Hydrothermal Alteration at the San Vito Area of the Campi Flegrei Geothermal System in Italy: Mineral Review and Geochemical Modeling
Abstract
:1. Introduction
2. Site Study, Strategy, Materials and Methods
3. The San Vito 1 Well
3.1. Reviewed Subsurface Data
3.1.1. Downhole Lithology
- A ca. 15 m-thick calcarenitic level at −2378 m within a succession of conglomerate layers with volcanic elements and rare silty-marly and mycritic sedimentary clasts;
- Hundreds of meters of lavas at depths deeper than ca. 1000 m;
- n.10 (less than tens meters each) intrusive or subvolcanic bodies with the alkali-trachytic to latitic nature between −1200 and −2450 m.
- In the depth range 200–905 m: incoherent (between −200 and −330 m) to lithified (between −420 and −905 m) pyroclastic deposits, bearing trachy-latitic pumices, scoria (mostly between −200 and −400 m) and scarce lava clasts. The core at −804 m shows a zeolitized yellow tuff (Figure 2a), somewhat argillified and chloritized (see next Section 3.1.2 and Section 4.1, and Appendix B). It is massive, friable, heterogeneous both in the type of components and grain sizes and significantly vacuolar, showing the usual aspect of some outcropping tuffs in the area. Denser and more porous clasts and crystals (mostly feldspars and minor pyroxenes and biotites) are distinguishable at the macroscopic inspection within a sandy-like matrix.
- In the depth range 905–975 m: chaotic tuffs. Bruni et al. (in [6]) indicated “re-arranged pyroclastic products, rich in phenocrysts (sanidine, plagioclase, aegirinaugite, biotite, detrital quartz and trachytic-to-latitic lava clasts), and presence of fragments of fossils and glauconite”.
- In the depth range 975–1660 m: chaotic fossiliferous alternating with tuffites, subordinate trachytic-to-latitic lavas and rare chaotic tuffs. At ca. 1200 m the first latitic subintrusive body appears. Figure 2a shows the chaotic tuff samples at ca. 1412–1418 m of depth. The cores are very similar to each other’s, being greenish in color, compact, vacuolar and heterogeneous due to the occurrence of lava- and pumice-type clasts with a size up to several millimeters in an ashy-to-sandy matrix. Bruni et al. suggested “a coastal depositional environment (littoral fauna association)”. The facies here varies from argillic to phyllic (see next Section 3.1.2 and Section 4.1 and Appendix B).
- In the depth range 1660–2365 m: an alternation of subaerial chaotic tuffs, latitic tuffs, trachytic-to-latitic lavas and subvolcanic latitic and trachytic bodies. The sample from the depth of 1713 m is shown in Figure 2a; it was cored at the deeper limit of the phyllic facies (see next Section 3.1.2 and Section 4.1 and Appendix B). It has a similar aspect to the three shallower cores, i.e., greenish, bearing clasts and crystals (feldspars and pyroxene), although it appears more friable and has a higher porosity. The friability is higher in the deeper core at 2130 m of depth, which has a tendency to be more homogenous and shows a stronger greenish color.
- In the depth range 2365–2500 m: an alternation of chaotic tuffs, chaotic tuffites, tuffs, subvolcanic trachy-latitic bodies and the calc-arenitic level.
- In the depth range 2500–2600 m: fine grained chaotic tuffites with trachy-latitic features. The cores display the variable aspect of the deposits (Figure 2a). The cores at 2514 m and 2516 m of depth are brownish to reddish, granular, heterogeneous and cohesive. They strongly differ from the 2515 m-core that is a compact greenish homogeneous block. At these depths, the hydrothermal alteration is stronger with silicification and propylitization processes that obliterated the original rock (see Section 3.1.2 and Appendix B).
- In the depth range 2600–2840 m: conglomerates with trachy-latitic volcanic clasts and sedimentary elements. Bruni et al. (in [6]) indicated “(silty-marly and mycritic)” features for sediments, in agreement with the core look (Figure 2a). These cores at 2683 m and 2684 m have a rust-like appearance and granular texture. The shallow one is more compact. Here, intense thermometamorphism has been described with scapolite and neogenic biotite and actinolite (see Appendix B).
- In the depth range 2840–3046 m: metatuffs or thermometamorphic rocks with recrystallization and obliteration of the original rocks (see Appendix B). Bruni et al. (in [6]) suggested a possible “pyroclastic origin (there still have traces of pumices and lavic clasts”. The macroscopic aspect of the metatuff is in Figure 2a. It is a massive greenish homogeneous block with a reddish portion.
3.1.2. Downhole Mineralogy
4. Analytical Results
4.1. Protolith and Hydrothermal Alteration Minerals
5. Numerical Modeling
5.1. Data Set for the Formation Reservoir
5.1.1. Reservoir Stratigraphy and Mineralogy
5.1.2. Rock Geochemistry
5.1.3. Fluid Geochemistry, Temperature and Permeability
5.2. Model Setup
5.2.1. Flow Conditions
5.2.2. Geochemical Modeling
6. Discussion
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- (1)
- This appendix lists the references that are included in the AGIP’s report and that are not available in the most common search channels of scientific literature.
- (2)
- Antrodicchia, E.; Cioni, R.; Chiodinim G.; Gagliardi, R.; Marini, L. Geochemical temperature of the thermal waters of Phlegraean Fields (Naples, Italy). Geothermal Resources Council Transactions, 1985, Vol. 9-Part. I.
- (3)
- Balducci, S.; Chelini, W.; Ottonello, G. Hydrothermal equilibria in the active Mofete geothermal system (Phlegrean Fields). Fifth Symposium Water-Rock Interaction, August 1986, Reykjavik -1celand, pp. 8–17.
- (4)
- Bruni, P.; Sbrana, A.; Silvano, A. Risultati geologici preliminari dell’esplorazione geotermica nell’area dei Campi Flegrei. Rend. Soc. Geol. It. 1981, Vol.4, pp. 231–236.
- (5)
- Bruni, P.; Chelini, P.; Chelini, W.; Sbrana, A.; Verdiani, G. Deep exploration of the S. Vito Area-Pozzuoli-Na, Well S. Vito lV. Third International Seminar, European Geothermal Update Munich 29 November–l December 1983, pp. 390–406.
- (6)
- Carella, R.; Guglielminetti, M. Multiple reservoirs in the Mofete Fields, Naples Italy. Ninth Workshop on Geothermal Reservoir Engineering. Stanford University, California, 13–15 December 1983.
- (7)
- Carella, R.; Palmerini, C.G.; Stefani, G.C.; Verdiani G. Geothermal activity in Italy: Present status and prospects. Seminar on Utilization of Geothermal energy for electric power production and space heating, Florence 14–17 May 1984.
- (8)
- Carella, R. Status of geothermal activities by AGIP in Italy”. Geothermal Resources Council Transaction, 1985, Vol. 9-Part.1.
- (9)
- Chelini, W. Alcuni aspetti geologico petrografici sul sistema geotermico Flegreo. Rendiconti della Società Italiana di Mineralogia e Petrologia, 1984, Vol. 39, pp. 387–391.
- (10)
- Cioppi, D.; Ghelardono, R.; Panci, G.; Sommaruga, C.; Verdiani, G. Demonstration project: Evaluation of the Mofete high enthalpy reservoir (Phlegraean Fields). Commission of the European Communities, Second International Seminar-Palais des Congres, Strasbourg, 4–6 March 1980.
- (11)
- La Torre, P.; Nannini, R. Geothermal well location in southern Italy: The contribution of geophysical methodstt. Bollettino di Geofisica Teorica ed Applicata, 1980, Vol.XX11 n.87, pp. 201–209.
Appendix B
Appendix C
References
- Barbier, E. Geothermal Energy Technology and Current Status: An Overview. Renew. Sustain. Energy Rev. 2002, 6, 3–65. [Google Scholar] [CrossRef]
- Raharjo, I.B.; Allis, R.G.; Chapman, D.S. Volcano-Hosted Vapor-Dominated Geothermal Systems in Permeability Space. Geothermics 2016, 62, 22–32. [Google Scholar] [CrossRef]
- Wyering, L.; Villeneuve, M.; Wallis, I.; Siratovich, P.; Kennedy, B.; Gravley, D.; Cant, J. Mechanical and Physical Properties of Hydrothermally Altered Rocks, Taupo Volcanic Zone, New Zealand. J. Volcanol. Geotherm. Res. 2014, 288, 76–93. [Google Scholar] [CrossRef]
- Hurwitz, S.; Lowenstern, J.B. Dynamics of the Yellowstone Hydrothermal System. Rev. Geophys. 2014, 52, 375–411. [Google Scholar] [CrossRef]
- Piochi, M.; Kilburn, C.R.J.; Vito, M.A.D.; Mormone, A.; Tramelli, A.; Troise, C.; Natale, G.D. The Volcanic and Geothermally Active Campi Flegrei Caldera: An Integrated Multidisciplinary Image of Its Buried Structure. Int. J. Earth Sci. 2014, 103, 401–421. [Google Scholar] [CrossRef]
- AGIP. Geologia e Geofisica del Sistema Geotermico Dei Campi Flegrei; Technical Report; SERG-ESG: San Donato, Italy, 1987. [Google Scholar]
- Rosi, M.; Sbrana, A. Phlegrean Fields; Quaderni della Ricerca Scientifica, Centro Nazionale delle Ricerche: Rome, Italy, 1987; pp. 114–171. [Google Scholar]
- De Vivo, B.; Belkin, H.E.; Barbieri, M.; Chelini, W.; Lattanzi, P.; Lima, A.; Tolomeo, L. The Campi Flegrei (Italy) Geothermal System: A Fluid Inclusion Study of the Mofete and San Vito Fields. J. Volcanol. Geotherm. Res. 1989, 36, 303–326. [Google Scholar] [CrossRef]
- Cardellini, C.; Chiodini, G.; Frondini, F.; Avino, R.; Bagnato, E.; Caliro, S.; Lelli, M.; Rosiello, A. Monitoring Diffuse Volcanic Degassing during Volcanic Unrests: The Case of Campi Flegrei (Italy). Sci. Rep. 2017, 7, 1–5. [Google Scholar] [CrossRef] [Green Version]
- De Natale, G.; Troise, C.; Mark, D.; Mormone, A.; Piochi, M.; Vito, M.A.D.; Isaia, R.; Carlino, S.; Barra, D.; Somma, R. The Campi Flegrei Deep Drilling Project (CFDDP): New Insight on Caldera Structure, Evolution and Hazard Implications for the Naples Area (Southern Italy). Geochem. Geophys. Geosyst. 2016, 17, 4836–4847. [Google Scholar] [CrossRef]
- Caprarelli, G.; Tsutsumi, M.; Turi, B. Chemical and Isotopic Signatures of the Basement Rocks from the Campi Flegrei Geothermal Field (Naples, Southern Italy): Inferences about the Origin and Evolution of Its Hydrothermal Fluids. J. Volcanol. Geotherm. Res. 1997, 76, 63–82. [Google Scholar] [CrossRef]
- Chiodini, G.; Frondini, F.; Cardellini, C.; Granieri, D.; Marini, L.; Ventura, G. CO2 Degassing and Energy Release at Solfatara Volcano, Campi Flegrei, Italy. J. Geophys. Res. Solid Earth 2001, 106, 16213–16221. [Google Scholar] [CrossRef]
- Chiodini, G.; Paonita, A.; Aiuppa, A.; Costa, A.; Caliro, S.; Martino, P.D.; Acocella, V.; Vandemeulebrouck, J. Magmas near the Critical Degassing Pressure Drive Volcanic Unrest towards a Critical State. Nat. Commun. 2016, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Chiodini, G.; Vandemeulebrouck, J.; Caliro, S.; D’Auria, L.; Martino, P.D.; Mangiacapra, A.; Petrillo, Z. Evidence of Thermal-Driven Processes Triggering the 2005–2014 Unrest at Campi Flegrei Caldera. Earth Planet. Sci. Lett. 2015, 414, 58–67. [Google Scholar] [CrossRef]
- D’Auria, L.; Pepe, S.; Castaldo, R.; Giudicepietro, F.; Macedonio, G.; Ricciolino, P.; Tizzani, P.; Casu, F.; Lanari, R.; Manzo, M.; et al. Magma Injection beneath the Urban Area of Naples: A New Mechanism for the 2012–2013 Volcanic Unrest at Campi Flegrei Caldera. Sci. Rep. 2015, 5, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aiuppa, A.; Avino, R.; Brusca, L.; Caliro, S.; Chiodini, G.; D’Alessandro, W.; Favara, R.; Federico, C.; Ginevra, W.; Inguaggiato, S.; et al. Mineral Control of Arsenic Content in Thermal Waters from Volcano-Hosted Hydrothermal Systems: Insights from Island of Ischia and Phlegrean Fields (Campanian Volcanic Province, Italy). Chem. Geol. 2006, 229, 313–330. [Google Scholar] [CrossRef]
- Aiuppa, A.; Tamburello, G.; Napoli, R.D.; Cardellini, C.; Chiodini, G.; Giudice, G.; Grassa, F.; Pedone, M. First Observations of the Fumarolic Gas Output from a Restless Caldera: Implications for the Current Period of Unrest (2005–2013) at Campi Flegrei. Geochem. Geophys. Geosyst. 2013, 14, 4153–4169. [Google Scholar] [CrossRef]
- Troise, C.; De Natale, G.; Schiavone, R.; Somma, R.; Moretti, R. The Campi Flegrei Caldera Unrest: Discriminating Magma Intrusions from Hydrothermal Effects and Implications for Possible Evolution. Earth Sci. Rev. 2019, 188, 108–122. [Google Scholar] [CrossRef]
- Sacchi, M.; Pepe, F.; Corradino, M.; Insinga, D.D.; Molisso, F.; Lubritto, C. The Neapolitan Yellow Tuff Caldera Offshore the Campi Flegrei: Stratal Architecture and Kinematic Reconstruction during the Last 15ky. Mar. Geol. 2014, 354, 15–33. [Google Scholar] [CrossRef] [Green Version]
- Orsi, G.; Vita, S.D.; Vito, M.D. The Restless, Resurgent Campi Flegrei Nested Caldera (Italy): Constraints on Its Evolution and Configuration. J. Volcanol. Geotherm. Res. 1996, 74, 179–214. [Google Scholar] [CrossRef]
- Di Vito, M.A.; Isaia, R.; Orsi, G.; Southon, J.D.; Vita, D.S.; d’Antonio, M.; Piochi, M. Volcanism and Deformation since 12,000 Years at the Campi Flegrei Caldera (Italy)). J. Volcanol. Geotherm. Res. 1999, 91, 221–246. [Google Scholar] [CrossRef]
- Di Vito, M.A.; Acocella, V.; Aiello, G.; Barra, D.; Battaglia, M.; Carandente, A.; Del Gaudio, C.; De Vita, S.; Ricciardi, G.P.; Ricco, C.; et al. Magma transfer at Campi Flegrei caldera (Italy) before the 1538 AD eruption. Sci. Rep. 2016, 6, 32245. [Google Scholar] [CrossRef]
- Piochi, M.; Mormone, A.; Strauss, H.; Balassone, G. The Acid-Sulfate Zone and the Mineral Alteration Styles of the Roman Puteolis (Neapolitan Area, Italy): Clues on Fluid Fracturing Progression at the Campi Flegrei Volcano. Solid Earth 2019, 10, 1809–1831. [Google Scholar] [CrossRef] [Green Version]
- Piochi, M.; Bruno, P.P.; De Astis, G. Relative Roles of Rifting Tectonics and Magma Ascent Processes: Inferences from Geophysical, Structural, Volcanological, and Geochemical Data for the Neapolitan Volcanic Region (Southern Italy). Geochem. Geophys. Geosystems 2005, 6. [Google Scholar] [CrossRef]
- Moretti, R.; Natale, G.D.; Troise, C. A Geochemical and Geophysical Reappraisal to the Significance of the Recent Unrest at Campi Flegrei Caldera (Southern Italy). Geochem. Geophys. Geosyst. 2017, 18, 1244–1269. [Google Scholar] [CrossRef]
- Moretti, R.; De Natale, G.; Troise, C. Hydrothermal versus magmatic: Geochemical views and clues into the unrest dilemma at Campi Flegrei. In Vesuvius, Campi Flegrei, and Campanian Volcanism; Elsevier: Amsterdam, The Netherlands, 2020; pp. 371–406. [Google Scholar]
- Photos-Jones, E.; Christidis, G.E.; Piochi, M.; Keane, C.; Mormone, A.; Balassone, G.; Perdikatsis, V.; Leanord, A. Testing Greco-Roman Medicinal Minerals: The Case of Solfataric Alum. J. Archaeol. Sci. Rep. 2016, 10, 82–95. [Google Scholar] [CrossRef] [Green Version]
- Guglielminetti, M. Mofete Geothermal Field. Geothermics 1986, 15, 781–790. [Google Scholar] [CrossRef]
- Mormone, A.; Troise, C.; Piochi, M.; Balassone, G.; Joachimski, M.; Natale, G.D. Mineralogical, Geochemical and Isotopic Features of Tuffs from the CFDDP Drill Hole: Hydrothermal Activity in the Eastern Side of the Campi Flegrei Volcano (Southern Italy). J. Volcanol. Geotherm. Res. 2015, 290, 39–52. [Google Scholar] [CrossRef] [Green Version]
- Carlino, S.; Piochi, M.; Tramelli, A.; Mormone, A.; Montanaro, C.; Scheu, B.; Klaus, M. Field-Scale Permeability and Temperature of Volcanic Crust from Borehole Data: Campi Flegrei, Southern Italy. J. Volcanol. Geotherm. Res. 2018, 357, 276–286. [Google Scholar] [CrossRef]
- Rosi, M.; Sbrana, A.; Principe, C. The Phlegraean Fields: Structural Evolution, Volcanic History and Eruptive Mechanisms. J. Volcanol. Geotherm. Res. 1983, 17, 273–288. [Google Scholar] [CrossRef]
- Valentino, G.M.; Stanzione, D. Source Processes of the Thermal Waters from the Phlegraean Fields (Naples, Italy) by Means of the Study of Selected Minor and Trace Elements Distribution. Chem. Geol. 2003, 194, 245–274. [Google Scholar] [CrossRef]
- Valentino, G.M.; Stanzione, D. Geochemical Monitoring of the Thermal Waters of the Phlegraean Fields. J. Volcanol. Geotherm. Res. 2004, 133, 261–289. [Google Scholar] [CrossRef]
- Corrado, G.; Lorenzo, S.D.; Mongelli, F.; Tramacere, A.; Zito, G. Surface Heat Flow Density at the Phlegrean Fields Caldera (SOUTHERN ITALY). Geothermics 1998, 27, 469–484. [Google Scholar] [CrossRef]
- Chiodini, G.; Caliro, S.; Aiuppa, A.; Avino, R.; Granieri, D.; Moretti, R.; Parello, F. First 13 C/12 C Isotopic Characterisation of Volcanic Plume CO 2. Bull. Volcanol. 2011, 73, 531–542. [Google Scholar] [CrossRef]
- Valentino, G.M.; Cortecci, G.; Franco, E.; Stanzione, D. Chemical and Isotopic Compositions of Minerals and Waters from the Campi Flegrei Volcanic System, Naples, Italy. J. Volcanol. Geotherm. Res. 1999, 91, 329–344. [Google Scholar] [CrossRef]
- Piochi, M.; Mormone, A.; Balassone, G.; Strauss, H.; Troise, C.; Natale, G.D. Native Sulfur, Sulfates and Sulfides from the Active Campi Flegrei Volcano (Southern Italy): Genetic Environments and Degassing Dynamics Revealed by Mineralogy and Isotope Geochemistry. J. Volcanol. Geotherm. Res. 2015, 304, 180–193. [Google Scholar] [CrossRef]
- Piochi, M.; Mastrolorenzo, G.; Pappalardo, L. Magma Ascent and Eruptive Processes from Textural and Compositional Features of Monte Nuovo Pyroclastic Products, Campi Flegrei, Italy. Bull. Volcanol. 2005, 67, 663–678. [Google Scholar] [CrossRef]
- Allard, P.; Maiorani, A.; Tedesco, D.; Cortecci, G.; Turi, B. Isotopic Study of the Origin of Sulfur and Carbon in Solfatara Fumaroles, Campi Flegrei Caldera. J. Volcanol. Geotherm. Res. 1991, 48, 139–159. [Google Scholar] [CrossRef]
- Orsi, G.; Civetta, L.; Gaudio, C.D.; Vita, S.D.; Vito, M.A.D.; Isaia, R.; Petrazzuoli, S.M.; Ricciardi, G.P.; Ricco, C. Short-Term Ground Deformations and Seismicity in the Resurgent Campi Flegrei Caldera (Italy): An Example of Active Block-Resurgence in a Densely Populated Area. J. Volcanol. Geotherm. Res. 1999, 91, 415–451. [Google Scholar] [CrossRef]
- Bodnar, R.J.; Cannatelli, C.; Vivo, B.D.; Lima, A.; Belkin, H.E.; Milia, A. Quantitative Models for Magma Degassing and Ground Deformation (Bradyseism) at Campi Flegrei, Italy: Implications for Future Eruptions. Geology 2007, 35, 791–794. [Google Scholar] [CrossRef]
- Kilburn, C.R.J.; Natale, G.D.; Carlino, S. Progressive Approach to Eruption at Campi Flegrei Caldera in Southern Italy. Nat. Commun. 2017, 8, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woo, J.Y.L.; Kilburn, C.R.J. Intrusion and Deformation at Campi Flegrei, Southern Italy: Sills, Dikes, and Regional Extension. J. Geophys. Res. Solid Earth 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Pruess, K. Grid Orientation and Capillary Pressure Effects in the Simulation of Water Injection into Depleted Vapor Zones. Geothermics 1991, 20, 257–277. [Google Scholar] [CrossRef]
- Todesco, M.; Chiodini, G.; Macedonio, G. Monitoring and Modelling Hydrothermal Fluid Emission at La Solfatara (Phlegrean Fields, Italy). An Interdisciplinary Approach to the Study of Diffuse Degassing. J. Volcanol. Geotherm. Res. 2003, 125, 57–79. [Google Scholar] [CrossRef]
- Todesco, M.; Berrino, G. Modeling Hydrothermal Fluid Circulation and Gravity Signals at the Phlegraean Fields Caldera. Earth Planet. Sci. Lett. 2005, 240, 328–338. [Google Scholar] [CrossRef]
- Chiodini, G.; Caliro, S.; Cardellini, C.; Granieri, D.; Avino, R.; Baldini, A.; Donnini, M.; Minopoli, C. Long-Term Variations of the Campi Flegrei, Italy, Volcanic System as Revealed by the Monitoring of Hydrothermal Activity. J. Geophys. Res. Solid Earth 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Troiano, A.; Giuseppe, M.G.D.; Petrillo, Z.; Troise, C.; Natale, G.D. Ground Deformation at Calderas Driven by Fluid Injection: Modelling Unrest Episodes at Campi Flegrei (Italy). Geophys. J. Int. 2011, 187, 833–847. [Google Scholar] [CrossRef] [Green Version]
- Petrillo, Z.; Chiodini, G.; Mangiacapra, A.; Caliro, S.; Capuano, P.; Russo, G.; Cardellini, C.; Avino, R. Defining a 3D Physical Model for the Hydrothermal Circulation at Campi Flegrei Caldera (Italy). J. Volcanol. Geotherm. Res. 2013, 264, 172–182. [Google Scholar] [CrossRef]
- Jasim, A.; Whitaker, F.F.; Rust, A.C. Impact of Channelized Flow on Temperature Distribution and Fluid Flow in Restless Calderas: Insight from Campi Flegrei Caldera, Italy. J. Volcanol. Geotherm. Res. 2015, 303, 157–174. [Google Scholar] [CrossRef] [Green Version]
- D’Auria, L.; Giudicepietro, F.; Aquino, I.; Borriello, G.; Gaudio, C.D.; Bascio, D.L.; Martini, M.; Ricciardi, G.P.; Ricciolino, P.; Ricco, C. Repeated Fluid-Transfer Episodes as a Mechanism for the Recent Dynamics of Campi Flegrei Caldera (1989–2010). J. Geophys. Res. Solid Earth 2011, 116. [Google Scholar] [CrossRef]
- Mormone, A.; Tramelli, A.; Vito, M.A.D.; Piochi, M.; Troise, C.; Natale, G.D. Secondary Hydrothermal Minerals in Buried Rocks at the Campi Flegrei Caldera, Italy: A Possible Tool to Understand the Rock-Physics and to Assess the State of the Volcanic System. Period. Mineral. 2011, 80, 385. [Google Scholar] [CrossRef]
- Xu, T.; Apps, J.A.; Pruess, K.; Yamamoto, H. Numerical Modeling of Injection and Mineral Trapping of CO2 with H2S and SO2 in a Sandstone Formation. Chem. Geol. 2007, 242, 319–346. [Google Scholar] [CrossRef] [Green Version]
- Xu, T.; Pruess, K. Modeling Multiphase Non-Isothermal Fluid Flow and Reactive Geochemical Transport in Variably Saturated Fractured Rocks: 1. Methodology. Am. J. Sci. 2001, 301, 16–33. [Google Scholar] [CrossRef] [Green Version]
- O’Sullivan, M.J.; Bodvarsson, G.S.; Pruess, K.; Blakeley, M.R. Society of Petroleum Engineers Journal. Fluid Heat Flow Gas-Rich Geotherm. Reserv. 1985, 25, 215–226. [Google Scholar]
- Battistelli, A.; Calore, C.; Pruess, K. The Simulator TOUGH2/EWASG for Modelling Geothermal Reservoirs with Brines and Non-Condensible Gas. Geothermics 1997, 26, 437–464. [Google Scholar] [CrossRef]
- Di Renzo, V.; Arienzo, I.; Civetta, L.; D’Antonio, M.; Tonarini, S.; Vito, M.A.D.; Orsi, G. The Magmatic Feeding System of the Campi Flegrei Caldera: Architecture and Temporal Evolution. Chem. Geol. 2011, 281, 227–241. [Google Scholar] [CrossRef]
- Orsi, G.; Civetta, L.; D’Antonio, M.; Di Girolamo, P.; Piochi, M. Step-Filling and Development of a Three-Layer Magma Chamber: The Neapolitan Yellow Tuff Case History. J. Volcanol. Geotherm. Res. 1995, 67, 291–312. [Google Scholar] [CrossRef]
- Forni, F.; Degruyter, W.; Bachmann, O.; De Astis, G.; Mollo, S. Long-Term Magmatic Evolution Reveals the Beginning of a New Caldera Cycle at Campi Flegrei. Sci. Adv. 2018, 41, eaat9401. [Google Scholar] [CrossRef] [Green Version]
- Piochi, M.; Pappalardo, L.; De Astis, G. Geochemical and Isotopical Variations within the Campanian Comagmatic Province: Implications on Magma Source Composition. Ann. Geophys. 2004, 47, 1485–1499. [Google Scholar]
- De’ Gennaro, M.; Incoronato, A.; Mastrolorenzo, G.; Adabbo, M.; Spina, G. Depositional Mechanisms and Alteration Processes in Different Types of Pyroclastic Deposits from Campi Flegrei Volcanic Field (Southern Italy). J. Volcanol. Geotherm. Res. 1999, 91, 303–320. [Google Scholar] [CrossRef]
- Forni, F.; Petricca, E.; Bachmann, O.; Mollo, S.; De Astis, G.; Piochi, M. The Role of Magma Mixing/Mingling and Cumulate Melting in the Neapolitan Yellow Tuff Caldera-Forming Eruption (Campi Flegrei, Southern Italy). Contrib. Mineral. Petrol. 2018, 173, 45. [Google Scholar] [CrossRef]
- Colella, A.; Di Benedetto, C.; Calcaterra, D.; Cappelletti, P.; D’Amore, M.; Di Martire, D.; Graziano, S.F.; Papa, L.; de Gennaro, M.; Langella, A. The Neapolitan Yellow Tuff: An Outstanding Example of Heterogeneity. Constr. Build. Mater. 2017, 136, 361–373. [Google Scholar] [CrossRef]
- De’Gennaro, M.; Cappelletti, P.; Langella, A.; Perrotta, A.; Scarpati, C. Genesis of Zeolites in the Neapolitan Yellow Tuff: Geological, Volcanological and Mineralogical Evidence. Contrib. Mineral. Petrol. 2000, 139, 17–35. [Google Scholar] [CrossRef]
- Civetta, L.; Orsi, G.; Pappalardo, L.; Fisher, R.V.; Heiken, G.; Ort, M. Geochemical Zoning, Mingling, Eruptive Dynamics and Depositional Processes—the Campanian Ignimbrite, Campi Flegrei Caldera, Italy. J. Volcanol. Geotherm. Res. 1997, 75, 183–219. [Google Scholar] [CrossRef]
- Barberi, F.; Innocenti, F.; Lirer, L.; Munno, R.; Pescatore, T.; Santacroce, R. The Campanian Ignimbrite: A Major Prehistoric Eruption in the Neapolitan Area (Italy). Bull. Volcanol. 1978, 26, 191–221. [Google Scholar] [CrossRef]
- Forni, F.; Bachmann, O.; Mollo, S.; De Astis, G.; Gelman, S.E.; Ellis, B.S. The Origin of a Zoned Ignimbrite: Insights into the Campanian Ignimbrite Magma Chamber (Campi Flegrei, Italy). Earth Planet. Sci. Lett. 2016, 449, 259–271. [Google Scholar] [CrossRef] [Green Version]
- Langella, A.; Bish, D.L.; Cappelletti, P.; Cerri, G.; Colella, A.; de Gennaro, R.; Graziano, S.F.; Perrotta, A.; Scarpati, C.; de Gennaro, M. New Insights into the Mineralogical Facies Distribution of Campanian Ignimbrite, a Relevant Italian Industrial Material. Appl. Clay Sci. 2013, 72, 55–73. [Google Scholar] [CrossRef]
- Pappalardo, L.; Civetta, L.; d’Antonio, M.; Deino, A.; Di Vito, M.; Orsi, G.; Carandente, A.; Isaia, R.; Piochi, M. Chemical and Sr-Isotopical Evolution of the Phlegraean Magmatic System before the Campanian Ignimbrite and the Neapolitan Yellow Tuff Eruptions. J. Volcanol. Geotherm. Res. 1999, 91, 141–166. [Google Scholar] [CrossRef]
- Melluso, L.; De’Gennaro, R.; Fedele, L.; Franciosi, L.; Morra, V. Evidence of Crystallization in Residual, Cl-F-Rich, Agpaitic, Trachyphonolitic Magmas and Primitive Mg-Rich Basalt-Trachyphonolite Interaction in the Lava Domes of the Phlegrean Fields (Italy). Geol. Mag. 2012, 149, 532–550. [Google Scholar] [CrossRef] [Green Version]
- Pappalardo, L. Chemostratigrafia Dei Prodotti Dell’Ignimbrite Campana in Area Distale. Ph.D. Thesis, University of Napoli, Naples, Italy, 1994; p. 194. [Google Scholar]
- Fedele, L.; Scarpati, C.; Sparice, D.; Perrotta, A.; Laiena, F. A Chemostratigraphic Study of the Campanian Ignimbrite Eruption (Campi Flegrei, Italy): Insights on Magma Chamber Withdrawal and Deposit Accumulation as Revealed by Compositionally Zoned Stratigraphic and Facies Framework. J. Volcanol. Geotherm. Res. 2016, 324, 105–117. [Google Scholar] [CrossRef]
- D’Antonio, M.; Civetta, L.; Orsi, G.; Pappalardo, L.; Piochi, M.; Carandente, A.; de Vita, S.; Di Vito, M.A.; Isaia, R. The Present State of the Magmatic System of the Campi Flegrei Caldera Based on a Reconstruction of Its Behavior in the Past 12 Ka. J. Volcanol. Geotherm. Res. 1999, 91, 247–268. [Google Scholar] [CrossRef]
- de Vita, S.; Orsi, G.; Civetta, L.; Carandente, A.; D’Antonio, M.; Deino, A.; di Cesare, T.; Di Vito, M.; Fisher, R.; Isaia, R.; et al. The Agnano-Monte Spina Eruption (4100 Years BP) in the Restless Campi Flegrei Caldera (Italy). J. Volcanol. Geotherm. Res. 1999, 91, 269–301. [Google Scholar] [CrossRef]
- Caliro, S.; Chiodini, G.; Moretti, R.; Avino, R.; Granieri, D.; Russo, M.; Fiebig, J. The Origin of the Fumaroles of La Solfatara (Campi Flegrei, South Italy). Geochim. Cosmochim. Acta 2007, 71, 3040–3055. [Google Scholar] [CrossRef]
- Celico, P.; Dall’Aglio, M.; Ghiara, M.; Stanzione, D.; Brondi, M. Geochemical Monitoring of the Thermal Fluids in the Phlegraean Fields from 1970 to 1990. Boll. Della Soc. Geol. Ital. 1992, 111, 409–422. [Google Scholar]
- Chiodini, G.; Comodi, P.; Giaquinto, S. Ammonia and Boric Acid in Steam and Water. Experimental Data from Geothermal Wells in the Phlegrean Fields, Naples, Italy. Geothermics 1988, 17, 711–718. [Google Scholar] [CrossRef]
- Venturi, S.; Tassi, F.; Bicocchi, G.; Cabassi, J.; Capecchiacci, F.; Capasso, G.; Vaselli, O.; Ricci, A.; Grassa, F. Fractionation Processes Affecting the Stable Carbon Isotope Signature of Thermal Waters from Hydrothermal/Volcanic Systems: The Examples of Campi Flegrei and Vulcano Island (Southern Italy). J. Volcanol. Geotherm. Res. 2017, 345, 46–57. [Google Scholar] [CrossRef]
- Cioni, R.; Corazza, E.; Marini, L. The Gas/Steam Ratio as Indicator of Heat Transfer at the Solfatara Fumaroles, Phlegraean Fields (Italy). Bull. Volcanol. 1984, 47, 295–302. [Google Scholar] [CrossRef]
- Gresse, M.; Vandemeulebrouck, J.; Byrdina, S.; Chiodini, G.; Revil, A.; Johnson, T.C.; Ricci, T.; Vilardo, G.; Mangiacapra, A.; Lebourg, T.; et al. Three-Dimensional Electrical Resistivity Tomography of the Solfatara Crater (Italy): Implication for the Multiphase Flow Structure of the Shallow Hydrothermal System. J. Geophys. Res. Solid Earth 2017, 122, 8749–8768. [Google Scholar] [CrossRef]
- Tassi, F.; Cabassi, J.; Calabrese, S.; Nisi, B.; Venturi, S.; Capecchiacci, F.; Giannini, L.; Vaselli, O. Diffuse Soil Gas Emissions of Gaseous Elemental Mercury (GEM) from Hydrothermal-Volcanic Systems: An Innovative Approach by Using the Static Closed-Chamber Method. Appl. Geochem. 2016, 66, 234–241. [Google Scholar] [CrossRef]
- Bagnato, E.; Barra, M.; Cardellini, C.; Chiodini, G.; Parello, F.; Sprovieri, M. First Combined Flux Chamber Survey of Mercury and CO2 Emissions from Soil Diffuse Degassing at Solfatara of Pozzuoli Crater, Campi Flegrei (Italy): Mapping and Quantification of Gas Release. J. Volcanol. Geotherm. Res. 2014, 289, 26–40. [Google Scholar] [CrossRef]
- Clauser, C.; Huenges, E. Thermal Conductivity of Rocks and Minerals. Rock Phys. Phase Relat. A Handb. Phys. Constants 1995, 3, 105–126. [Google Scholar]
- Clauser, C. 8.2 Geothermal energy resources. In Renewable Energy; Springer: Berlin/Heidelberg, Germany, 2006; pp. 549–550. [Google Scholar]
- Mottaghy, D.; Vosteen, H.-D.; Schellschmidt, R. Temperature Dependence of the Relationship of Thermal Diffusivity versus Thermal Conductivity for Crystalline Rocks. Int. J. Earth Sci. 2008, 97, 435–442. [Google Scholar] [CrossRef]
- Cantucci, B.; Montegrossi, G.; Lucci, F.; Quattrocchi, F. Reconstruction of Rocks Petrophysical Properties as Input Data for Reservoir Modeling. Geochem. Geophys. Geosyst. 2016, 17, 4534–4552. [Google Scholar] [CrossRef]
- Simion, S. Multiscale Petrophysical and Thermal Properties Analysis Of rocks. Bachelor’s Thesis, Università Degli Studi di Padova, Padua, Italy, 2016. [Google Scholar]
- De Mori, P. Misure Sperimentali Delle Proprietà Termiche Ed Analisi Numerica Dei Processi Di Trasporto Di Calore Nei Materiali Litici. Bachelor’s Thesis, Università Degli Studi Di Padova, Padua, Italy, 2017. [Google Scholar]
- Blanc, P.; Lassin, A.; Piantone, P.; Azaroual, M.; Jacquemet, N.; Fabbri, A.; Gaucher, E.C. Thermoddem: A geochemical database focused on low temperature water/rock interactions and waste materials. Appl. Geochem. 2012, 27, 2107–2116. [Google Scholar] [CrossRef]
- Helgeson, H.C.; Delany, J.M.; Nesbitt, H.W.; Bird, D.K. Summary and critique of the thermodynamic properties of rock-forming minerals. Am. J. Sci. 1978, 278A, 1–229. [Google Scholar]
- Paul, A. Chemical Durability of Glasses; a Thermodynamic Approach. J. Mater. Sci. 1977, 12, 2246–2268. [Google Scholar] [CrossRef]
- Aradóttir, E.; Sonnenthal, E.; Jónsson, H. Development and Evaluation of a Thermodynamic Dataset for Phases of Interest in CO2 Mineral Sequestration in Basaltic Rocks. Chem. Geol. 2012, 304, 26–38. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.W.; Oelkers, E.H.; Helgeson, H.C. SUPCRT92: A Software Package for Calculating the Standard Molal Thermodynamic Properties of Minerals, Gases, Aqueous Species, and Reactions from 1 to 5000 Bar and 0 to 1000 C. Comput. Geosci. 1992, 18, 899–947. [Google Scholar] [CrossRef]
- Lasaga, A.C. Chemical Kinetics of Water-rock Interactions. J. Geophys. Res. Solid Earth 1984, 89, 4009–4025. [Google Scholar] [CrossRef]
- Lasaga, A.C.; Soler, J.M.; Ganor, J.; Burch, T.E.; Nagy, K.L. Chemical Weathering Rate Laws and Global Geochemical Cycles. Geochim. Cosmochim. Acta 1994, 58, 2361–2386. [Google Scholar] [CrossRef]
- Steefel, C.I.; Lasaga, A.C. A Coupled Model for Transport of Multiple Chemical Species and Kinetic Precipitation/Dissolution Reactions with Application to Reactive Flow in Single Phase Hydrothermal Systems. Am. J. Sci. 1994, 294, 529–592. [Google Scholar] [CrossRef]
- Palandri, J.L.; Kharaka, J.K. A Compilation of Rate Parameters of Water-Mineral Interctions Kinetics for Application to Geochemical Modeling; USGS Open File Report 2004-1068; U.S. Geological Survey: Reston, VA, USA, 2004; pp. 1–70. [Google Scholar]
- Gislason, S.R.; Oelkers, E.H. Mechanism, Rates, and Consequences of Basaltic Glass Dissolution: II. An Experimental Study of the Dissolution Rates of Basaltic Glass as a Function of PH and Temperature. Geochim. Cosmochim. Acta 2003, 67, 3817–3832. [Google Scholar] [CrossRef]
- Gautier, J.-M.; Oelkers, E.H.; Schott, J. Are Quartz Dissolution Rates Proportional to BET Surface Areas? Geochim. Cosmochim. Acta 2001, 65, 1059–1070. [Google Scholar] [CrossRef]
- Zhen-Wu, B.Y.; Prentice, D.P.; Ryan, J.V.; Ellison, K.; Bauchy, M.; Sant, G. Zeo19: A Thermodynamic Database for Assessing Zeolite Stability during the Corrosion of Nuclear Waste Immobilization Glasses. NPJ Mater. Degrad. 2020, 4, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Tamburello, G.; Caliro, S.; Chiodini, G.; Martino, P.D.; Avino, R.; Minopoli, C.; Carandente, A.; Rouwet, D.; Aiuppa, A.; Costa, A.; et al. Escalating CO2 Degassing at the Pisciarelli Fumarolic System, and Implications for the Ongoing Campi Flegrei Unrest. J. Volcanol. Geotherm. Res. 2019, 384, 151–157. [Google Scholar] [CrossRef]
0–200 m, Incoherent Pumiceous Deposits, i.e., Pyroclastic Products < 14.9 ka | |||
---|---|---|---|
Features: phono-trachytic pumices, scoria and ashy-to-sandy deposits | |||
Variability | |||
Porphyritic with matrix (%) | 75–68 | ||
Primary Minerals: | Size (µm)/Type | wt % | |
Pl (labradorite or bytownite)—f | 400 large:500 long | 5 | |
K-Feld—f | 700 large:1000 long | 15–20 | |
K-Feld—m | 5 large:10 long | 5–17 | |
CPX (diopside)—f | 400 large:700 long | 3–5 | |
BT—f | 400 large:700 long | 2 | |
Glass | 70–20 | ||
ZE (phillipsite>chabazite)—m | 2 large:10 long | 0–40 | |
Anl—m | 50 diameter | 0–3 | |
CPX (diopside)—m | 40 large:70 long | 0–1 | |
200–1000 m, Zeolitized Yellow Tuff—Probable Formation: Neapolitan Yellow Tuff | |||
Features: trachytic ashy-to-sandy tuff with minor pumiceous levels | |||
Variability | |||
Porphyritic with matrix (%) | 90 | ||
Primary Minerals: | Size (µm)/Type | wt % | |
SM—m | 1 large: 10 long | 0–6 | |
Pl (labradorite or bytownite)—f | 400 large:600 long | 2 | |
K-Feld—f | 600 large:1000 long | 5 | |
K-Feld—m | 80 large: 100 long | 15–25 | |
CPX (diopside)—m | 80 large: 100 long | 3 | |
BT—f | 100 large:300 long | 3 | |
Glass | 69–23 | ||
ZE (phillipsite>chabazite)—m | 1 large:5 long | 0–30 | |
Anl—m | 20 diameter | 0–10 | |
Pl (labradorite)—m | 3 | ||
1000–1700 m, Tuff/Tuffites—Linked to the Campanian Ignimbrite Zeolitized Tuff | |||
Features: phono-trachytic ashy-to-sandy tuff with pumices and scoriae | |||
Variability | Model Input Data | ||
Porphyritic with matrix (%) | 86–88 | 86 | |
Primary Minerals: | Size (µm)/Type | wt % | wt % |
Pl (bytownite or oligoclase)—f | 400 large:700 long | 5 | 0 |
K-Feld (adularia and sanidine)—m | 10 large:150 long | 0–51 | 0 |
K-Feld—f | 500 large:1000 long | 5 | 5 |
CPX (diopside)—f | 300 large: 500 long | 4–1 | 4 |
BT—f | 200 large: 400 long | 1 | 1 |
Glass | 80–10 | 80 | |
ZE (phillipsite>chabazite)—m | 5 large: 5 long | 0–20 | 0 |
Pl (bytownite or oligoclase)—m | 50 large:100 long | 5 | 10 |
CPX (diopside)—m | 50 large:70 long | 1 | 0 |
Anl—m | 20 diameter | 0–10 | 0 |
1200 to 2450 m, Lavas—Analogue: Old Lavas in Outcrops and MF1 1500, MF5 2222 Cores | |||
Features: porphyritic and holocrystalline groundmass | |||
Variability | |||
Porphyritic with matrix (%) | 92–77 | ||
Primary Minerals: | Size (µm)/Type | wt % | |
K-Feld—f | 400 large:700 long | 6 | |
K-Feld—m | 10 large:150 long | 50–30 | |
Glass | intercrystalline | 30–10 | |
MT—m | 50 | 1 | |
SD—f | 300 | 1–10 | |
Pl (labradorite)—m | 10 large:150 long | 10–20 | |
CPX (diopside)—f | 200 large:300 long | 1–7 | |
CPX (diopside)—m | 50 large:100 long | 1–16 |
Postcaldera Deposits Younger than the Neapolitan Yellow Tuff (Data Source: [59,73,74]) | |||||||
---|---|---|---|---|---|---|---|
whole rock (n. 171) | glass matrix (n. 462) | ||||||
Oxide | Average | Min | Max | Oxide | Average | Min | Max |
SiO2 | 58.53 | 51.39 | 63.39 | SiO2 | 61.45 | 61.46 | 61.45 |
TiO2 | 0.55 | 0.38 | 0.97 | TiO2 | 0.52 | 0.52 | 0.52 |
Al2O3 | 18.49 | 14.73 | 19.98 | Al2O3 | 17.89 | 17.89 | 17.90 |
Fe2O3tot | 4.94 | 3.00 | 8.26 | FeO | 2.45 | 2.44 | 2.44 |
MnO | 0.14 | 0.09 | 0.23 | MnO | 0.14 | 0.14 | 0.14 |
MgO | 1.37 | 0.19 | 6.08 | MgO | 0.96 | 0.96 | 0.95 |
CaO | 4.10 | 1.77 | 12.14 | CaO | 3.44 | 3.43 | 3.42 |
Na2O | 4.02 | 1.57 | 7.51 | Na2O | 4.32 | 4.33 | 4.33 |
K2O | 7.64 | 3.27 | 9.32 | K2O | 8.65 | 8.66 | 8.67 |
P2O5 | 0.23 | 0.03 | 0.63 | P2O5 | 0.18 | 0.17 | 0.17 |
LOI | 2.30 | 0.05 | 8.45 | ||||
Neapolitan Yellow Tuff (Data Source:[58,62]) | |||||||
whole rock (n. 52) | glass matrix (n. 410) | ||||||
Oxide | Average | Min | Max | Oxide | Average | Min | Max |
SiO2 | 58.48 | 54.84 | 61.07 | SiO2 | 59.52 | 53.71 | 63.58 |
TiO2 | 0.50 | 0.41 | 0.62 | TiO2 | 0.53 | 0.40 | 0.78 |
Al2O3 | 18.39 | 17.92 | 18.68 | Al2O3 | 18.58 | 17.42 | 19.72 |
Fe2O3tot | 5.41 | 3.42 | 7.76 | FeO | 4.12 | 2.69 | 6.61 |
MnO | 0.13 | 0.11 | 0.15 | MnO | 0.13 | 0.03 | 0.24 |
MgO | 1.06 | 0.47 | 1.96 | MgO | 0.94 | 0.32 | 2.11 |
CaO | 3.58 | 2.21 | 5.73 | CaO | 3.45 | 1.96 | 6.51 |
Na2O | 3.83 | 3.18 | 5.06 | Na2O | 3.81 | 2.88 | 4.95 |
K2O | 8.41 | 7.60 | 9.51 | K2O | 8.72 | 7.39 | 10.22 |
P2O5 | 0.22 | 0.08 | 0.43 | P2O5 | 0.20 | 0.01 | 0.56 |
LOI | 3.24 | 1.21 | 4.49 | ||||
Campanian Ignimbrite (Data Source:[65,66,71,72]) | |||||||
whole rock (n. 202) | glass matrix (n. 250) | ||||||
Oxide | Average | Min | Max | Oxide | Average | Min | Max |
SiO2 | 61.20 | 50.80 | 63.02 | SiO2 | 61.94 | 58.65 | 64.89 |
TiO2 | 0.45 | 0.36 | 0.64 | TiO2 | 0.40 | 0.10 | 0.93 |
Al2O3 | 18.60 | 17.31 | 21.89 | Al2O3 | 18.90 | 17.90 | 20.61 |
Fe2O3tot | 3.79 | 2.73 | 5.49 | FeO | 2.88 | 0.18 | 4.05 |
MnO | 0.20 | 0.06 | 0.31 | MnO | 0.22 | 0.01 | 0.63 |
MgO | 0.56 | 0.20 | 2.68 | MgO | 0.44 | 0.03 | 0.87 |
CaO | 2.34 | 1.26 | 14.09 | CaO | 1.85 | 0.18 | 3.66 |
Na2O | 5.23 | 1.05 | 6.86 | Na2O | 5.07 | 2.99 | 6.85 |
K2O | 7.55 | 5.27 | 9.56 | K2O | 8.22 | 6.31 | 10.21 |
P2O5 | 0.10 | 0.00 | 0.32 | P2O5 | 0.14 | 0.00 | 0.54 |
LOI | 2.63 | 0.41 | 9.56 | ||||
Intercalated Lavas (Data Source:[11,59,69,70]) | |||||||
lavas outcrops (n. 7) | cored lavas (n. 2) | ||||||
Oxide | Average | Min | Max | Oxide | Average | core 1 | core 2 |
SiO2 | 60.33 | 59.43 | 60.87 | SiO2 | 59.57 | 64.21 | 54.93 |
TiO2 | 0.57 | 0.41 | 0.72 | TiO2 | 0.49 | 0.38 | 0.60 |
Al2O3 | 25.64 | 18.39 | 31.15 | Al2O3 | 17.67 | 17.77 | 17.58 |
Fe2O3tot | 5.22 | 3.74 | 6.29 | FeO | 4.79 | 1.99 | 7.59 |
MnO | 0.31 | 0.11 | 0.48 | MnO | 0.07 | 0.06 | 0.08 |
MgO | 0.58 | 0.26 | 1.17 | MgO | 2.49 | 0.77 | 4.20 |
CaO | 2.83 | 1.72 | 3.61 | CaO | 5.18 | 2.04 | 8.33 |
Na2O | 8.22 | 4.21 | 11.53 | Na2O | 4.77 | 6.70 | 2.84 |
K2O | 9.98 | 6.72 | 13.03 | K2O | 4.79 | 6.03 | 3.56 |
P2O5 | 0.11 | 0.06 | 0.18 | P2O5 | 0.16 | 0.05 | 0.28 |
LOI | 1.93 | 1.12 | 3.21 |
Mofete 1 | Mofete 1 | Mofete 2 | San Vito 1 | San Vito 1 | Tennis Hotel | |
---|---|---|---|---|---|---|
Depth (m) | 550–896 | 1273–1605 | 1275–1989 | - | ||
TDS | 30,000 | 39,500 | 18,200 | 4800 | ||
T (°C) | 250 | 250 | 337 | 85 | ||
pH | 7.5 | 6.5 | 6 | 3.2 | 4.38 | 7.0 |
SiO2 (mg/L) | 398 | 417 | 450 | 369 | 246 | 184 |
Na (mg/L) | 10,025 | 12,589 | 5090 | 11,750 | 6280 | 1295 |
K (mg/L) | 1230 | 2342 | 1180 | 8000 | 4025 | 390 |
Ca (mg/L) | 555 | 1281 | 480 | 3290 | 1980 | 44.1 |
Mg (mg/L) | n.d. | 5 | 1 | 1120 | 540 | 4.9 |
Cl (mg/L) | 17,710 | 22,810 | 10,200 | 37,755 | 20,024 | 1180 |
SO4 (mg/L) | 615 | 670 | 3160 | - | - | 1136 |
HCO3 (mg/L) | 81 | 46 | 41 | 0 | 26 | 699 |
NH4 (µg/L) | n.m. | n.m. | n.m. | 21 | ||
B (µg/L) | 125,000 | 110,000 | 140,000 | 32.8 | ||
Li (µg/L) | 25,000 | 28,000 | 13,000 | 47,000 | 26,000 | 0.82 |
As (µg/L) | 9000 | 11,000 | 11,000 | 2255 | ||
Hg (µg/L) | 4.3 | |||||
Ti (µg/L) | 2.1 | |||||
Pb (µg/L) | 3.3 | |||||
Sr (mg/L) | 34 | 41 | 14 | 0.5 | ||
Mn (mg/L) | 7 | 17 | 25 | - | ||
F (mg/L) | 5 | 5 | 2.2 | |||
Fe (mg/L) | 0.07 | |||||
Al (mg/L) | 0.55 | |||||
Rb (mg/L) | 1.41 | |||||
δ18O | 1.1 | 0.8 | n.m. | - |
Density * | 2524 kg/m3 |
---|---|
Permeability | 10 mD (i.e., ca. 10−14 m2) |
Porosity | 0.20 fraction volume |
Thermal conductivity (dry, 165 °C) * | 1.7 W/m/K |
Specific heat (165 °C) * | 930 J/kg/K |
Simulation ID | Temperature, °C | Total Pressure, bar | CO2 Partial Pressure, bar |
---|---|---|---|
1 | 165 | 8.219 | 1.2 |
2 | 165 | 7.129 | 0.12 |
3 | 165 | 7.02 | 0.012 |
4 | 85 | 1.1 | 0.12 |
5 | 85 | 1.0 | 0.012 |
Mineral | Dissolution Reaction | LogK 0 °C | LogK 25 °C | LogK 60 °C | LogK 100 °C | LogK 150 °C | LogK 200 °C | LogK 250 °C | LogK 300 °C |
---|---|---|---|---|---|---|---|---|---|
Glass | 16.7378 | 14.8583 | 12.7166 | 10.7704 | 8.8387 | 7.2629 | 5.9046 | 4.6721 | |
An70Ab30-Plagioclase | 22.648 | 18.92 | 14.421 | 10.218 | 5.995 | 2.533 | −0.474 | −3.258 | |
Clinochlore-2 | 76.5440 | 66.6500 | 55.1110 | 44.6070 | 34.2950 | 26.0340 | 19.0080 | 12.6210 |
Mineral | Vol. % | S (cm2g−1) | K 298.15 (mol·m−2·sec−1) | Ea (kJ·mol−1) | n1 | n3 | ||||
---|---|---|---|---|---|---|---|---|---|---|
Acid | Neutral | Base | Acid | Neutral | Base | Acid | Base | |||
Diopside a | 0.032 | 50.98 | 4.365 × 10−7 | 7.763 × 10−12 | 96.1 | 40.6 | 0.71 | |||
Glass b | 0.64 | 44.44 | 4.096 × 10−10 | 25.5 | 1.00 | −0.33 * | ||||
An70Ab30-plagioclase a | 0.08 | 370.37 | 1.349 × 10−8 | 1.230 × 10−11 | 45.2 | 0.626 | ||||
K-feldspar a | 0.04 | 39.06 | 8.710 × 10−11 | 3.890 × 10−13 | 6.310 × 10−22 | 51.7 | 38.0 | 94.1 | 0.50 | 0.823 |
Annite a | 0.00376 | 76.69 | 1.445 × 10−10 | 2.818 × 10−13 | 22.0 | 22.0 | 0.525 | |||
Phlogopite a | 0.00424 | 88.97 | 1.445 × 10−10 | 2.818 × 10−13 | 22.0 | 22.0 | 0.525 | |||
Albitea | 8 × 10−7 | 2290.08 | 6.918 × 10−11 | 2.754 × 10−13 | 2.512 × 10−16 | 65.0 | 69.8 | 71.0 | 0.457 | 0.572 |
Analcyme c | 8 × 10−7 | 5217.39 | 1.995 × 10−8 | 1.585 × 10−12 | 5.495 × 10−15 | 58.0 | 58.0 | 58.0 | 0.70 | 0.30 |
(K,Na)-phillipsite c | 8 × 10−7 | 5454.55 | 1.995 × 10−8 | 1.585 × 10−12 | 5.495 × 10−15 | 58.0 | 58.0 | 58.0 | 0.70 | 0.30 |
Chabazite c | 8 × 10−7 | 5741.63 | 1.995 × 10−8 | 1.585 × 10−12 | 5.495 × 10−15 | 58.0 | 58.0 | 58.0 | 0.70 | 0.30 |
Magnetite a | 8 × 10−7 | 2330.10 | 2.570 × 10−9 | 1.660 × 10−11 | 18.6 | 18.6 | 0.279 | |||
Pyrite a | 8 × 10−7 | 1197.60 | 3.020 × 10−8 | 2.818 × 10−5 | 56.9 | 56.9 | −0.5 # 0.5 ° | 0.50 § | ||
Calcite a | 8 × 10−7 | 492.00 | 0.501 × 100 | 1.549 × 10−6 | 14.4 | 23.5 | 1.00 | |||
Quartz a | 8 × 10−7 | 1132.08 | - | 3.981 × 10−14 | - | - | 90.9 | - | - | - |
Fe-Illite a,d | 8 × 10−7 | 2181.82 | 1.047 × 10−11 | 1.65959 × 10−13 | 3.020 × 10−17 | 23.6 | 35.0 | 58.9 | 0.34 | 0.40 |
Clinochlore-2 a | 8 × 10−7 | 2120.14 | 7.763 × 10−12 | 3.01995 × 10−13 | - | 88.0 | 88.0 | - | 0.5 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piochi, M.; Cantucci, B.; Montegrossi, G.; Currenti, G. Hydrothermal Alteration at the San Vito Area of the Campi Flegrei Geothermal System in Italy: Mineral Review and Geochemical Modeling. Minerals 2021, 11, 810. https://doi.org/10.3390/min11080810
Piochi M, Cantucci B, Montegrossi G, Currenti G. Hydrothermal Alteration at the San Vito Area of the Campi Flegrei Geothermal System in Italy: Mineral Review and Geochemical Modeling. Minerals. 2021; 11(8):810. https://doi.org/10.3390/min11080810
Chicago/Turabian StylePiochi, Monica, Barbara Cantucci, Giordano Montegrossi, and Gilda Currenti. 2021. "Hydrothermal Alteration at the San Vito Area of the Campi Flegrei Geothermal System in Italy: Mineral Review and Geochemical Modeling" Minerals 11, no. 8: 810. https://doi.org/10.3390/min11080810
APA StylePiochi, M., Cantucci, B., Montegrossi, G., & Currenti, G. (2021). Hydrothermal Alteration at the San Vito Area of the Campi Flegrei Geothermal System in Italy: Mineral Review and Geochemical Modeling. Minerals, 11(8), 810. https://doi.org/10.3390/min11080810