiratory system during successive respiratory cycles. Sci. Iran. Bull. 2020, 27, 215–228. [Google Scholar] [CrossRef]
- Saber, E.M.; Heydari, G. Flow pattern sand deposition fraction of particles in the range of 0.1–10 mm at trachea and the first third generation sunder different breathing conditions. Comput. Biol. Med. 2012, 42, 631–638. [Google Scholar] [CrossRef]
- Liu, T.; Liu, S.H. The impacts of coal dust on miners’ health: A review. Environ. Res. 2020, 190, 109849. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, E. Investigation of Respirable Coal Mine Dust (RCMD) and Respirable Crystalline Silica (RCS) in the U.S. Underground and Surface Coal Mines. No. 28156748. In PROQUESTMS ProQuest Dissertations & Theses A&I; New Mexico Institute of Mining and Technology: Socorro, NM, USA, 2020; Available online: https://www.proquest.com/openview/f3c2daa112cb5f32401430d0dc2f6d0f/1?pq-origsite=gscholar&cbl=18750&diss=y (accessed on 30 December 2020).
- Buzea, C.; Pacheco, I.; Robbie, K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 2007, 2, Mr17-71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sturm, R. A Computer Model for the Simulation of Nonspherical Particle Dynamics in the Human Respiratory Tract. Phys. Res. Int. 2012, 2012, 142756. [Google Scholar] [CrossRef] [Green Version]
- Riediker, M.; Zink, D.; Kreyling, W.; Oberdörster, G.; Elder, A.; Graham, U.; Lynch, I.; Duschl, A.; Ichihara, G.; Ichihara, S.; et al. Particle toxicology and health—Where are we? Part. Fibre Toxicol. 2019, 16, 19. [Google Scholar] [CrossRef]
- Lippmann, M.; Albert, R.E. The effect of particle size on the regional deposition of inhaled aerosols in the human respiratory tract. Am. Ind. Hyg. Assoc. J. 1969, 30, 257–275. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, I.S.; Lourenco, R.V. Deposition of aerosols in pulmonary disease. Arch. Intern. Med. 1973, 131, 88–91. [Google Scholar] [CrossRef] [PubMed]
- Landahl, H.D. On the removal of airborne droplets by the human respiratory tract: I The lung. Bull. Math. Biophys. 1950, 12, 43–56. [Google Scholar] [CrossRef]
- Gerrity, T.R.; Lee, P.S.; Hass, F.R.; Marinelli, A.; Werner, P.; Lourenco, R.V. Calculated deposition of inhaled particles in the airway generations of normal subject. J. Appl. Physiol. 1974, 47, 867–873. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.S.; Zhou, Y.; Su, W.C. Deposition of Particles in Human Mouth–Throat Replicas and a USP induction port. J. Aerosol Med. Pulm. Drug Deliv. 2015, 28, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Heyder, J.; Rudolf, G. Mathematical models of particle deposition in the human respiratory tract. J. Aerosol Sci. 1984, 15, 697–707. [Google Scholar] [CrossRef]
- Su, W.C.; Ku, B.K.; Kulkarni, P.; Cheng, Y.S. Deposition of graphene nanomaterial aerosols in human upper airways. J. Occup. Environ. Hyg. 2016, 13, 48–59. [Google Scholar] [CrossRef] [Green Version]
- Duan, M.; Liu, L.; Da, G.; Géhin, G.; Nielsen, P.V.; Weinreich, U.M.; Lin, B.; Wang, Y.; Zhang, T.; Sun, W. Measuring the Administered Dose of Particles on the Facial Mucosa of a Realistic Human Model; John Wiley & Sons: Hoboken, NJ, USA, 2019; Volume 30, pp. 108–116. [Google Scholar]
- Sturm, R. Particles in the lungs of patients with chronic bronchitis-Part 1: Deposition modeling. J. Public Health Emerg. 2019, 3, 5. [Google Scholar] [CrossRef]
- Ohsaki, S.; Mitani, R.; Fujiwara, S.; Nakamura, H.; Watano, S. Effect of particle-wall interaction and particle shape on particle deposition behavior in human respiratory system. Pharm. Soc. Jpn. Chem. Pharm. Bull. 2019, 67, 1328–1336. [Google Scholar] [CrossRef] [Green Version]
- Khac, V.; Bui, H.; Moon, J.Y.; Chae, M.; Park, D.; Lee, Y.C. Prediction of aerosol deposition in the human respiratory tract via computational models: A review with recent updates. Atmosphere 2020, 11, 137. [Google Scholar] [CrossRef] [Green Version]
- Doney, B.C.; Blackley, D.; Hale, J.M.; Halldin, C.; Kurth, L.; Syamlal, G.; Laney, A.S. Respirable coal mine dust in underground mines, United States, 1982–2017. Am. J. Ind. Med. 2019, 62, 478–485. [Google Scholar] [CrossRef]
- Morgan, W.K. Industrial bronchitis. Br. J. Ind. Med. 1978, 35, 285–291. [Google Scholar] [CrossRef]
- Perret, J.L.; Plush, B.; Lachapelle, P.; Hinks, T.S.C.; Walter, C.; Clarke, P.; Irving, L.; Brady, P.; Dharmage, S.C.; Stewart, A. Coal mine dust lung disease in the modern era. Asian Pac. Soc. Respirol. 2017, 22, 662–670. [Google Scholar] [CrossRef]
- Sutherland, C.L. Pneumoconiosis—Its effects and complications. Occup. Med. 1959, 10, 4–15. [Google Scholar] [CrossRef]
- Douglas, A.N.; Robertson, A.; Chapman, J.S.; Ruckley, V.A. Dust exposure, dust recovered from the lung, and associated pathology in a group of British coalminers. Br. J. Ind. Med. 1986, 43, 795–801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zosky, G.R.; Hoy, R.F.; Silverstone, E.J.; Brims, F.J.; Miles, S.; Johnson, A.R.; Gibson, P.G.; Yates, D.H. Coal workers’ pneumoconiosis Australian prospective. Med. J. Aust. 2016, 204, 414–418. [Google Scholar] [CrossRef] [PubMed]
- Ruckley, V.A.; Gauld, S.J.; Chapman, J.S.; Davis, J.M.; Douglas, A.N.; Fernie, J.M.; Jacobsen, M.; Lamb, D. Emphysema and dust exposure in a group of coal workers. Am. Rev. Respir. Dis. 1983, 129, 528–532. [Google Scholar]
- Morfeld, P.; Lampert, K.; Ziegler, H.; Stegmaier, C.; Dhom, G.; Piekarski, C. Overall mortality and cancer mortality of coal miners: Attempts to adjust for healthy worker selection effects. Ann. Occup. Hyg. 1997, 41, 346–351. [Google Scholar] [CrossRef]
- Naidoo, R.; Robins, T.; Seixas, N. Respiratory Diseases Among South African Coal Miners. Safety in Mines Research Advisory Committee; Final Project Report; University of Natal (SA); University of Michigan: Ann Arbor, MI, USA, 2002. [Google Scholar]
- Cohn, C.A.; Laffers, R.; Simon, S.R.; O’Riordan, T.; Schoonen, M. Role of pyrite in formation of hydroxyl radicals in coal: Possible implications for human health. Part. Fiber Toxicol. 2006, 3, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Hendryx, M. Mortality from heart, respiratory, and kidney disease in coal mining areas of Appalachia. Int. Arch. Occup. Environ. Health 2009, 82, 243–249. [Google Scholar] [CrossRef]
- Petsonk, E.L.; Rose, C.; Cohen, R. Coal mine dust lung disease- new lessons from an old exposure. Am. J. Respir. Crit. Care Med. 2013, 187, 1178–1185. [Google Scholar] [CrossRef]
- Graber, J.M.; Stayner, L.T.; Cohen, R.A.; Conroy, L.M.; Attfield, M.D. Respiratory disease mortality among US coal miners; results after 37years of follow-up. Occup. Environ. Med. 2014, 71, 30–39. [Google Scholar] [CrossRef]
- Buchanan, D.; Miller, B.G.; Soutar, C.A. Quantitative relations between exposure to respirable quartz and risk of silicosis. Occup. Environ. Med. 2003, 60, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Casswell, C.; Bergman, I.; Rossiter, C.E. The relation of radiological appearance in simple pneumoconiosis of coal workers to the content and composition of the lung. Inhaled Part. 1970, 2, 713–726. [Google Scholar]
- Su, W.C.; Chen, Y.; Bezerra, M.; Wang, J. Respiratory deposition of ultrafine welding fume particles. J. Occup. Environ. Hyg. 2019, 16, 694–706. [Google Scholar] [CrossRef]
- Choi, J.; Kim, C.S. Mathematical Analysis of Particle Deposition in Human Lungs: An Improved Single Path Transport Model. Inhal. Toxicol. 2007, 19, 925–939. [Google Scholar] [CrossRef] [PubMed]
- Asgharian, B.; Hofmann, W.; Bergmann, R. Particle deposition in a multiple-path model of the human lung. Aerosol Sci. Technol. 2001, 34, 332–339. [Google Scholar] [CrossRef]
- Plush, B.; Ren, T.; Aziz, N. A Critical Evaluation of Dust Sampling Methodologies in Longwall Mining in Australia and the USA. In Proceedings of the 12th Coal Operators’ Conference, University of Wollongong & the Australasian Institute of Mining and Metallurgy, Wollongong, NSW, Australia, 16–17 February 2012; pp. 193–201. [Google Scholar]
- Schroedl, C.J.; Go, L.H.T.; Cohen, R.A. Coal Mine Dust Lung Disease: The Silent Coal Mining Disaster. Curr. Respir. Med. Rev. 2016, 12, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Pneumoconiosis in China—Advances in prevention and control. National Institute of Occupational Health and Poison Control, Chinese CDC. 2005. Available online: http://www.ilo.int/wcmsp5/groups/public/---ed_protect/---protrav/---safework/documents/policy/wcms_110489.pdf (accessed on 30 November 2020).
- Yinlin, J.; Ting, R.; Peter, W.; Zhijun, W.; Zhaoyang, M.; Zhimin, W. A comparative study of dust control practices in Chinese and Australian longwall coal mines. Int. J. Min. Sci. Technol. 2016, 26, 199–208. [Google Scholar] [CrossRef]
- Morfeld, P.; Vautrin, H.J.; Kösters, A.; Lampert, K.; Piekarski, C. Components of coal mine dust exposure and the occurrence of prestages of pneumoconiosis. Appl. Occup. Environ. Hyg. 2011, 12, 973–979. [Google Scholar] [CrossRef]
- Zhao, J.Q.; Li, J.G.; Zhao, C.X. Prevalence of pneumoconiosis among young adults aged 24–44 years in a heavily industrialized province of China. J. Occup. Health 2019, 61, 73–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- United Kingdom Health and Safety Executive. Silicosis and Coal Workers’ Pneumoconiosis Statistics in Great Britain. Annual Statistics. 2019. Available online: www.hse.gov.uk/statistics/ (accessed on 28 November 2020).
- Pendergrass, E.P.; Lainhart, W.S.; Bristol, L.J.; Felson, B.; Jacobson, G. Historical perspectives of coal workers’pneumoconiosis in the united states. Ann. N. Y. Acad. Sci. 1972, 200, 835–854. [Google Scholar] [CrossRef]
- Gregory, J.C. Case of Peculiar Black Infiltration of the Whole Lungs, Resembling Melanosis. Edinb. Med. Surg. J. 1831, 36, 389–394. [Google Scholar] [PubMed]
- Liang, Y.X.; Wong, O.; Fu, H.; Hu, T.X.; Xue, S.Z. The economic burden of pneumoconiosis in China. Occup. Environ. Med. 2003, 60, 383–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- British Petrolium (BP). Statistical Review of World Energy. 2019. Available online: https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html (accessed on 30 February 2020).
- Ener Data. Coal and Lignite Production. 2019. Available online: https://yearbook.enerdata.net/coal-lignite/coal-production-data.html (accessed on 30 March 2020).
- DGMS (Directorate General of Mines Safety, Government of India). Respirable Dust Measurements and Control to Prevent Pneumoconiosis in Mines. DGME (Tech.) (S&T) Circular. 2010. Available online: https://elibrarywcl.files.wordpress.com/2015/02/dgms-tech-st-circular-no-01-of-2010-respirable-dust.pdf1T (accessed on 8 February 2018).
- NSW Government. Resources Regulator in NSW. Revision to Coal and Silica Exposure Standard. Available online: https://www.resourcesregulator.nsw.gov.au/safety-and-health/topics/airborne-contaminants-and-dust (accessed on 31 July 2020).
- Belle, B.K.; Plessis, J.D. Recent Advances in Dust Control Technology on South African Underground Coal Mines. Mine Ventilation Society of South Africa. 2002. Available online: http://hdl.handle.net/2263/59517 (accessed on 30 October 2002).
- Stansbury, R.C. Progressive massive fibrosis and coal mine dust lung disease: The continued resurgence of a preventable disease. Ann. Am. Thorac. Soc. 2018, 15, 1394–1396. [Google Scholar] [CrossRef]
- Shekarian, Y. An Investigation of the Effects of Mining Parameters on the Prevalence of Coal Worker’s Pneumoconiosis (CWP) Risks among the US Coal Miners. Master’s Thesis, New Mexico Institute of Mining and Technology, Socorro, NM, USA, 2020. [Google Scholar] [CrossRef]
- Corn, M.; Stein, F.; Hammad, Y.; Manekshaw, S.; Bell, W.; Penkala, S.J. Physical and chemical characteristics of respirable coal mine dust. Ann. NY Acad. Sci. 1972, 200, 17–36. [Google Scholar] [CrossRef]
- Doney, B.C.; Blackley, D.; Hale, J.M.; Halldin, C.; Kurth, L.; Syamlal, G.; Laney, A.S. Respirable coal mine dust at surface mines, United States, 1982–2017. Am. J. Ind. Med. 2020, 63, 232–239. [Google Scholar] [CrossRef]
- Decree of the Government of the Republic of Kazakhstan (DGRK). Technical Regulation: Requirements for the Safety of Coal and Production Processes for Their Extraction, processing, storage and transport thereof. FAOLEX Database 2010, 731. (In Russian) [Google Scholar]
- Abbasi, B.; Wang, X.; Chow, J.C.; Watson, J.G.; Peik, B.; Nasiri, V.; Riemenschnitter, K.B.; Elahifard, M. Review of Respirable Coal Mine Dust Characterization for Mass Concentration, Size Distribution and Chemical Composition. Minerals 2021, 11, 426. [Google Scholar] [CrossRef]
- Kim, H. Characteristics of Airborne Coal Mine Dust and Its Implication to Coal Workers’ Pneumoconiosis. Ph.D. Thesis, West Virginia University, Morgantown, WV, USA, 1989. [Google Scholar]
- Sapko, M.J.; Cashdollar, K.L.; Green, G.M. Coal dust particle size survey of US mines. J. Loss Prev. Process. Ind. 2007, 20, 616–620. [Google Scholar] [CrossRef]
- Thakur, P. Advanced Mine Ventilation: Respirable Coal Dust, Combustible Gas and Mine Fire Control. In Advanced Mine Ventilation, 1st ed.; Elsevier Science: Amsterdam, The Netherlands, 2019; pp. 105–136. [Google Scholar] [CrossRef]
- Coats, A.W.; Redfern, J.P. Thermogravimetyric Analysis: A Review. Analyst 1963, 88, 906–924. [Google Scholar] [CrossRef]
- Corn, M.; Stein, F.; Hammad, Y.; Manekshaw, S.; Freedman, R.; Hartstein, A.M. Physical and chemical properties of respirable coal dust from two United States mines. Am. Ind. Hyg. Assoc. J. 1973, 34, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Freedman, R.W.; Toma, S.Z.; Lang, H.W. On-filter Analysis of Quartz in Respirable Coal Dust by Infrared Absorption and X-ray Diffraction. Am. Ind. Hyg. Assoc. J. 1974, 35, 411–418. [Google Scholar] [CrossRef]
- Grayson, R.L.; Peng, S.S. Characterization of Respirable Dust on a Longwall Panel—A Case Study; The National Institute for Occupational Safety and Health (NIOSH): Washington, DC, USA, 1989; pp. 328–345. [Google Scholar]
- Wallace, W.E.; Harrison, J.C.; Grayson, R.L.; Keane, M.J.; Bolsaitis, P.; Kennedy, R.D.; Wearden, A.Q.; Attfield, M.D. Aluminosilicate surface contamination of respirable quartz particles from coal mine dusts and from clay works dusts. Ann. Occup. Hyg. 1994, 38, 439–445. [Google Scholar]
- Harrison, J.C.; Brower, P.S.; Attfield, M.D.; Doak, C.B.; Keane, M.J.; Grayson, R.L.; Wallace, W.E. Surface composition of respirable silica particles in a set of US anthracite and bituminous coal mine dusts. J. Aerosol Sci. 1997, 28, 689–696. [Google Scholar] [CrossRef]
- Su, W.C.; Chen, Y.; Xi, J. A new approach to estimate ultrafine particle respiratory deposition. Inhal. Toxicol. Int. Forum Respir. Res. 2019, 31, 35–43. [Google Scholar] [CrossRef]
- Mayoral, M.C.; Izquierdo, M.T.; Andrés, J.M.; Rubio, B. Different approaches to proximate analysis by thermogravimetry analysis. Thermochim. Acta 2001, 370, 91–97. [Google Scholar] [CrossRef]
- Zhang, W.; Jiang, S.; Hardacre, C.; Goodrich, P. A combined raman spectroscopic and thermogravimetric analysis study on oxidation of coal with different ranks. J. Anal. Methods Chem. 2015, 2015, 306874. [Google Scholar] [CrossRef] [Green Version]
- Phillips, K.; Keles, C.; Scaggs, M.; Johann, V.; Rezaee, M.; Sarver, E.A. Comparison of Coal vs. Mineral Mass Fractions in Respirable Dust in Appalachian Coal Mines. In Proceedings of the 16th North American Mine Ventilation Symposium, Golden, CO, USA, 17–22 June 2017. [Google Scholar]
- National Institute for Occupational Safety and Health. Rock Dust Partnership Meeting: Attributes of Rock Dust to Prevent Coal Dust Explosions; Pittsburgh Mining Research Division: Pittsburgh, PA, USA, 2016. [Google Scholar]
- Sellaro, R.; Sarver, E. Characterization of respirable dust in an underground coal mine in central Appalachia. Trans. Soc. Min. Metall. Explor. 2014, 336, 457–466. [Google Scholar]
- Sarver, E.; Keles, C.; Lowers, H.; Zulfikar, R.; Zell-Baran, L.; Vorajee, N.; Sanyal, S.; Rose, C.S.; Petsonk, E.L.; Murray, J.; et al. Analysis of Respirable Dust from 24 Underground Coal Mines in Four Geographic Regions of the United States. Am. J. Respir. Crit. Care Med. 2020, 201, A2635. [Google Scholar]
- Phillips, K.; Keles, C.; Sarver, E.; Scaggs-Witte, M. Coal and mineral mass fractions in personal respirable dust samples collected by central Appalachian miners. Miner. Eng. 2018, 70, 16–30. [Google Scholar]
- Stein, F.; Corn, M. Shape factors of narrow size range samples of respirable coal mine dust. Powder Technol. 1975, 13, 133–141. [Google Scholar] [CrossRef]
- Kriegseis, W.; Scharmann, A. Determination of free quartz surfaces in coal mine dust. Ann. Occup. Hyg. 1985, 29, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.W. Statistical Analysis of the Size and Elemental Composition of Airborne Coal Mine Dust. Ph.D. Thesis, PB 90-161647. Pennsylvania State University, State College, PA, USA, 1986. [Google Scholar]
- Volkwein, J.C.; Vinson, R.P.; Page, S.J.; McWilliams, L.J.; Joy, G.J.; Mischler, S.E.; Tuchman, D.P. Laboratory and Field Performance of a Continuously Measuring Personal Respirable Dust Monitor; National Institute for Occupational Safety and Health, Pittsburgh Research Laboratory: Pittsburgh, PA, USA, 2006. [Google Scholar]
- Colinet, J.F.; Listak, J.M. Silica and Respirable Content in Rock Dust Sample; National Institute for Occupational Safety and Health Office of Mine Safety and Health, Office of Mine Safety and Health Research: Pittsburgh, PA, USA, 2012. Available online: https://www.cdc.gov/Niosh/mining/UserFiles/works/pdfs/aotsp.pdf (accessed on 20 September 2020).
- Rider, J.P.; Colinet, J.F. An Overview of Fundamental and Emerging Technologies to Monitor and Control. Respirable Dust in Underground Coal Mines in The United States; National Institute for Occupational Safety and Health, Pittsburgh Research Laboratory: Pittsburgh, PA, USA, 2015. [Google Scholar]
- Kittelson, D.B. Engines and nanoparticles: A review. J. Aerosol Sci. 1998, 29, 575–588. [Google Scholar] [CrossRef]
- Jacobsen, M. New data on the relationship between simple pneumoconiosis and exposure to coal mine dust. Chest 1980, 78, 408–410. [Google Scholar] [CrossRef] [PubMed]
- Hurley, J.F.; Alexander, W.P.; Hazledine, D.J.; Jacobsen, M.; Maclaren, W.M. Exposure to respirable coal mine dust and incidence of progressive massive fibrosis. Br. J. Ind. Med. 1987, 44, 661–672. [Google Scholar] [PubMed] [Green Version]
- McCunney, R.J.; Morfeld, P.; Payne, S. What component of coal causes coal workers’ pneumoconiosis? J. Occup. Environ. Med. 2009, 51, 462–471. [Google Scholar] [CrossRef] [Green Version]
- Cohen, R.A.; Petsonk, E.L.; Rose, C.; Young, B.; Regier, M.; Najmuddin, A.; Abraham, J.L.; Churg, A.; Green, F.H.Y. Lung Pathology in US Coal Workers with Rapidly Progressive Pneumoconiosis Implicates Silica and Silicates. Am. J. Respir. Crit. Care Med. 2016, 193, 673–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maclaren, W.M.; Hurley, J.F.; Collins, H.P.; Cowie, A.J. Factors associated with the development of progressive massive fibrosis in British coalminers: A case-control study. Br. J. Ind. Med. 1989, 46, 597–607. [Google Scholar] [CrossRef] [Green Version]
- Antao, V.C.; Petsonk, E.L.; Sokolow, L.Z.; Wolfe, A.L.; Pinheiro, G.A.; Attfield, M.D. Rapidly progressive coal workers’ pneumoconiosis in the United States: Geographic clustering and other factors. Occup. Environ. Med. 2005, 62, 670–674. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, A.K.; Bhattacharya, S.K.; Sayed, H.N. Assessment of respirable dust and its freesilica contents in different Indian coalmines. Ind. Health 2005, 43, 277–284. Available online: https://www.ncbi.nlm.nih.gov/pubmed/15895842 (accessed on 20 May 2018).
- Voliotis, A.; Samara, C. Submicron particle number doses in the human respiratory tract: Implications for urban traffic and background environments. Environ. Sci. Pollut. Res. 2018, 25, 33724–33735. [Google Scholar] [CrossRef] [PubMed]
- Mine Safety and Health Administration. Federal Register, Rules and Regulations; Mine Safety and Health Administration: Arlington, VA, USA, 2014.
Device Name | Country/ Association | Description of the Sampling Operation | Sampling Positioning |
---|---|---|---|
Midget Impinger (1937) | U.S. Bureau of Mines | A hand-wrapped pump pulled the air into the impinger. Inside the device, the air emerged from a small orifice at high velocity and impinged on the bottom of a liquid-filled container. Then, particulate matters above one micrometer in size were trapped in the liquid and then counted. | Area sampling |
Gravimetric Sampler (1964) | United Kingdom (MRE) | This device first removed particles beyond the respirable sizes, and small particles under 7 µm in size were collected on an elutriator. The elutriator is required to be held in a steady horizontal position to work correctly. | Used as fixed-location in the return airway |
Personal Sampler (1969) | U.S. Atomic Energy Commission | Particles over 7 µm removed by 10-mm nylon cyclone. The cyclone is attached to a filter that collects respirable dust up to a few ounces. | Pinned to lapel and a pump mounted on belt |
CMDPSU (1970) | U.S. Department of Labor, MSHA | The air is drawn through a filter cassette that collects RCMD particles. Then at the end of each shift, filter cassettes are analyzed to measure the weight of dust. Polyvinyl chloride (PVC) filter with pore sizes less than 5 µm is usually used in this method. The total measurement of RCMD weight is averaged as an average concentration of RCMD for the shift. | Personal sampling instrument |
Tyndallometer and SIMSLIN * (1981) | U.S. Department of Labor, MSHA | The principles employed in Tyndallometer included light scattering, real-time aerosol monitor. The principles employed in SIMSLIN is beta-ray attenuation and the change in the resonant frequency of a piezoelectric crystal. | Adjustments to personal dust sampling tool |
CPDM (1991) | NIOSH | NIOSH began conducting research and development to produce a new type of personal dust monitoring unit using a Tapered Element Oscillating Microbalance (TEOM-based) personal dust monitor to provide readings of dust levels in a near-continuous manner by the PDM3700 instrument. | Personal Dust Monitor |
PDM3700 (2016) | Thermo-Fisher Scientific | This device is designed explicitly for MSHA’s rule for underground coal mine applications. PDM provides three primary current mass concentration, primary cumulative mass concentration, and percent of the limit. | Personal Dust Monitor |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shekarian, Y.; Rahimi, E.; Rezaee, M.; Su, W.-C.; Roghanchi, P. Respirable Coal Mine Dust: A Review of Respiratory Deposition, Regulations, and Characterization. Minerals 2021, 11, 696. https://doi.org/10.3390/min11070696
Shekarian Y, Rahimi E, Rezaee M, Su W-C, Roghanchi P. Respirable Coal Mine Dust: A Review of Respiratory Deposition, Regulations, and Characterization. Minerals. 2021; 11(7):696. https://doi.org/10.3390/min11070696
Chicago/Turabian StyleShekarian, Younes, Elham Rahimi, Mohammad Rezaee, Wei-Chung Su, and Pedram Roghanchi. 2021. "Respirable Coal Mine Dust: A Review of Respiratory Deposition, Regulations, and Characterization" Minerals 11, no. 7: 696. https://doi.org/10.3390/min11070696
APA StyleShekarian, Y., Rahimi, E., Rezaee, M., Su, W. -C., & Roghanchi, P. (2021). Respirable Coal Mine Dust: A Review of Respiratory Deposition, Regulations, and Characterization. Minerals, 11(7), 696. https://doi.org/10.3390/min11070696