Types of Tellurium Mineralization of Gold Deposits of the Aldan Shield (Southern Yakutia, Russia)
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Tellurium Minerals
3.2. Typification of Telluride Mineralization
3.2.1. Au-Ag-Te Mineral Type
3.2.2. Au-Bi-Te Mineral Type
3.2.3. Mixed Au-Ag-Bi-Te Mineral Type
3.3. Gold Speciations
3.4. Fluid Inclusions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bilibin, Y. Fundamentals of Placer Geology; State United Scientific and Technical Publishing House: Moscow, Russia, 1938; 504p. (In Russian) [Google Scholar]
- Petrovskaya, N.V.; Fastolovich, A.I. Nature of mineralization in Lebedinoe gold deposit (Aldan). Sov. Geol. 1940, 2–3, 54–65. (In Russian) [Google Scholar]
- Petrovskaya, N.V.; Kazarinov, A.I. Gold deposits of the Central Aldan. In Geology of the Main Gold Deposits of the USSR; TsNIGRI: Moscow, Russia, 1951; Volume 2, 154p. [Google Scholar]
- Vetluzhskikh, V.G.; Kim, A.A. Geological and commercial types of gold deposits in Southern Yakutia. Otechestvennaya Geol. 1997, 1, 16–24. (In Russian) [Google Scholar]
- Ugriumov, A.N.; Dvornik, G.P. Altered formations and gold mineralization in the ore region of the Mesozoic tectonic-magmatic activation (Aldan Shield). Proc. Ser. Geol. Geophys. 2000, 10, 119–128. (In Russian) [Google Scholar]
- Vetluzhskikh, V.G.; Kazansky, V.I.; Kochetkov, A.Y.; Yanovskiy, V.M. Central Aldan gold deposits. Geol. Ore Depos. 2002, 44, 405–434. [Google Scholar]
- Kazansky, V.I. The unique Central Aldan gold-uranium ore district (Russia). Geol. Ore Depos. 2004, 46, 167–181. [Google Scholar]
- Kochetkov, A.Y. Mesozoic gold-bearing ore-magmatic systems of the Central Aldan. Geol. Geophys. 2006, 47, 850–864. (In Russian) [Google Scholar]
- Boitsov, V.E.; Pilipenko, G.N.; Dorozhkina, L.A. Gold and gold-uranium deposits of Central Aldan. In Proceedings of the Large and Superlarge Deposits of Ore Minerals; Strategic Types of Ore Raw Materials; IGEM RAS: Moscow, Russia, 2006; Volume 2, pp. 215–240. (In Russian) [Google Scholar]
- Maksimov, E.P.; Uyutov, V.I.; Nikitin, V.M. The Central Aldan gold-uranium ore magmatogenic system, Aldan-Stanovoy shield, Russia. Russ. J. Pac. Geol. 2010, 4, 95–115. [Google Scholar]
- Dvornik, G.P. Gold-ore metasomatic formations of the Central Aldan region. Lithosphere 2012, 2, 90–105. (In Russian) [Google Scholar]
- Molchanov, A.V.; Terekhov, V.V.; Shatov, V.V.; Petrov, O.V.; Kukushkin, K.A.; Kozlov, D.S.; Shatova, N.V. Gold ore districts and ore clusters of the Aldanian metallogenic province. Reg. Geol. Metallog. 2017, 71, 93–111. (In Russian) [Google Scholar]
- Yablokova, S.V.; Dubakina, L.S.; Dmitrak, A.L.; Sokolova, T.V. Kuranakhite—New hypergenic mineral of tellurium. Zap. Vsesoyuznogo Mineral. Obs. 1975, 3, 310–313. (In Russian) [Google Scholar]
- Kim, A.A. Gold-telluride-selenide mineralization in the Kuranakh deposit (Central Aldan). Zap. Vserossiyskogo Mineral. Obs. 2000, 5, 51–57. (In Russian) [Google Scholar]
- Kim, A.A.; Zayakina, N.V.; Lavrent’yev, Y.G. Yafsoanite, (Zn1.38Ca1.36Pb0.26)3TeO6, a new tellurium mineral. Zapiski Vsesoyuznogo Mineral. Obshchestva 1982, 111, 118–121. (In Russian) [Google Scholar]
- Kim, A.A.; Zayakina, N.V.; Lavrentiev, Y.G.; Makhotko, V.F. Si-variety of dugganite—The first find in the USSR. Mineral. J. 1988, 10, 85–89. (In Russian) [Google Scholar]
- Kim, A.A.; Zayakina, N.V.; Makhotko, V.F. Kuksite Pb3Zn3TeO6(PO4)2 and cheremnukhite Pb3Zn3TeO6(VO4)2–New tellurates from the Kuranakh gold deposit (Central Aldan, Southern Yakutia). Zap. Vsesoyuznogo Mineral. Obs. 1990, 5, 50–57. (In Russian) [Google Scholar]
- Eluev, V.K.; Kiskin, V.A.; Kislyi, A.V. Report on the Results of the Detailed Exploration of the Samolazovskoe Gold Deposit Conducted in 1999–2000; Book I. The Text of the Report; Aldan, Russia, 2000, Unpublished work.
- Dobrovolskaya, M.G.; Razin, M.V.; Prokofiev, V.Y. The Lebedinoe gold deposit (Central Aldan): Mineral paragenesis, stages and conditions of formation. Geol. Ore Depos. 2016, 58, 308–326. [Google Scholar] [CrossRef]
- Grechishnikov, D.N.; Krajyshkin, S.A.; Bugrova, N.S. Russia, 2013 Report on the Completed Exploration Work at the Lunnoe Field for 2008–2013 with the Estimation of Reserves as of 01.01.2013. Unpublished work.
- Belogub, E.V.; Novoselov, K.A.; Artemyev, D.A.; Palenova, E.E. Trace contaminations of pyrite from the Elkonsky and Ryabinovsky types of gold deposits in the Central Aldan ore region (Sakha-Yakutia). Metallog. Anc. Mod. Oceans 2018, 1, 146–150. (In Russian) [Google Scholar]
- Novoselov, K.A.; Belogub, E.V.; Blinov, I.A. Te-canfieldite from ores of the Lunnoe Au-U deposit (Aldan region, Republic Sakha of Yakutia). Mineralogy 2019, 5, 49–56. (In Russian) [Google Scholar]
- Leont’ev, V.I.; Platonova, N.V. Features of the occurrence of gold mineralization of the Lebedinsky type in the Dzhekondinsky ore cluster (Central Aldan ore region). Reg. Geol. Metallog. 2016, 65, 84–92. (In Russian) [Google Scholar]
- Leont’ev, V.I.; Bushuev, Y.Y. Ore mineralization in adular-fluorite metasomatites: Evidence of the Podgolechnoe alkalic-type epithermal gold deposit (Central Aldan Ore District, Russia). Key Eng. Mater. 2017, 743, 417–421. [Google Scholar] [CrossRef]
- Krasnov, A.N.; Dorozhkina, L.A.; Trubkin, N.V.; Groznova, E.O.; Myznikov, I.K. Vanadium mineralization of Samolazovsky gold deposit, Central Aldan District. Izv. Vuzov. Geol. I Razved. 2004, 5, 70–72. (In Russian) [Google Scholar]
- Leontiev, V.I.; Bushuev, Y.Y.; Chernigovtsev, K.A. Samolazovskoe gold deposit (Central Aldan ore region): Geological structure and features of deep horizons mineralization. Reg. Geol. Metallog. 2018, 75, 90–103. (In Russian) [Google Scholar]
- Kondratieva, L.A.; Minakov, A.V.; Kravchenko, A.A. Gold-telluride mineralization of the Nimgerkan ore cluster (Aldan shield). In Proceedings of the VNPK; Publishing House of the NEFU: Yakutsk, Russia, 2020; pp. 224–229. (In Russian) [Google Scholar]
- Glushkova, E.G.; Nikiforova, Z.S. Comparative analysis of the proximal wash off placer gold and gold from metasomatites of Tabornoe ore field (West part of Aldan shield). Proc. Russ. Mineral. Soc. 2014, CXLIII, 66–73. (In Russian) [Google Scholar]
- Zubkov, Y.A.; Sagir, A.V.; Chvarova, N.V. “Uguysky” type of large-volume gold deposits formed in the linear weathering crust (South-Western Yakutia). Otechestvennaya Geol. 2020, 2, 32–45. (In Russian) [Google Scholar]
- Terekhov, A.V.; Molchanov, A.V.; Shatov, V.V.; Khorokhorina, E.I.; Soloviev, O.L. Typomorphism of native gold from the Cenozoic deposits of the Gorely creek and its connection with primary sources within the Verkhneamginskiy ore-alluvial cluster (Southern Yakutia). Reg. Geol. Metallog. 2016, 65, 93–103. (In Russian) [Google Scholar]
- Kazhenkina, A.G. Micromineral inclusions in native gold of the Tayakhtakh creek (Khatyrkhaysky ore-alluvial cluster). In Proceedings of the Congress of the Russian Mineralogical Society “200 years of RMO”, Saint-Petersburg, Russia, 9–12 October 2017; Volume 1, pp. 229–231. (In Russian). [Google Scholar]
- Anisimova, G.S.; Kondratieva, L.A.; Sokolov, E.P.; Kardashevskaya, V.N. Gold mineralization of the Lebedinsky and Kuranakh types in the Verkhneamginsky district (South Yakutia). Otechestvennaya Geol. 2018, 5, 3–13. (In Russian) [Google Scholar]
- Anisimova, G.S.; Kondratieva, L.A.; Kardashevskaia, V.N. Characteristics of Supergene Gold of Karst Cavities of the Khokhoy Gold Ore Field (Aldan Shield, East Russia). Minerals 2020, 10, 139. [Google Scholar] [CrossRef] [Green Version]
- Prokopyev, I.R.; Doroshkevich, A.G.; Ponomarchuk, A.V.; Redina, A.A.; Yegitova, I.V.; Ponomarev, J.D.; Sergeev, S.A.; Kravchenko, A.A.; Ivanov, A.I.; Sokolov, E.P.; et al. U-Pb SIMS and Ar-Ar geochronology, petrography, mineralogy and gold mineralization of the late Mesozoic Amga alkaline rocks (Aldan shield, Russia). Ore Geol. Rev. 2019, 109, 520–534. [Google Scholar] [CrossRef]
- Anisimova, G.S.; Sokolov, E.P. The Bodorono deposit—New gold ore object of the Southern Yakutia. Ores Met. 2014, 5, 49–57. (In Russian) [Google Scholar]
- Anisimova, G.S.; Sokolov, E.P. Altan-Chaidakh—Promising object of the Southern Yakutia. Otechestvennaya Geol. 2015, 5, 3–10. (In Russian) [Google Scholar]
- Anisimova, G.S.; Sokolov, E.P.; Kardashevskaya, V.N. Gold-rare-metal (Au-Mo-Te-Bi) mineralization of the Upper-Algominsky gold-bearing region (Southern Yakutia). Otechestvennaya Geol. 2017, 5, 12–22. (In Russian) [Google Scholar]
- Kardashevskaia, V.N.; Anisimova, G.S. Tellurides Pd, Ni, Bi, Pb and Ag from quartz veins of Dyvok ore occurrence (South Yakutia). In Proceedings of the VNPK; Publishing House of the NEFU: Yakutsk, Russia, 2019; pp. 32–35. (In Russian) [Google Scholar]
- MAIK. Tectonics, Geodynamics and Metallogeny of the Territory of the Republic of Sakha (Yakutia); MAIK(International Academic Publishing Company) “Nauka/Interperiodics”: Moscow, Russia, 2001; 571p. (In Russian) [Google Scholar]
- Anisimova, G.S.; Kondratieva, L.A.; Kardashevskaya, V.N. Weissbergite (TlSbS2) and avicennite (Tl2O3)—Rare thallium minerals. The first finds in Yakutia. Proc. Russ. Mineral. Soc. 2021, 2, 18–27. (In Russian) [Google Scholar]
- Petrovskaya, N.V.; Fastalovich, A.I.; Ivanov, A.A. Materials on Gold Mineralogy; General Directorate for the Production of Special Non-Ferrous Metals: Moscow, Russia, 1952; 347p. (In Russian) [Google Scholar]
- Nikolaeva, L.A.; Gavrilov, A.M.; Nekrasova, A.N.; Yablokova, S.V.; Shatilova, L.V. Native Gold of Ore and Placer Deposits of Russia; TSNIGRI: Moscow, Russia, 2015; 200p. (In Russian) [Google Scholar]
- Groves, D.I.; Goldfarb, R.J.; Gebre-Mariam, M.; Hagemann, S.G.; Robert, F. Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geol. Rev. 1998, 13, 7–27. [Google Scholar] [CrossRef]
- Kovalenker, V.A. Ore-forming systems of epithermal gold and silver deposits: Concepts, reality, models. Probl. Ore Geol. Petrol. Mineral. Geochem. 2004, 39, 160–184. (In Russian) [Google Scholar]
- Pals, D.W.; Spry, P.G.; Chryssoulis, S. Invisible gold and tellurium in arsenic rich pyrite from the Emperor gold deposit, Fiji: Implications for gold distribution and deposition. Econ. Geol. 2003, 98, 479–493. [Google Scholar] [CrossRef]
- Large, R.R.; Maslennikov, V.; Robert, F.; Danyushevsky, L.V.; Chang, Z. Multistage sedimentary and metamorphic origin of pyrite and gold in the giant Sukhoi Log deposit, Lena gold province, Russia. Econ. Geol. 2007, 102, 1233–1267. [Google Scholar] [CrossRef]
- Large, R.R.; Maslennikov, V. Invisible Gold Paragenesis and Geochemistry in Pyrite from Orogenic and Sediment-Hosted Gold Deposits. Minerals 2020, 10, 339. [Google Scholar] [CrossRef] [Green Version]
- Vikentyev, I.V. Invisible and microscopic gold in pyrite: Methods and new data for massive sulfide ores of the Urals. Geol. Ore Depos. 2015, 57, 237–265. [Google Scholar] [CrossRef]
- Gao, F.; Du, Y.; Pang, Z.; Du, Y.; Xin, F.; Xie, J. LA-ICP-MS Trace-Element Analysis of Pyrite from the Huanxiangwa Gold Deposit, Xiong’ershan District, China: Implications for ore genesis. Minerals 2019, 9, 157. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Pring, A. Mineral Transformations in Gold–(Silver) Tellurides in the Presence of Fluids: Nature and Experiment. Minerals 2019, 9, 167. [Google Scholar] [CrossRef] [Green Version]
- Kovalenker, V.A.; Safonov, Y.G.; Naumov, V.B.; Rusinov, V.L. The Epithermal Gold-Telluride Kochbulak Deposit. Geol. Ore Depos. 1997, 39, 107–128. [Google Scholar]
- Kovalenker, V.A.; Plotinskaya, O.Y.; Koneev, R.I. Mineralogy of epithermal gold-sulfide-telluride ores of the Kairagach deposit (Uzbekistan). New Data Miner. 2003, 38, 45–56. (In Russian) [Google Scholar]
- Islamov, F.; Kremenetsky, A.; Minzer, E.; Koneev, R. The Kochbulak-Kairagach ore field. In Au, Ag, and Cu Deposits of Uzbekistan. Excursion Guidebook; GFZ: Potsdam, Germany, 1999; pp. 91–106. [Google Scholar]
- Koneev, R.I. Nanomineralogy of Gold in Epithermal Ore Deposits of the Chatkalo-Kuramin Region; Delta: Saint Petersburg, Russia, 2006; 218p. (In Russian) [Google Scholar]
- Koneev, R.I.; Khalmatov, R.A.; Mun, Y.S. Nanomineralogy and nanochemistry of ores from gold deposits of Uzbekistan. Geol. Ore Depos. 2010, 52, 755–766. [Google Scholar] [CrossRef]
- Shackleton, J.M.; Spry, P.G.; Bateman, R. Telluride mineralogy of the Golden Mile deposit, Kalgoorlie, Western Australia. Can. Miner. 2003, 41, 1503–1524. [Google Scholar] [CrossRef] [Green Version]
- Kelley, K.D.; Romberger, S.B.; Beaty, D.W.; Pontius, J.A.; Snee, L.W.; Stein, H.J.; Thompson, T.B. Geochemical and geochronological constraints on the genesis of Au-Te deposits at Cripple Creek, Colorado. Econ. Geol. 1998, 93, 981–1012. [Google Scholar] [CrossRef]
- Ahmad, M.; Solomon, M.; Walshe, J.L. Mineralogical and geochemical studies of the Emperor gold telluride deposit, Fiji. Econ. Geol. 1987, 82, 234–270. [Google Scholar] [CrossRef]
- Cook, N.J.; Ciobanu, C.L.; Capraru, N.; Damian, G.; Cristea, P. Mineral assemblages from the vein salband at Sacarimb, Golden Quadrilateral, Romania: II. Tellurides. Geochem. Miner. Petrol. 2005, 43, 56–63. [Google Scholar]
- Plotinskaya, O.Y.; Novoselov, K.A.; Kovalenker, V.A.; Zeltmann, R. Variations of the Forms of Finding Commercial Components at the Bereznyakovskoye Field (Southern Urals). Materials of the Annual Meeting of the RMO. 2006. Available online: http://www.minsoc.ru/2006-2-51-0 (accessed on 17 October 2006). (In Russian).
- Zhai, D.; Liu, J. Gold-telluride-sulfide association in the Sandaowanzi epithermal Au-Ag-Te deposit, NE China: Implications for phase equilibrium and physicochemical conditions. Miner. Petrol. 2014, 108, 853–871. [Google Scholar] [CrossRef]
- Zhao, J.; Brugger, J.; Xia, F.; Ngothai, Y.; Chen, G.; Pring, A. Dissolution-reprecipitation vs. solid-state diffusion: Mechanism of mineral transformations in sylvanite, (AuAg)2Te4, under hydrothermal conditions. Am. Miner. 2013, 98, 19–32. [Google Scholar] [CrossRef]
- Zhao, J.; Brugger, J.; Grundler, P.V.; Xia, F.; Chen, G.; Pring, A. Mechanism and kinetics of a mineral transformation under hydrothermal conditions: Calaverite to metallic gold. Am. Miner. 2009, 94, 1541–1555. [Google Scholar] [CrossRef]
- Xu, W.; Zhao, J.; Brugger, J.; Chen, G.; Pring, A. Mechanism of mineral transformations in krennerite, Au3AgTe8, under hydrothermal conditions. Am. Miner. 2013, 98, 2086–2095. [Google Scholar] [CrossRef]
- Palyanova, G.A. Gold and Silver Minerals in Sulfide Ore. Geol. Ore Deposits 2020, 62, 383–406. [Google Scholar] [CrossRef]
- Nesterenko, G.V. Forecast of Gold Mineralization by Placers (on the Example of the Regions of Southern Siberia); Nauka: Novosibirsk, Russia, 1991; p. 191. (In Russian) [Google Scholar]
- Murzin, V.V.; Malyugin, A.A. Gold Typomorphism of the Supergene Zone (on the Example of the Urals); Ural Scientific Center AS: Sverdlovsk, Russia, 1987; p. 96. (In Russian) [Google Scholar]
- Gamyanin, G.N.; Nekrasov, I.Y.; Samusikov, V.P. Maldonite from the gold ore occurrences of the Eastern Yakutia. Mineral. J. 1986, 8, 65–71. (In Russian) [Google Scholar]
- Nekrasov, I.Y. Geochemistry, Geology and Genesis of Gold Deposits; Nauka: Moscow, Russia, 1991; p. 302. (In Russian) [Google Scholar]
- Ciobanu, C.L.; Cook, N.J.; Pring, A. Bismuth tellurides as gold scavengers. In Mineral Deposit Research: Meeting the Global Challenge; Mao, J.W., Bierlein, F.P., Eds.; Springer: Berlin, Germany, 2005; pp. 1383–1386. [Google Scholar]
- Tooth, B.; Brugger, J.; Ciobanu, C.L.; Liu, W. Modelling of gold-scavenging by bismuth melts coexisting with hydrothermal fluids. Geology 2008, 36, 815–818. [Google Scholar] [CrossRef]
- Okrugin, V.M.; Andreeva, E.; Etschmann, B.; Pring, A.; Li, K.; Zhao, J.; Griffiths, G.; Lumpkin, G.R.; Triani, G.; Brugger, J. Microporous gold: Comparison of textures from Nature and experiments. Am. Miner. 2014, 99, 1171–1174. [Google Scholar] [CrossRef]
- Tolstykh, N.D.; Palyanova, G.A.; Bobrova, O.V.; Sidorov, E.G. Mustard Gold of the Gaching Ore Deposit (Maletoyvayam Ore Field, Kamchatka, Russia). Minerals 2019, 9, 489. [Google Scholar] [CrossRef] [Green Version]
Tellurides | Sulfotellurides | Tellurates |
---|---|---|
calaverite (AuTe2) | Te-canfieldite (Ag8Sn(S,Te)6) | smirnite (Bi2TeO5) |
montbrayite Au2Te3 | cervelleite (Ag4TeS) | kuranakhite (PbMnTeO6) |
krennerite (AuAgTe) | tetradymite Bi2Te2S | yafsoanite ((Zn,Ca,Pb)3TeO6) |
sylvanite (AuAg)2Te4 | sulphotsumoite (Bi3Te2S) | kuksite (Pb3Zn3TeO6(PO4)2) |
petzite (Ag3AuTe2) stutzite (Ag4.7Te) | goldfieldite (Cu12(Te,Sb,As)4S13) | cheremnykhite (Pb3Zn3TeO6(VO4)2) |
hessite (Ag2Te) volynskite (AgBiTe2) | V,Si-dugganite (Pb3Zn3Te(As,V,Si)2O4(OH)) | |
tellurobismuthite (Bi2Te3) | Unidentified Tl tellurates | |
hedleyite (Bi7Te3) tsumoite (BiTe) | Unidentified Tl telluroantimonates | |
rucklidgeite (PbBi2Te4) | ||
merenskyite ((Pd,Pt)(Bi,Te)2) | ||
melonite (NiTe2) | ||
altaite (PbTe) | ||
coloradoite (HgTe) |
Ore Node | Deposit, Ore Occurrence | Metasomatites | Geochemical Association | Te Minerals | Associated Minerals | Fineness of Native Gold | Formation Temperature | References |
---|---|---|---|---|---|---|---|---|
Au-Ag-Te Mineral Type | ||||||||
Kuranakhsky | Bokovoye and Delbe | Jasperoids | Au-Te in pyrite-quartz metasomatites | Altaite, coloradoite, petzite, krennerite, calaverite, sylvanite | Cinnabar, arsenopyrite, stibnite | 700–900% | 200–150 | [14] |
Au-Te-Se and Au-tellurates in calcite veins | Altaite, coloradoite, petzite, kuranakhite, yafsoanite, kuksite, cheremnykhite, V,Si-dugganite | Clausthalite, naumannite, tiemannite, cinnabar, orpiment, descloizite | 720–920% | 120–70 | [13,14,15,16,17] | |||
Yukhtinsky | Samolazovskoye | Jasperoids | Au-Ag-Te | Hessite, coloradoite, calaverite | Cinnabar, tiemannite, acanthite, native Ag, sulvanite, roscoelite | [18,21,25,26] | ||
Elkonsky | Fedorovskoye (Lunnoye) | Gumbeites | Au-Ag-Te | Te-canfieldite, hessite, Ag sulphotelluride | Native Ag, acanthite, chlorargyrite, bromargyrite, Ag-Tl sulphosalts | [20,21,22] | ||
Ryabinovoye (Muscovitoviy and Noviy) | Sericite-microcline | Au-Ag-Te | Hessite, petzite, Pt-Pd tellurides | Uytenbogaardtite | [21] | |||
Dzhekon- dinsky | Podgolechnoye | Sericite-microcline | Au-Ag-Te | Hessite, petzite, montbrayite, stutzite, tellurobismuthite | Roscoelite | [24] | ||
Verkhne-Tokkinsky | Gross | Gumbeites | Au-Ag-Te | Hessite, petzite, Te-canfieldite | Acanthite | [29] | ||
Tabornoye | Gumbaites | Au-Ag-Te | Au and Ag tellurides | [28,29] | ||||
Verkhneam- ginsky | Khokhoy | Jasperoids | Au-Te-Sb-Tl | Tl tellurates and telluroantimonates | Weissbergite, avicennite, acanthite, chlorargyrite, Tl antimonates | 834–992% | [32,33,40] | |
Complex Au-Ag-Te-Bi Mineral Type | ||||||||
Lebedinsky | Lebedinoye, Radostnoye | Jasperoids | Au-Ag-Bi-Te | Hessite, calaverite, altaite, tetradymite | Native Ag, Bi, cinnabar, aikinite, lillianite, bursaite, Bi tennantite-annivite, tennantite, arsenosulvanite | [19,41] | ||
Nimger- kansky | Obman, Granitnoye | Argillizites | Au-Ag-Bi-Te | Hessite, petzite, calaverite, tellurobismuthite, volynskite, goldfieldite | Tennantite, jalpaite | 776–809% | [27] | |
Verkhne- amginsky | Khatyrkhay | Gumbeites, beresites | Au-Ag-Bi-Te | Tellurobismuthite, hessite, petzite, altaite, calaverite, tsumoite | Tennantite | 858–878% | 230–210 | [30,31,32,34] |
Verkhealgominsky | Dyvok | Argillizites, beresites | Au-Ag-Bi-Te | Hessite, altaite, volynskite, merenskyite, melonite, rucklidgeite | 650–830% | 230–200 | [38] and unpublished authors’ data | |
Tyrkandinsky | Spokoinoye, Maiskoye | Argillizites, beresites, sericite-microcline | Au-Ag-Bi-Te | Petzite, hessite, cervelleite, tellurobismuthite | Acanthite, galena, matildite, native Bi and Sn, scheelite | 761–783% | unpublished authors’ data | |
Au-Bi-Te Mineral Type | ||||||||
Verkhe- algominsky | Bodorono | Beresites, argillizites | Au-Bi-Te | Tellurobismuthite, tetradymite, hedleyite, Se hedleyite, smirnite | Native Bi, bismuthinite, lillianite, Se galena, laitakarite | 830–940% | 200–150 | [35,37] |
Altan-Chai-dakhsky | Lagernoye | Beresites, argillizites | Au-Bi-Te | Tetradymite, tellurobismuthite, sulphotsumoite | Bursaite, lillianite, cosalite, galenobismutite | 862–893% | 365–276 | [36] |
Guvilgrin- sky | Malenkoye | Argillizites | Au-Bi-Te | Tellurobismuthite, petzite | Galena, scheelite | 898–999% | unpublished authors’ data |
Mineral | Te | Au | Ag | Bi | Hg | Cu | Fe | Ni | Sn | Se | S | References |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Kuranakh. Pyrite-Quartz Metasomatites | ||||||||||||
Petzite (7) | 36.60 | 20.94 | 40.51 | 1.33 | [14] | |||||||
Krennerite (7) | 59.01 | 33.12 | 7.27 | |||||||||
Calaverite (9) | 57.91 | 41.52 | 0.33 | |||||||||
Sylvanite (5) | 63.33 | 25.62 | 10.21 | 0.30 | ||||||||
Kuranakh. Calcite Veins | ||||||||||||
Petzite (5) | 33.90 | 20.05 | 41.10 | 2.00 | 1.11 | 0.09 | [14] | |||||
Maiskoye | ||||||||||||
Hessite (5) | 37.60–38.59 38.40 | 61.61–62.74 62.34 | unpublished authors’ data | |||||||||
Cu cervelleite | 23.12–23.46 23.29 | 65.32–65.77 65.55 | 2.64–3.47 3.06 | 4.63–4.83 4.73 | ||||||||
Petzite (13) | 34.38–37.32 35.60 | 17.63–24.08 21.71 | 41.78–45.89 43.17 | |||||||||
Spokoinoye | ||||||||||||
Hessite (4) | 38.46–40.29 39.33 | 60.14–61.32 60.59 | unpublished authors’ data | |||||||||
Cervelleite (2) | 25.12–27.37 26.25 | 65.19-68.23 66.71 | 4.59–5.07 4.83 | |||||||||
Cu cervelleite (3) | 24.14-24.41 24.31 | 66.00-66.83 66.32 | 5.15-5.92 5.53 | 4.93-5.38 5.22 | ||||||||
Dyvok | ||||||||||||
Hessite (2) | 37.2–40 38.60 | 55.88–58.92 57.40 | 0–0.69 0.35 | 1.81–2.96 2.39 | 0–0.99 0.50 | unpublished authors’ data | ||||||
Nimgerkan | ||||||||||||
Hessite (14) | 33.99–38.99 36.32 | 59.27–63.44 61.32 | 0–2.92 1.77 | [27] | ||||||||
Petzite (3) | 31.73–32.95 32.20 | 23.68–24.79 24.40 | 40.96–41.53 41.24 | 0–3.85 2.46 | 0–2.41 0.80 | |||||||
Calaverite (2) | 47.98–48.73 48.35 | 46.85–46.96 46.9 | 1.79–2.36 2.07 | |||||||||
Podgolechnoye | ||||||||||||
Montbrayite | 46.60 | 53.40 | [24] | |||||||||
Petzite (8) | 30.78–34.92 33.54 | 21.98–27.21 25.29 | 38.81–42.00 41.25 | |||||||||
Stutzite (2) | 43.21–45.03 44.12 | 54.97–56.79 55.88 | ||||||||||
Hessite (13) | 35.61–40.22 38.06 | 0-4.4 0.34 | 58.31–64.39 61.66 | |||||||||
Lunnoye | ||||||||||||
Te-canfieldite (7) | 18.63–19.17 18.96 | 62.98–63.65 63.40 | 7.81–8.20 8.01 | 9.22–9.56 9.42 | [22] | |||||||
Khatyrkhay | ||||||||||||
Petzite | 32.67 | 25.31 | 41.86 | [34] | ||||||||
Hessite | 34.62 | 4.91 | 60.71 | 0.48 |
Mineral | Te | Ag | Bi | Pb | Hg | Cu | Fe | As | Ni | Pd | Se | S | References |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Kuranakh. Pyrite-Quartz Metasomatites | |||||||||||||
Altaite | 39.64 | 0.52 | 59.36 | [14] | |||||||||
Coloradoite | 39.90 | 0.82 | 58.05 | ||||||||||
Kuranakh. Calcite Veins | |||||||||||||
Altaite | 31.83 | 63.54 | 1.35 | 2.97 | [14] | ||||||||
Coloradoite | 38.58 | 0.80 | 1.00 | 0.11 | |||||||||
Dyvok | |||||||||||||
Merenskyite | 66.9 | 5.44 | 1.05 | 4.01 | 24.55 | unpublished authors’ data | |||||||
Altaite | 37.2 | 60.25 | 2.92 | ||||||||||
Melonite | 74.34 | 4.22 | 20.15 | 2.58 | |||||||||
Nimgerkan | |||||||||||||
Goldfieldite (2) | 14.43–15.07 14.75 | 49.66–50.70 50.18 | 0–1.08 0.54 | 8.92–9.53 9.23 | 26.14–26.58 26.36 | [27] |
Mineral | TeO3 | ZnO | CaO | PbO | As2O3 | P2O5 | V2O5 | Sb2O5 | SiO2 | MnO | H2O | References |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Yafsoanite (crystals) (11) | 42.11 | 24.65 | 16.79 | 12.82 | 0.21 | 2.02 | [14] | |||||
Yafsoanite (Concentric-zonal) (15) | 39.91 | 27.38 | 18.47 | 8.86 | 1.56 | 2.77 | ||||||
Zn-yafsoanite (5) | 38.33 | 50.23 | 0.60 | 9.19 | 2.13 | 1.16 | ||||||
Kuksite (9) | 14.30 | 20.76 | 1.45 | 50.59 | 10.38 | 1.81 | 0.40 | [16] | ||||
Cheremnykhite (10) | 13.76 | 18.89 | 53.04 | 2.02 | 9.25 | 2.16 | ||||||
V,Si-dugganite (8) | 14.15 | 18.33 | 51.94 | 7.10 | 4.30 | 0.25 | 2.37 | 0.25 | [15] | |||
Kuranakhite | 38.20 | 45.40 | 15.40 | [13] |
Mineral | Te | Sb | Tl | O | References |
---|---|---|---|---|---|
Tl tellurates (3) | 20.22–21.89 21.00 | 60.85–61.77 61.29 | 17.24–17.45 17.37 | unpublished authors’ data | |
Tl telluroantimonates (4) | 6.00–6.91 6.45 | 9.37–11.20 10.30 | 65.25–67.50 66.25 | 17.17–18.34 17.73 |
Mineral | Te | Ag | Bi | Pb | Cu | Fe | Sb | Se | S | References |
---|---|---|---|---|---|---|---|---|---|---|
Altan-Chaidakhsky | ||||||||||
Tellurobismuthite (3) | 45.25–46.3 45.72 | 51.46–52.47 51.98 | [36] | |||||||
Tetradymite (19) | 31.63–35.14 34.36 | 0–0.5 0.03 | 56.09–59.55 57.63 | 0–4.48 1.05 | 0–0.2 0.07 | 4.67–5.34 4.95 | ||||
Pb-tetradymite (7) | 30.6–31.12 30.90 | 0 | 53.46–55.01 54.53 | 6.00–7.97 7.06 | 0.02–0.15 0.09 | 5.64–5.84 5.72 | ||||
Sulphotsumoite (2) | 21.57–22.64 22.11 | 0–0.02 0.01 | 71.01–71.86 71.44 | 0.38–1.45 0.92 | 0.07–0.08 0.08 | 2.98–3.19 3.09 | ||||
Khatyrkhay | ||||||||||
Tellurobismuthite (18) | 47.36–49.67 48.54 | 0–0.30 0.05 | 49.27–52.17 50.31 | 0–0.08 0.01 | 0–0.11 0.03 | 0–0.09 0.04 | 0–0.03 0.00 | [32] | ||
Tetradymite (3) | 36.53–37.50 37.12 | 0.00 | 56.67–58.02 57.19 | 0–0.07 0.02 | 0–0.08 0.03 | 0.02–0.04 0.03 | 4.19–4.33 4.27 | |||
Tsumoite (3) | 34.59–38.00 35.75 | 62.00–65.41 64.25 | [30] | |||||||
Bodorono | ||||||||||
Hedleyite | 19.71 | 80.14 | [37] | |||||||
Se hedleyite (2) | 13.77–16.59 15.18 | 80.06–80.89 8.47 | 3.72–5.17 4.44 | |||||||
Sulphotsumoite | 22.49 | 64.86 | 4.4 | 5.59 | ||||||
Tetradymite | 35.84 | 59.32 | 4.84 | |||||||
Guvilgra | ||||||||||
Tellurobismuthite | 48.4 | 53.41 | unpublished authors’ data | |||||||
Nimgerkan | ||||||||||
Tellurobismuthite (10) | 42.93–46.38 44.91 | 49.42–55.68 52.57 | 0–5.81 1.47 | 0–2.65 0.88 | [27] | |||||
Volynskite (4) | 40.01–42.35 40.79 | 18.02–20.58 19.77 | 32.11–36.30 34.03 | 4.00–4.94 4.44 | 0–1.48 0.37 | |||||
Dyvok | ||||||||||
Volynskite | 41.48 | 18.53 | 34.48 | 1.6 | 2.69 | 0.69 | unpublished authors’ data | |||
Rucklidgeite | 47.35 | 36.78 | 12.62 | 4.49 | 0.59 | |||||
Maiskoye | ||||||||||
Tellurobismuthite (6) | 47.69–49.16 48.21 | 51.17–52.60 51.95 | unpublished authors’ data | |||||||
Podgolechnoye | ||||||||||
Tellurobismuthite (2) | 47.32–48.91 48.00 | 51.09–52.24 52.00 | [24] | |||||||
Lebedinoye | ||||||||||
Tetradymite (2) | 34.66–35.44 35.05 | 0.03 | 58.13–58.85 58.49 | 0–0.61 0.3 | 0.08–0.18 0.13 | 0–0.03 0.01 | 0.25–0.33 0.29 | 4.55–4.59 4.57 | [19] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kondratieva, L.A.; Anisimova, G.S.; Kardashevskaia, V.N. Types of Tellurium Mineralization of Gold Deposits of the Aldan Shield (Southern Yakutia, Russia). Minerals 2021, 11, 698. https://doi.org/10.3390/min11070698
Kondratieva LA, Anisimova GS, Kardashevskaia VN. Types of Tellurium Mineralization of Gold Deposits of the Aldan Shield (Southern Yakutia, Russia). Minerals. 2021; 11(7):698. https://doi.org/10.3390/min11070698
Chicago/Turabian StyleKondratieva, Larisa A., Galina S. Anisimova, and Veronika N. Kardashevskaia. 2021. "Types of Tellurium Mineralization of Gold Deposits of the Aldan Shield (Southern Yakutia, Russia)" Minerals 11, no. 7: 698. https://doi.org/10.3390/min11070698
APA StyleKondratieva, L. A., Anisimova, G. S., & Kardashevskaia, V. N. (2021). Types of Tellurium Mineralization of Gold Deposits of the Aldan Shield (Southern Yakutia, Russia). Minerals, 11(7), 698. https://doi.org/10.3390/min11070698