Trace Metal Contamination of Bottom Sediments: A Review of Assessment Measures and Geochemical Background Determination Methods
Abstract
:1. Introduction
2. Materials and Methods
3. PTEs in Bottom Sediments of Urban Water Bodies
4. Assessment Techniques for Sediments Contaminated with HMs
4.1. Geochemical Evaluation
4.1.1. Geochemical Background and Geochemical Baseline
4.1.2. Pollution Indices
Individual Pollution Indices (IPIs)
Complex Pollution Indices (CPIs)
4.1.3. Geochemical Classifications Referring to the Geochemical Background
4.2. Ecotoxicological Evaluation
4.2.1. Descriptive Classifications Based on Total TM Content
- -
- Empirically based SQGs—relying on the empirical relationships needed to determine the sediment contamination level at which a toxic response occurs; these are frequently used for TMs and As.
- -
- Theoretically based SQGs—relying on the parameters that describe the bioavailability of contaminants (equilibrium partitioning, EqP); these are mainly used for organic compounds (less often for TMs).
4.2.2. Ecotoxicological Indices (EIs)
4.3. Extended Sediments Quality Ranking
4.3.1. Integrated Geoaccumulation Index—Igeointegrated
4.3.2. Fractionation of TMs
4.4. Bioindicators
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Authors | Location | Use | Analysed HMs | TMs Ranges [mg/kg d.w.] | Sampling | Indices | SQG | Heath Risk | Chemical Speciation Analysis |
---|---|---|---|---|---|---|---|---|---|
Sun et al., 2018 [28] | Songhua River, Jilin City (China) | Urban area with petrochemical industries | Five elements: Cr, Ni, Cu, Zn, Pb | Total HMs content: 123.98–346.34 | Surface sediment (0–5 cm) | Igeo, PERI, RAC | + | ||
Vieira et al., 2019 [29] | Arthur Thomas Lake, Londrina (Brazil) | Urban lake; strongly agroindustrial economy (with coffee production) | 27 elements: Na, K, Mg, Ca, Sr, Ba, Sc, La, Th, Ti, V, Cr, Mo, Mn, Fe, Co, Ni, Ag, Au, Al, Ga, P, As, Sb, Bi, S, Se | Na (1–3), K (10–30), Mg (50–290), Ca (90–570), Sr (5.00–32.0), Ba (37–180), Sc (19.4–57.1), La (14.0–35.0), Th (3.20–5.90), Ti (220–950), V (323–1331), Cr (74.0–185), Mo (0.30–1.00), Mn (640–174.-3), Fe (8940–16830), Co (19.70–62.30), Ni (18.5–63.6), Ag (0.01–3.20), Au (0.50–247.1), Ga (17.0–28.0), P (50–170), As (1.30–3.50), Sb (0.10–0.70), Bi (0.00–0.60), S (10–180), Se (0.01–1.40) | Sediment cores (0–90 cm) | EF, Igeo | + | ||
Kumar et al., 2020 [30] | Yamuna River, Chambal River, Gulf of Mannar, Ganges River, Betwa River, Ken River, Beas River, Gomti River, and Gangotri River (India) | Review of different TMs from sediment samples from Indian rivers’ | 10 elements: Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, Pb, As | Cr (0.075–2628.3), Mn (0.097–2436.5), Fe (4.23–2312.44), Co (1.10–624), Ni (0.01–1813), Cu (0.019–5214), Zn (0.13–2759), Cd (0.015–272), Pb (0.17–1297), As (0.12–197) | No data | CF, EF, Igeo, PERI (=MRI), RI | HI, HQ | ||
Cui et al., 2019 [31] | Harbin City, Song (China) | Urban and rural rivers:Majiagou River (urban section, industrial zone) Yunliang River (rural section) | Six elements: Cr, Ni, Cu, Zn, Cd, Pb | Urban river: Cr (75.12–203.15), Ni (7.91–30.38), Cu (4.00–82.54), Zn (128.17–1416.71), Cd (0.08–4.08), Pb (8.86–57.49) Rural river: Cr (53.65–81.92), Ni (BDL *–13.11), Cu (15.75–22.29), Zn (113.23–2474.05), Cd (BDL–4.29), Pb (9.31–114.42) | Surface sediment | CF (=Pi), PINemerow, RI | |||
Liu et al., 2020 [32] | Pearl River Estuary, Xixiang River, Gongle Chung, Gushu Chung, Nanchang Chung, Tiegang reservoir flood discharge river, and Southern Airport drainage river (China) | Urban area | Six elements: Cr, Ni, Cu, Zn, Hg, Pb | Cr (35–510), Ni (15.0–194), Cu (38,0–1600), Zn (105–2600), Hg (0.009–0.85), Pb (22.9–160) | Surface sediment | Igeo, RI | |||
Chassiot et al., 2019 [33] | Saint-Charles River, Lake St. Charles (Canada) | Upstream an urban reservoir; urban area with diverse industries | 14 samples: V, Cr, Mo, Mn, Co, Ni, Cu, Ag, Zn, Cd, Hg, Sn, Pb, As | No data of ranges | Sediment cores and surface sediment | EF, Igeo, MPI | |||
Hanfi et al., 2020 [34] | Sediment samples around the world: Europe (Europe), Asia (Asia), Africa (Africa), North America (North America) | Review of different TMs from sediment samples around the world (including 41 research paper reported between 1980 and 2018) | Six elements: Cr, Ni, Cu, Zn, Cd, Pb | Cr (29–196Europe; 0.85–144Asia; 1.4–85.7Africa; 17.1–125North America), Ni (35–128.45Europe; 12–126Asia; 1.9–67Africa; 18.1–26.5North America), Cu (73–466.9Europe; 10.99–269Asia; 11.3–243Africa; 15–356North America), Zn (125–1166Europe; 50.6–2377Asia; 13.1–1840Africa; 59–1811North America), Cd (0.2–4.6Europe; 0.12–72Asia; 0.33–6.9Africa; 0.1–8North America), Pb (48–1880Europe; 13.3–2582.5Asia; 11.2–737Africa; 10.9–2583North America) | Surface sediment | CF (=Pi), Igeo | |||
Xia et al., 2020 [35] | Caohai Wetland (China) | The natural area of black-necked crane habitats in the Caohai wetland | Nine elements: Be, V, Cr, Ni, Cu, Zn, Cd, Hg, Pb | Be (0.83–2.19), V (49.1–103.1), Cr (83.5–145.9), Ni (40.3–65.7), Cu (13.5–30.9), Zn (108.9–365.4), Cd (0.5–7.34), Hg (0.30–1.34), Pb (37.3–76) | Surface sediment (0–10 cm) | EF, Igeo, PERI, RAC | |||
Dhamodharan et at., 2019 [36] | Cooum River, Chennai, (India) | Urban area | 10 elements: Cr, Mn, Fe, Ni, Cu, Zn, Cd, Hg, Pb, As | Cr (7.12–155), Mn (139–2167), Fe (17,389–49,568), Ni (3.54–53.1), Cu (12.3–59.39), Zn (19.7–438), Cd (0.7–24.4), Hg (0.01–0.79), Pb (0–30.6), As (45–497) | Surface sediment | Igeo, EF, CF, PLI, PERI | |||
Siddiqui and Pandey, 2019 [37] | Ganga River (China) | Urban area | Eight elements: Cr, Mn, Fe, Ni, Cu, Zn, Cd, Pb | Cr (7.12–155), Mn (139–2167), Fe (17,389–49,568), Ni (3.54–53.1), Cu (2.1–73.98), Zn (6.3–104.3), Cd (0.21–3.6), Pb (2.1–36.5) | Surface sediment (0–10 cm) | CF, EF, Eri, Igeo, mCd, MPI, PERI, PI | + | ||
Hafijur Rahaman Khan et al., 2020 [38] | Ganges-Brahmaputra-Meghna (Bangladesh) | Bengal Basin river system | 19 elements: Sc, Th, U, Hf, Nb, Ta, W, Cr, Mo, Co, Ni, Cu, Cd, Ga, In, Tl, Ge, Pb, Bi | Sc (7.93–16.79), Th (13.28–29.51), U (2.5–4.71), Hf (3.31– 12.50), Nb (11.75– 17.68), Ta (1.08–1.58), W (1.46–2.90), Cr (43.48–120.61), Mo (0.12–0.72), Co (9.99–19.81), Ni (19.20–85.80), Cu (11.70–48.96), Cd (0.02–0.17), Ga (13.48–23.48), In (0.01–0.09), Tl (0.12–1.04), Ge (1.33–1.63), Pb (19.63–28.78), Bi (0.14–0.88) | Surface sediment | CF, EF, Igeo, PLI | |||
Dević et al., 2020 [39] | Belgrade (Serbia) | Urban area of New Belgrade; Sava River and reservoirs for diesel fuel and mazut; high traffic zone | 10 elements: V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, Pb | V (49.9–299.9), Cr (37–150.9), Mn (395–925), Fe (17,400–32,400), Co (15.99–36.99), Ni (50–139.9), Cu (5.5–30.9), Zn (1–615), Cd (1–4), Pb (20–190) | Sediment cores and surface sediment | Igeo, PERI, PLI, PINemerow | |||
Wang et al., 2019 [40] | Mid-channel of the Wen-Rui Tang River and its tributaries (China) | Rural–urban area | Five elements: Cr, Cu, Zn, Cd, Pb | Average: Cr (248 ± 131), Cu (995 ± 2011), Zn (2345 ± 2901), Cd (62 ± 125), Pb (217 ± 226) | Surface sediment (0–10 cm) | Eri, PERI, RAC | + | ||
Cui et al., 2020 [41] | Dongfenggou River, Miaotaigou River, Huaijiagou River, Harbin (China) | Suburban rivers | Six elements: Cr, Ni, Cu, Zn, Cd, Pb | Cr (64.0–180.6), Ni (11.8–106.4), Cu (14.6–182.5), Zn (175.8–1198.8), Cd (0.3–3.8), Pb (16.8–150.6) | Surface sediments | PLI, RI | |||
Barhoumi et al., 2019 [42] | Someşu Mic River (Romania) | Different human activities around, e.g., industries, urban, and agriculture | Eight elements: Cr, Mn, Fe, Ni, Cu, Zn, Cd, Pb | Cr (9.39–43.15), Mn (159.90–4707.21), Fe (11,359–35,661.28), Ni (14.73–47.69), Cu (7.22–65.56), Zn (42.12–236.82), Cd (0.04–0.35), Pb (12.27–131.39) | Surface sediment (0–20 cm) | EF, Igeo, Romanian legislation | + | ||
Nodefarahani et al., 2020 [43] | Namak Lake (Iran) | Seasonal lake nourished by surface run-off and groundwater resources | Nine elements: V, Cr, Mn, Fe, Ni, Cu, Zn, Al., Pb | V (0.55–3.19), Cr (0.507–1.83), Mn (5.1–34.1), Fe (195.6–1117), Ni (0.239–1.209), Cu (0.57–1.3), Zn (0.346–1.225), Al (1.140–1.903), Pb (0.15–1.16) | Surface sediment | Igeo, EF, mPECQ | + | ||
Nargis et al., 2018 [44] | River Buriganga (Bangladesh) | Most of the industries and/or factories, such as tanneries, metal goods manufacturing, electroplating, batteries, shipyard, are located on the banks of the river | 15 elements: Ba, U, V, Cr, Mo, Mn, Ni, Cu, Zn, Cd, Hg, As, Bi, Se, Pb | Ba (20.80 ± 2.21M **; 23.09 ± 2.63W ***), U (0.45 ± 0.09M; 0.50 ± 0.11W), V (7.51 ± 2.25M; 8.66 ± 2.77W), Cr (39.70 ± 18.84M; 41.45 ± 15.88W), Mo (0.40 ± 0.09M; 0.44 ± 0.11W), Mn (37.58 ± 3.13M; 39.06 ± 2.72W), Ni (6.39 ± 0.96M; 7.14 ± 1.11W), Cu (14.07 ± 15.93M; 15.93 ± 18.38W), Zn (36.73 ± 34.38M; 40.71 ± 37.33W), Cd (0.21 ± 0.02M; 0.23 ± 0.03W), Hg (0.016 ± 0.001M; 0.018 ± 0.001W), As (0.18 ± 0.12M; 0.21 ± 0.13W), Bi (0.33 ± 0.02M; 0.36 ± 0.02W), Se (1.07 ± 0.05M; 1.19 ± 0.05W), Pb (10.41 ± 13.61M; 11.40 ± 15.09W) | Surface sediment (0–5 cm) | Cdeg, CF, Eri, PLI, PERI | |||
Xia et al., 2020 [45] | Wuhan (China) | 20 lakes along a rural to the urban gradient in central China | 11 elements: Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, Pb, Al, As | Cr (111.35 ± 43.93RRG ****; 95.50 ± 4.89RCFG *****; 111.29 ± 36.18UPG ******; 99.78 ± 8.47UCFG *******), Mn (970 ± 640RRG; 420 ± 140RCFG; 590 ± 100UPG; 710 ± 160 UCFG), Fe (37,570 ± 12,660RRG; 38,640 ± 3110RCFG; 38,260 ± 3010UPG; 39,900 ± 3080 UCFG), Co (19.81 ± 7.54RRG; 15.93 ± 1.40RCFG; 14.12 ± 1.37UPG; 16.63 ± 1.09 UCFG), Ni (32.10 ± 9.24RRG; 43.67 ± 4.25RCFG; 40.47 ± 3.30UPG; 44.61 ± 3.50 UCFG), Cu (105.45 ± 113.98RRG; 37.37 ± 5.47RCFG; 93.72 ± 74.94UPG; 62.65 ± 35.21 UCFG), Zn (105.75 ± 43.16RRG; 95.97 ± 13.15RCFG; 166.71 ± 4.71UPG; 134.41 ± 37.27 UCFG), Cd (0.50 ± 0.16RRG; 0.32 ± 0.06RCFG; 0.61 ± 0.16UPG; 0.45 ± 0.11 UCFG), Pb (32.59 ± 6.55RRG; 29.51 ± 2.15RCFG; 62.87 ± 27.83UPG; 39.06 ± 11.88 UCFG), Al (25,770 ± 15,580RRG; 23,600 ± 9400RCFG; 45,500 ± 3290UPG; 33,760 ± 16,500 UCFG), As (6.53 ± 1.89RRG; 10.04 ± 1.05RCFG; 10.69 ± 0.85UPG; 11.15 ± 1.49 UCFG) | Surface sediment (0–5 cm) | EF, RI | |||
Wojciechowska et al., 2019 [46] | Gdansk (Poland) | Bottom sediments of urban retention tanks | Six elements: Cr, Ni, Cu, Zn, Cd, Pb | Cr (2.43–25.8), Ni (3.76–11.03), Cu (3.04–1133), Zn (17.9–362), Cd (0.088–0.60), Pb (5.77–162) | Surface sediment (0–5 cm) | CF, Igeo, LAWA, PLI, RI, | HQ | ||
Nawrot et al., 2020 [47] | Gdansk (Poland) | Bottom sediments of urban retention tanks | Six elements: Cr, Fe, Ni, Cu, Zn, Cd, Pb | Cr (2.45–74.5), Fe (3993–63,817), Ni (1.57–25.8), Cu (3.24–119), Zn (12.5–584), Cd (0.003–0.716), Pb (4.91–309) | Sediment cores | AF, EF, mCdeg | + | ||
Jaskuła et al., 2021 [48] | Warta River (Poland) | Bottom sediments of the third longest river in Poland | Six elements: Cr, Ni, Cu, Zn, Cd, Pb | Cr (0.78–193), Ni (0.56–36.7), Cu (0.40–116), Zn (0.50–519), Cd (0.03–14.5), Pb (1.0–144) | Surface sediment (0–5 cm) | EF, Igeo, MPI, PLI | + | ||
Kostka and Leśniak, 2021 [49] | Wigry Lake (Poland) * WL | Bottom sediments | Seven elements: Cr, Mn, Fe, Cu, Zn, Cd, Pb | Cr (0.20–22.61), Mn (18–1698), Fe (80–32,857), Cu (0.02–59.7), Zn (3.1–632.1), Cd (0.003–3.060), Pb (7.0–107.5) | Surface sediment (0–5 cm) | SQG | + | ||
Ribbe et al., 2021 [50] | Lake Victoria, Ugandan part (Uganda) | Bottom sediments of the largest tropical lake in the world | Seven elements: Cr, Ni, Cu, Zn, Cd, Pb, As | Cr (29–100), Ni (19–56), Cu (21–121), Zn (49–103), Cd (0.06–0.26), Pb (10–25), As (2.9–6.6) | Surface sediment (the upper 15 cm) | Igeo, LAWA | + | ||
Xiao et al., 2021 [51] | Lijiang River, Guilin City (China) | Analysis of a 160 km section of the river | 10 elements: Cr, Mn, Co, Ni, Cu, Zn, Cd, Hg, Pb, As | Cr (24.38–95.38), Mn (176.25–1572.50), Co (4.50–15.38), Ni (11.63–37.13), Cu (9.38–102.75), Zn (53.63–258.0), Cd (0.16–4.41), Hg (0.08–2.13), Pb (17.88–171.75), As (9.97–36.44) | Surface sediment (0–5 cm) | Igeo, mCdeg, RI | |||
Castro et al., 2021 [52] | San Luis River (Argentina) | Bottom sediments | Nine elements: Cr, Mn, Co, Ni, Cu, Zn, Cd, Pb, As | Cr (0.5–32), Mn (10–420), Co (0.5–14), Ni (1–19), Cu (0.5–70), Zn (0–600), Cd (0–1,5), Pb (0–45), As (0.5–18) | Surface sediment (0–2 cm) | CF, EF, Igeo | + |
Appendix B
Index | Formula | Classification | Description (Pros “+” and Cons “–“) | References |
---|---|---|---|---|
Contamination Factor (CF) | —TM content —preindustrial concentration of TM | CF < 1—low, 1 ≤ CF < 3—moderate, 3 ≤ CF < 6—considerable, CF ≥ 6—very high |
| [58] |
Geoaccumulation Index (Igeo) | —TM content —geochemical background concentration of TM | Class 0: Igeo ≤ 0—uncontaminated, Class 1: 0 < Igeo ≤ 1—uncontaminated to moderately contaminated, Class 2: 1 < Igeo ≤ 2—moderately contaminated, Class 3: 2 < Igeo ≤ 3—moderately to strongly contaminated, Class 4: 3 < Igeo ≤ 4—strongly contaminated, Class 5: 4 < Igeo ≤ 5—strongly to extremely contaminated, Class 6: Igeo > 5—extremely contaminated |
| [59] |
Enrichment Factor (EF) | —TM content —geochemical background concentration of TM —concentration of the reference TM in analysed sample —reference TM concentration in the reference environment | EF < 1—no enrichment, 1 ≤ EF < 3—minor enrichment, 3 ≤ EF < 5—moderate enrichment, 5 ≤ EF < 10—moderately severe enrichment, 10 ≤ EF < 25—severe enrichment, 25 ≤ EF < 50—very severe enrichment, EF ≥ 50—ultra-high enrichment |
| [60] |
Pollution Index (Pi) = Single Pollution Index (SPI) | —TM content —geochemical background concentration of TM | Pi < 1—unpolluted, low level of pollution 1 ≤ Pi ≤ 3—moderate polluted 3 > Pi—strong polluted |
| [15,54] |
Threshold Pollution Index (PIT) | TM content —tolerance levels of metal concentration; | PIT < 1—unpolluted 1 ≤ PIT ≤ 2—low polluted 2 ≤ PIT ≤ 3—moderate polluted 3 ≤ PIT ≤ 5—strong polluted 5 ≤ PIT—very strong polluted |
| [28] |
Appendix C
Index | Formula | Classification | Description (Pros “+” and Cons “–“) | References |
---|---|---|---|---|
Pollution Load Index (PLI) | —Contamination Factor of i element n—the number of analysed TMs | PLI < 1—not polluted PLI = 1—baseline levels of pollution PLI > 1—polluted |
| [62] |
Degree of contamination (Cdeg) | Contamination Factor of i element n—the number of analysed TMs | < 8—low degree of contamination < 16—moderate degree of contamination < 32—considerable degree of contamination ≥ 32—very high degree of contamination |
| [58] |
Modified contamination factor (mCdeg) | Contamination Factor of i element n—the number of analysed TMs | < 1.5—very low < 2—low < 4—moderate < 8—high < 16—very high < 32—extremely high ≥ 32—ultra-high |
| [64] |
Sum of Pollution Index (PIsum) | —calculated value for Pollution Index n—the number of analysed TMs | The classification for Pi can be used in PIsum. The values in PIsum should be multiplied by n (count of TMs): PIsum < 1n—unpolluted, low level of pollution 1n ≤ PIsum ≤ 3n—moderately polluted 3n < PIsum—heavily polluted |
| [63] |
Average of Pollution Index (PIAvg) | —calculated value for Pollution Index n—the number of analysed TMs | values in excess of 1.0 show a lower quality of the sediments, which is conditioned by high contamination and low quality |
| [63] |
Weighted Average of Pollution Index (PIwAvg) | —calculated value for Pollution Index weight of n—the number of analysed TMs | is used with the Σwi = 1 condition, terminologies can also be used as single indices (the classification for Pi can be applied) |
| [58,59,63] |
Background enrichment factor = New Pollution Index (PIN) | —calculated value for Pollution Index class of TM considering degree of contamination (from 1 to 5 basing on Pi) n—the number of analysed TMs | 0 ≤ PIN < 7— clean7 ≤ PIN < 95.1—trace contaminant 95.1 ≤ PIN < 518.1—lightly contaminant 518.1 ≤ PIN < 2548.5—contaminant PIN ≥ 2548.8—high contaminant |
| [65] |
Product of Pollution Index (PIProd) | —calculated value for Pollution Index n—the number of analysed TMs | The classification for Pi can be used in PIProd. The values in PIProd should be powered by n (count of TMs): PIProd< 1n—unpolluted, low level of pollution 1n ≤ PIProd≤ 3n—moderately polluted 3n< PIProd—heavily polluted |
| [63] |
Weighted power product of Pollution Index (PIwpProd) | —calculated value for Pollution Index weight of n—the number of analysed TMs | is used with the Σwi = 1 condition, terminologies can also be used as single indices (the classification for Pi can be applied) |
| [63] |
Vector modulus of Pollution Index (PIvectorM) | —calculated value for Pollution Index n—the number of analysed TMs | Not specified |
| [63] |
Nemerow Pollution Index (PINemerow) | —calculated value for Pollution Index —the maximum value of the single pollution indices of all TMs n—the number of analysed TMs | PINem < 0.7—safety domain 0.7≤ PINem < 1—precaution domain 1≤ PINem w< 2—slightly polluted domain 2≤ PINem < 3—moderately polluted domain PINem > 3—seriously polluted |
| [66] |
Integrated Pollution Index (IntPI) | —calculated value for Pollution Index | IPI < 1—low contaminated 1 ≤ IPI ≤ 2—moderately contaminated IPI < 2—heavily contaminated |
| [67] |
Metallic Pollution Index (MPI) | —calculated value for Pollution Index n—the number of analysed TMs | MPI > 1—indicate pollution MPI < 1—indicate no pollution |
| [68,69] |
Appendix D
Index | Formula | Classification | Description (Pros “+” and Cons “–“) | References |
---|---|---|---|---|
Individual Ecotoxicological Index (IEI) | ||||
Ecological Risk Factor (ER, Eri) Risk Index (RI) | – toxic-response factor for a given element “i” —contamination factor for a given element “i”; | ERi < 40—low potential ecological risk; 40≤ ERi < 80—moderate potential ecological risk; 80≤ ERi < 160—considerable potential ecological risk; 160 ≤ ERi < 320—high potential ecological risk; ERi ≥ 320—very high ecological risk |
| [58] |
Complex Ecotoxicological Index (CEI) | ||||
Contamination Severity Index (CSI) | —the computed weight of each TM according to Pejman et al. [86] ** TM content —Effects Range-Low according to Table 2 —Effects Range-Median according to Table 2 —determined with the use of PCA/FA | CSI < 0.5—uncontaminated 0.5 ≤ CSI < 1—very low severity of contamination 1 ≤ CSI < 1.5—low severity of contamination 1.5 ≤ CSI < 2—low to moderate severity of contamination 2 ≤ CSI < 2.5—moderate severity of contamination 2.5 ≤ CSI < 3—moderate to high severity of contamination 3 ≤ CSI < 4—high severity of contamination 4 ≤ CSI < 5—very high severity of contamination 5 ≤ CSI—ultra-high severity of contamination |
| [86] |
Sediment Pollution Index (SPI) | TM content in a sample —average shale concentration of TM —toxic-response factor for a given element “i” n—the number of analysed TMs | 0 ≤ SPI < 2—natural sediments 2 ≤ SPI < 5— low polluted 5 ≤ SPI < 10—moderately polluted 10 ≤ SPI < 20—highly polluted SPI > 20—dangerous sediments |
| [58,64] |
Risk Assessment Code (RAC) | The exchangeable and carbonate fractions are determined by a single extraction with a CH3COOH 0.11 M solution | Percentage extracted by CH3COOH 0.11 M solution is compared to the following scale: RAC ≤ 1—no risk 1 < RAC ≤ 10—low risk 11 < RAC ≤ 30—medium risk; 31 < RAC ≤ 50: very high risk |
| [35] |
Risk Index (PERI) | n—the number of analysed TMs —calculated value for Ecological Risk Factor | < 90—low < 180—moderate < 360—strong < 720—very strong ≥ 720—highly strong |
| [87,88] |
The probability of toxicity (MERMQ) | TM content n—the number of analysed TMs —Effects Range-Median according to Table 2 This index is also found as combined effect of Toxic Metals, means (mPECQ): TM content n—the number of analysed TMs —probable effect concentration according to Table 2 | MERMQ < 0.1—low-risk level (probability of toxicity—9%) 0.1 ≤MERMQ < 0.5—medium risk level (probability of toxicity—21%) 0.5 ≤ MERMQ < 1.5—high risk level (probability of toxicity—49%) MERMQ > 1.5—very high-risk level (probability of toxicity—76%) |
| [86] |
References
- Sakson, G.; Brzezinska, A.; Zawilski, M. Emission of heavy metals from an urban catchment into receiving water and possibility of its limitation on the example of Lodz city. Environ. Monit. Assess. 2018, 190, 281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zafra, C.; Temprano, J.; Tejero, I. The physical factors affecting heavy metals accumulated in the sediment deposited on road surfaces in dry weather: A review. Urban Water J. 2017, 9006, 1–11. [Google Scholar] [CrossRef]
- Antoniadis, V.; Shaheen, S.M.; Stärk, H.J.; Wennrich, R.; Levizou, E.; Merbach, I.; Rinklebe, J. Phytoremediation potential of twelve wild plant species for toxic elements in a contaminated soil. Environ. Int. 2021, 146, 106233. [Google Scholar] [CrossRef]
- Liu, L.; Luo, X.B.; Ding, L.; Luo, S.L. Application of Nanotechnology in the Removal of Heavy Metal from Water; Elsevier Inc.: New York, NY, USA, 2018; ISBN 9780128148389. [Google Scholar]
- Wuana, R.A.; Okieimen, F.E. Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. Int. Sch. Res. Not. Ecol. 2011, 2011, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Weissmannová, H.D.; Pavlovský, J. Indices of soil contamination by heavy metals—Methodology of calculation for pollution assessment (minireview). Environ. Monit. Assess. 2017, 189, 1–25. [Google Scholar] [CrossRef]
- Kowalska, J.B.; Mazurek, R.; Gąsiorek, M.; Zaleski, T. Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination—A review. Environ. Geochem. Health 2018, 40, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Szmagliński, J.; Nawrot, N.; Pazdro, K.; Walkusz-Miotk, J.; Wojciechowska, E. The fate and contamination of trace metals in soils exposed to a railroad used by Diesel Multiple Units: Assessment of the railroad contribution with multi-tool source tracking. Sci. Total Environ. 2021, 798, 149300. [Google Scholar] [CrossRef]
- Bednarova, Z.; Kuta, J.; Kohut, L.; Machat, J.; Klanova, J.; Holoubek, I.; Jarkovsky, J.; Dusek, L.; Hilscherova, K. Spatial patterns and temporal changes of heavy metal distributions in river sediments in a region with multiple pollution sources. J. Soils Sediments 2013, 13, 1257–1269. [Google Scholar] [CrossRef]
- Bartoli, G.; Papa, S.; Sagnella, E.; Fioretto, A. Heavy metal content in sediments along the Calore river: Relationships with physical-chemical characteristics. J. Environ. Manag. 2012, 95, S9–S14. [Google Scholar] [CrossRef] [PubMed]
- Monrabal-Martinez, C.; Meyn, T.; Muthanna, T.M.; Monrabal-martinez, C.; Meyn, T.; Muthanna, T.M. Characterization and temporal variation of urban runoff in a cold climate—Design implications for SuDS. Urban Water J. 2018, 16, 1–9. [Google Scholar] [CrossRef]
- Sekabira, K.; Origa, H.O.; Basamba, T.A.; Mutumba, G.; Kakudidi, E. Assessment of heavy metal pollution in the urban stream sediments and its tributaries. Int. J. Environ. Sci. Technol. 2010, 7, 435–446. [Google Scholar] [CrossRef] [Green Version]
- Murphy, L.U.; Cochrane, T.A.; O’Sullivan, A. The influence of different pavement surfaces on atmospheric copper, lead, zinc, and suspended solids attenuation and wash-off. Water Air Soil Pollut. 2015, 226, 1–14. [Google Scholar] [CrossRef]
- Charters, F. Characterising and Modelling Urban Runoff Quality for Improved Stormwater Management. Ph.D. Thesis, Department of Civil and Natural Resources Engineering, University of Canterbury, Christchurch, New Zealand, 2016. [Google Scholar]
- Nour, H.E.; El-Sorogy, A.S.; Abdel-Wahab, M.; Almadani, S.; Alfaifi, H.; Youssef, M. Assessment of sediment quality using different pollution indicators and statistical analyses, Hurghada area, Red Sea coast, Egypt. Mar. Pollut. Bull. 2018, 133, 808–813. [Google Scholar] [CrossRef] [PubMed]
- Walaszek, M.; Bois, P.; Laurent, J.; Lenormand, E.; Wanko, A. Urban stormwater treatment by a constructed wetland: Seasonality impacts on hydraulic efficiency, physico-chemical behavior and heavy metal occurrence. Sci. Total Environ. 2018, 637–638, 443–454. [Google Scholar] [CrossRef] [PubMed]
- Simpson, S.; Batley, G. Sediment Quality Assessment a Practical Guide, 2nd ed.; CSIRO Publishing: Collingwood, Australia, 2016; ISBN 9781486303847. [Google Scholar]
- Nawrot, N.; Wojciechowska, E.; Rezania, S.; Walkusz-Miotk, J.; Pazdro, K. The effects of urban vehicle traffic on heavy metal contamination in road sweeping waste and bottom sediments of retention tanks. Sci. Total Environ. 2020, 749, 141511. [Google Scholar] [CrossRef]
- USEPA. Contaminated Sediment Remediation Guidance for Hazardous Waste Sites; Official Solid Waste Emergency Response; USEPA: Washington, DC, USA, 2005; p. 236.
- Dung, T.T.T.; Cappuyns, V.; Swennen, R.; Phung, N.K. From geochemical background determination to pollution assessment of heavy metals in sediments and soils. Rev. Environ. Sci. Biotechnol. 2013, 12, 335–353. [Google Scholar] [CrossRef]
- Fiedler, H.D.; López-Sánchez, J.F.; Rubio, R.; Rauret, G.; Quevauviller, P.; Ure, A.M.; Muntau, H. Study of the stability of extractable trace metal contents in a river sediment using sequential extraction. Analyst 1994, 119, 1109–1114. [Google Scholar] [CrossRef]
- Bonanno, G.; Borg, J.A.; Di Martino, V. Levels of heavy metals in wetland and marine vascular plants and their biomonitoring potential: A comparative assessment. Sci. Total Environ. 2017, 576, 796–806. [Google Scholar] [CrossRef]
- Klink, A.; Macioł, A.; Wisłocka, M.; Krawczyk, J. Metal accumulation and distribution in the organs of Typha latifolia L. (cattail) and their potential use in bioindication. Limnologica 2013, 43, 164–168. [Google Scholar] [CrossRef]
- Kabata-Pendias, A.; Pendias, H. Biogeochemistry of Trace Elements; Polish Scientific Publishing Company: Warsaw, Poland, 1999; Volume 2, ISBN 0849315751. [Google Scholar]
- Al-Homaidan, A.A.; Al-Otaibi, T.G.; El-Sheikh, M.A.; Al-Ghanayem, A.A.; Ameen, F. Accumulation of heavy metals in a macrophyte Phragmites australis: Implications to phytoremediation in the Arabian Peninsula wadis. Environ. Monit. Assess. 2020, 192, 1–10. [Google Scholar] [CrossRef]
- Relić, D.; Dordević, D.; Popović, A. Assessment of the pseudo total metal content in alluvial sediments from Danube River, Serbia. Environ. Earth Sci. 2011, 63, 1303–1317. [Google Scholar] [CrossRef]
- Ure, A.M.; Davidson, C.M. Chemical speciation in soils and related materials by selective chemical extraction. In Chemical Speciation in the Environment, 2nd ed.; Wiley-Blackwell: Malden, MA, USA, 2007; pp. 265–300. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, Z.; Cao, H.; Xu, M.; Xu, L. Concentrations, speciation, and ecological risk of heavy metals in the sediment of the Songhua River in an urban area with petrochemical industries. Chemosphere 2019, 219, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Vieira, L.M.; Neto, D.M.; do Couto, E.V.; Lima, G.B.; Peron, A.P.; Halmeman, M.C.R.; Froehner, S. Contamination assessment and prediction of 27 trace elements in sediment core from an urban lake associated with land use. Environ. Monit. Assess. 2019, 191, 1–20. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, A.; Pandita, S.; Bhardwaj, R.; Thukral, A.K.; Cerda, A. A review of ecological risk assessment and associated health risks with heavy metals in sediment from India. Int. J. Sediment Res. 2020, 35, 516–526. [Google Scholar] [CrossRef]
- Cui, S.; Zhang, F.; Hu, P.; Hough, R.; Fu, Q.; Zhang, Z.; An, L.; Li, Y.F.; Li, K.; Liu, D.; et al. Heavy metals in sediment from the urban and rural rivers in Harbin City, Northeast China. Int. J. Environ. Res. Public Health 2019, 16, 4313. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Yin, J.; Hu, L.; Zhang, B. Spatial distribution of heavy metals and associated risks in sediment of the urban river flowing into the Pearl River Estuary, China. Arch. Environ. Contam. Toxicol. 2020, 78, 622–630. [Google Scholar] [CrossRef]
- Chassiot, L.; Francus, P.; De Coninck, A.; Lajeunesse, P.; Cloutier, D.; Labarre, T. Spatial and temporal patterns of metallic pollution in Québec City, Canada: Sources and hazard assessment from reservoir sediment records. Sci. Total Environ. 2019, 673, 136–147. [Google Scholar] [CrossRef] [PubMed]
- Hanfi, M.Y.; Mostafa, M.Y.A.; Zhukovsky, M.V. Heavy metal contamination in urban surface sediments: Sources, distribution, contamination control, and remediation. Environ. Monit. Assess. 2020, 192, 32. [Google Scholar] [CrossRef] [PubMed]
- Xia, P.; Ma, L.; Sun, R.; Yang, Y.; Tang, X.; Yan, D.; Lin, T.; Zhang, Y.; Yi, Y. Evaluation of potential ecological risk, possible sources and controlling factors of heavy metals in surface sediment of Caohai Wetland, China. Sci. Total Environ. 2020, 740, 140231. [Google Scholar] [CrossRef]
- Dhamodharan, A.; Abinandan, S.; Aravind, U.; Ganapathy, G.P.; Shanthakumar, S. Distribution of Metal Contamination and Risk Indices Assessment of Surface Sediments from Cooum River, Chennai, India. Int. J. Environ. Res. 2019, 13, 853–860. [Google Scholar] [CrossRef]
- Siddiqui, E.; Pandey, J. Assessment of heavy metal pollution in water and surface sediment and evaluation of ecological risks associated with sediment contamination in the Ganga River: A basin-scale study. Environ. Sci. Pollut. Res. 2019, 26, 10926–10940. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.H.R.; Liu, J.; Liu, S.; Li, J.; Cao, L.; Rahman, A. Anthropogenic effect on heavy metal contents in surface sediments of the Bengal Basin river system, Bangladesh. Environ. Sci. Pollut. Res. 2020, 27, 19688–19702. [Google Scholar] [CrossRef] [PubMed]
- Dević, G.J.; Ilić, M.V.; Zildzović, S.N.; Avdalović, J.S.; Miletić, S.B.; Bulatović, S.S.; Vrvić, M.M. Investigation of potentially toxic elements in urban sediments in Belgrade, Serbia. J. Environ. Sci. Health Part A Toxic Hazard. Subst. Environ. Eng. 2020, 55, 765–775. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhou, J.; Zhang, C.; Qu, L.; Mei, K.; Dahlgren, R.A.; Zhang, M.; Xia, F. A comprehensive risk assessment of metals in riverine surface sediments across the rural-urban interface of a rapidly developing watershed. Environ. Pollut. 2019, 245, 1022–1030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, S.; Gao, S.; Zhang, F.; Fu, Q.; Wang, M.; Liu, D.; Li, K.; Song, Z.; Chen, P. Heavy metal contamination and ecological risk in sediment from typical suburban rivers. River Res. Appl. 2020, 1–9. [Google Scholar] [CrossRef]
- Barhoumi, B.; Beldean-Galea, M.S.; Al-Rawabdeh, A.M.; Roba, C.; Martonos, I.M.; Bălc, R.; Kahlaoui, M.; Touil, S.; Tedetti, M.; Driss, M.R.; et al. Occurrence, distribution and ecological risk of trace metals and organic pollutants in surface sediments from a Southeastern European river (Someşu Mic River, Romania). Sci. Total Environ. 2019, 660, 660–676. [Google Scholar] [CrossRef]
- Nodefarahani, M.; Aradpour, S.; Noori, R.; Tang, Q.; Partani, S.; Klöve, B. Metal pollution assessment in surface sediments of Namak Lake, Iran. Environ. Sci. Pollut. Res. 2020. [Google Scholar] [CrossRef]
- Nargis, A.; Sultana, S.; Raihan, M.J.; Haque, M.E.; Sadique, A.B.M.R.; Sarkar, M.S.I.; Un-Nabie, M.M.; Zhai, W.; Cai, M.; Habib, A. Multielement analysis in sediments of the River Buriganga (Bangladesh): Potential ecological risk assessment. Int. J. Environ. Sci. Technol. 2019, 16, 1663–1676. [Google Scholar] [CrossRef]
- Xia, W.; Wang, R.; Zhu, B.; Rudstam, L.G.; Liu, Y.; Xu, Y.; Xin, W.; Chen, Y. Heavy metal gradients from rural to urban lakes in central China. Ecol. Process. 2020, 9, 1–11. [Google Scholar] [CrossRef]
- Wojciechowska, E.; Nawrot, N.; Walkusz-Miotk, J.; Matej-Łukowicz, K.; Pazdro, K. Heavy metals in sediments of urban streams: Contamination and health risk assessment of influencing factors. Sustainability 2019, 11, 563. [Google Scholar] [CrossRef] [Green Version]
- Nawrot, N.; Wojciechowska, E.; Matej-Łukowicz, K.; Walkusz-Miotk, J.; Pazdro, K. Spatial and vertical distribution analysis of heavy metals in urban retention tanks sediments: A case study of Strzyza Stream. Environ. Geochem. Health 2020, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaskuła, J.; Sojka, M.; Fiedler, M.; Wróżyński, R. Analysis of spatial variability of river bottom sediment pollution with heavy metals and assessment of potential ecological hazard for the Warta river, Poland. Minerals 2021, 11, 327. [Google Scholar] [CrossRef]
- Kostka, A.; Leśniak, A. Natural and anthropogenic origin of metals in lacustrine sediments; assessment and consequences—A case study of Wigry lake (Poland). Minerals 2021, 11, 1–22. [Google Scholar] [CrossRef]
- Ribbe, N.; Arinaitwe, K.; Dadi, T.; Friese, K.; von Tümpling, W. Trace-element behaviour in sediments of Ugandan part of Lake Victoria: Results from sequential extraction and chemometrical evaluation. Environ. Earth Sci. 2021, 80, 1–14. [Google Scholar] [CrossRef]
- Xiao, H.; Shahab, A.; Xi, B.; Chang, Q.; You, S.; Li, J.; Sun, X.; Huang, H.; Li, X. Heavy metal pollution, ecological risk, spatial distribution, and source identification in sediments of the Lijiang River, China. Environ. Pollut. 2021, 269, 116189. [Google Scholar] [CrossRef]
- Castro, M.F.; Almeida, C.A.; Bazán, C.; Vidal, J.; Delfini, C.D.; Villegas, L.B. Impact of anthropogenic activities on an urban river through a comprehensive analysis of water and sediments. Environ. Sci. Pollut. Res. 2021, 28, 37754–37767. [Google Scholar] [CrossRef]
- HELCOM Guideline for the Determination of Heavy Metals in Sediment. 2015. Available online: https://helcom.fi/?s=Guideline+for+the+determination+of+heavy+metals+in+sediment (accessed on 12 May 2021).
- Mulligan, C.; Fukue, M.; Sato, Y. Sediments Contamination and Sustainable Remediation; CRC Press: Boca Raton, FL, USA, 2009; ISBN 9781420062236. [Google Scholar]
- Tack, F.M.G.; Verloo, M.G. Chemical speciation and fractionation in soil and sediment heavy metal analysis: A review. Int. J. Environ. Anal. Chem. 1995, 59, 225–238. [Google Scholar] [CrossRef]
- Gałuszka, A. A review of geochemical background concepts and an example using data from Poland. Environ. Geol. 2007, 52, 861–870. [Google Scholar] [CrossRef]
- Turekian, K.K.; Wedepohl, K.H. Distribution of the elements in some major units of the earth’s crust. Geol. Soc. Am. Bull. 1961, 72, 175–192. [Google Scholar] [CrossRef]
- Håkanson, L. An ecological risk index for aquatic pollution control.a sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Müller, V.G. Pollutants in sediments—Sediments as pollutants [available in German: Schadstoffe in Sedimenten—Sedimente als Schadstoffe]. Mitt. Osterr. Geol. Ges. 1986, 79, 107–126. [Google Scholar]
- Sutherland, R.A. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ. Geol. 2000, 39, 611–627. [Google Scholar] [CrossRef]
- Tomlinson, D.L.; Wilson, J.G.; Harris, C.R.; Jeffrey, D.W. Assessment of heavy metal enrichment and degree of contamination around the copper-nickel mine in the Selebi Phikwe Region, Eastern Botswana. Environ. Ecol. Res. 2013, 1, 32–40. [Google Scholar] [CrossRef]
- Tomlinson, D.L.; Wilson, J.G.; Harris, C.R.; Jeffrey, D.W. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgol. Meeresunters. 1980, 33, 566–575. [Google Scholar] [CrossRef] [Green Version]
- Gong, Q.; Deng, J.; Xiang, Y.; Wang, Q.; Yang, L. Calculating pollution indices by heavy metals in ecological geochemistry assessment and a case study in parks of Beijing. J. China Univ. Geosci. 2008, 19, 230–241. [Google Scholar] [CrossRef]
- Abrahim, G.M.S.; Parker, R.J. Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environ. Monit. Assess. 2008, 136, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Weissmannová, H.D.; Pavlovský, J.; Chovanec, P. Heavy metal contaminations of urban soils in Ostrava, Czech Republic: Assessment of metal pollution and using Principal Component Analysis. Int. J. Environ. Res. 2015, 9, 683–696. [Google Scholar]
- Cheng, J.; Shi, Z.; Zhu, Y. Assessment and mapping of environmental quality in agricultural soils of Zhejiang Province, China. J. Environ. Sci. 2007, 19, 50–54. [Google Scholar] [CrossRef]
- Chen, T.B.; Zheng, Y.M.; Lei, M.; Huang, Z.C.; Wu, H.T.; Chen, H.; Fan, K.K.; Yu, K.; Wu, X.; Tian, Q.Z. Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China. Chemosphere 2005, 60, 542–551. [Google Scholar] [CrossRef]
- Caeiro, S.; Costa, M.H.; Ramos, T.B.; Fernandes, F.; Silveira, N.; Coimbra, A.; Medeiros, G.; Painho, M. Assessing heavy metal contamination in Sado Estuary sediment: An index analysis approach. Ecol. Indic. 2005, 5, 151–169. [Google Scholar] [CrossRef]
- Gong, C.; Ma, L.; Cheng, H.; Liu, Y.; Xu, D.; Li, B.; Liu, F.; Ren, Y.; Liu, Z.; Zhao, C.; et al. Characterization of the particle size fraction associated heavy metals in tropical arable soils from Hainan Island, China. J. Geochem. Explor. 2014, 139, 109–114. [Google Scholar] [CrossRef]
- Lu, X.; Wang, L.; Lei, K.; Huang, J.; Zhai, Y. Contamination assessment of copper, lead, zinc, manganese and nickel in street dust of Baoji, NW China. J. Hazard. Mater. 2009, 161, 1058–1062. [Google Scholar] [CrossRef] [PubMed]
- Chassiot, L.; Francus, P.; De Coninck, A.; Lajeunesse, P.; Cloutier, D.; Labarre, T. Dataset for the assessment of metallic pollution in the Saint-Charles River sediments (Québec City, QC, Canada). Data Brief 2019, 26, 104256. [Google Scholar] [CrossRef] [PubMed]
- Guartán, J.A.; Emery, X. Regionalized classification of geochemical data with filtering of measurement noises for predictive lithological mapping. Nat. Resour. Res. 2021, 30, 1033–1052. [Google Scholar] [CrossRef]
- Bojakowska, I.; Sokołowska, G. Geochemical purity classes of water sediments [available in Polish: Geochemiczne klasy czystości osadów wodnych]. Przegląd Geol. 1998, 46, 49–54. [Google Scholar]
- Ure, A.M.; Berrow, M.L. The elemental constituents of soils. In Environmental Chemistry; Bowen, H.J.M., Ed.; Royal Society of Chemistry: London, UK, 1982; Volume 2, pp. 92–204. [Google Scholar]
- Lis, J.; Pasieczna, A. Geochemical Atlas of Gdańsk Region [Available in Polish: Geochemiczny Atlas Region Gdańskiego]; Wydawnictwo Kartograficzne Polskiej Agencji Ekologicznej: Warsaw, Poland, 1999. [Google Scholar]
- Burton, G.A. Sediment quality criteria in use around the world. Limnology 2002, 3, 65–75. [Google Scholar] [CrossRef]
- Wenning, R.J.; Ingersoll, C.G. Use of Sediment Quality Guidelines and Related Tools for the Assessment of Contaminated Sediments; SETAC: Pensacola, FL, USA, 2005. [Google Scholar]
- Smith, S.; MacDonald, D.; Keenleyside, K.; Ingersoll, C.; Field, J. A preliminary evaluation of sediment quality assessment values for freshwater ecosystems. J. Great Lakes Res. 1996, 22, 624–638. [Google Scholar] [CrossRef]
- Long, E.; Morgan, L. The Potential for Biological Effects of Sediment-Sorbed Contaminants Tested in the National Status and Trends Program; NOAA Technical Memorandum NOS OMA 52; National Oceanic and Atmospheric Administration: Seattle, WA, USA, 1991; p. 175. [Google Scholar]
- Persaud, D.; Jaagumagi, R.; Hayton, A. Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario; Water Resources Branch, Ontario Ministry of the Environment: Toronto, ON, Canada, 1993. [Google Scholar]
- MENVIQ. Interim Criteria for Quality Assessment of St. Lawrence River Sediment; St. Lawrence Centre and Ministère de l’Environnement du Québec: Quebec City, QC, Canada, 1992; p. 28.
- ANZECC; ARMCANZ. Australian and New Zealand guidelines for fresh and marine water quality. In The Guidelines Australian and New Zealand Environment and Conservation Council Agriculture and Resource Management Council of Australia and New Zealand; National Water Quality Management Strategy; Australian and New Zealand Environment and Conservation Council, Australian Water Association: Artarmon, Australia, 2000; Volume 1, p. 314. [Google Scholar]
- LAWA-Arbeitskreis. “Qualitative Hydrology of Rivers” Assessment of the Water Quality of Rivers in the Federal Republic of Germany [Available in German: “Zielvorgaben” in Zusammenarbeit Mit LAWA-Arbeitskreis “Qualitative Hydrologie der Fliessgewässer” Beurteilung der Wasserbeschaffenheit von Fliessgewaessern in der Bundesrepublik Deutschland]; Herausgegeben von der Länderarbeitsgemeinschaft Wasser: Berlin, Germany, 1998; ISBN 3889612245. [Google Scholar]
- Ahlf, W.; Hollert, H.; Neumann-Hensel, H.; Ricking, M. A guidance for the assessment and evaluation of sediment quality: A German approach based on ecotoxicological and chemical measurements. J. Soils Sediments 2002, 2, 37–42. [Google Scholar] [CrossRef]
- Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy; Publications Office of the European Union: Luxembourg, 23 October 2000; pp. 1–73.
- Pejman, A.; Bidhendi, G.N.; Ardestani, M.; Saeedi, M.; Baghvand, A. A new index for assessing heavy metals contamination in sediments: A case study. Ecol. Indic. 2015, 58, 365–373. [Google Scholar] [CrossRef]
- Kulbat, E.; Sokołowska, A. Methods of assessment of metal contamination in bottom sediments (case study: Straszyn Lake, Poland). Arch. Environ. Contam. Toxicol. 2019, 77, 605–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baran, A.; Tarnawski, M.; Koniarz, T. Spatial distribution of trace elements and ecotoxicity of bottom sediments in Rybnik reservoir, Silesian-Poland. Environ. Sci. Pollut. Res. 2016, 23, 17255–17268. [Google Scholar] [CrossRef] [Green Version]
- Von Tümpling, W.; Scheibe, N.; Einax, J.W. Extended sediment quality rating for trace elements in urban waters—Case study Klinke, Germany. Clean Soil Air Water 2013, 41, 565–573. [Google Scholar] [CrossRef]
- Sutherland, R.A. BCR®-701: A review of 10-years of sequential extraction analyses. Anal. Chim. Acta 2010, 680, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Viana, J.L.M.; Menegário, A.A.; Fostier, A.H. Preparation of environmental samples for chemical speciation of metal/metalloids: A review of extraction techniques. Talanta 2021, 226, 122119. [Google Scholar] [CrossRef] [PubMed]
- Kersten, M. Speciation of trace metals in sediments. In Chemical Speciation in the Environment, 2nd ed.; Ure, A.M., Davidson, C.M., Eds.; John Wiley & Sons: New York, NY, USA, 2002; pp. 301–321. [Google Scholar]
- Tessier, A.; Campbell, P.G.C.; Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 1979, 51, 844–851. [Google Scholar] [CrossRef]
- Boszke, E. Specification of Speciation of Selected Heavy Metals (Fe, Mn, Zn, Cd, Ni, Cr, Co) in Bottom Sediments of the Baltic Sea and the Spitsbergen Region; Institute of Oceanology of the Polish Academy of Science: Sopot, Poland, 1995. (In Polish) [Google Scholar]
- Miller, W.P.; Martens, D.C.; Zelany, L.W. Effect of the sequence in extraction of trace metals from soils. Soil. Soil Sci. Soc. Am. J. 1986, 50, 598–601. [Google Scholar] [CrossRef]
- Ure, A.M.; Quevauviller, P.; Muntau, H.; Griepink, B. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities. Int. J. Environ. Anal. Chem. 1993, 51, 135–151. [Google Scholar] [CrossRef]
- Stankovic, S.; Stankovic, A.R. Bioindicators of toxic metals. In Green Materials for Energy, Products and Depollution; Springer: Amsterdam, The Netherlands, 2013; pp. 151–228. ISBN 9789400768352. [Google Scholar]
- Farias, D.R.; Hurd, C.L.; Eriksen, R.S.; Macleod, C.K. Macrophytes as bioindicators of heavy metal pollution in estuarine and coastal environments. Mar. Pollut. Bull. 2018, 128, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Rayment, G.E.; Barry, G.A. Indicator tissues for heavy metal monitoring—Additional attributes. Mar. Pollut. Bull. 2000, 41, 353–358. [Google Scholar] [CrossRef]
- Salinitro, M.; Tassoni, A.; Casolari, S.; de Laurentiis, F.; Zappi, A.; Melucci, D. Heavy metals bioindication potential of the common weeds Senecio vulgaris L. Polygonum aviculare L. and Poa annua L. Molecules 2019, 24, 2813. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Mishra, H.; Suprasanna, P. Evaluation of arsenic remediation, morphological and biochemical response by Vetiveria zizanoides L. plants grown on artificially arsenic contaminated soil: A field study. Ecol. Eng. 2021, 168, 106267. [Google Scholar] [CrossRef]
- Bonanno, G.; Vymazal, J. Compartmentalization of potentially hazardous elements in macrophytes: Insights into capacity and efficiency of accumulation. J. Geochem. Explor. 2017, 181, 22–30. [Google Scholar] [CrossRef]
- Milke, J.; Gałczyńska, M.; Wróbel, J. The Importance of biological and ecological properties of Phragmites Australis (Cav.) Trin. Ex Steud., in phytoremendiation of aquatic ecosystems—The review. Water 2020, 12, 1770. [Google Scholar] [CrossRef]
- Ganjali, S.; Tayebi, L.; Atabati, H.; Mortazavi, S. Phragmites australis as a heavy metal bioindicator in the Anzali wetland of Iran. Toxicol. Environ. Chem. 2014, 96, 1428–1434. [Google Scholar] [CrossRef]
- Salam, M.M.A.; Mohsin, M.; Pulkkinen, P.; Pelkonen, P.; Pappinen, A. Effects of soil amendments on the growth response and phytoextraction capability of a willow variety (S. viminalis × S. schwerinii × S. dasyclados) grown in contaminated soils. Ecotoxicol. Environ. Saf. 2019, 171, 753–770. [Google Scholar] [CrossRef] [PubMed]
- Minkina, T.; Fedorenko, G.; Nevidomskaya, D.; Fedorenko, A.; Chaplygin, V.; Mandzhieva, S. Morphological and anatomical changes of Phragmites australis Cav. due to the uptake and accumulation of heavy metals from polluted soils. Sci. Total Environ. 2018, 636, 392–401. [Google Scholar] [CrossRef] [PubMed]
- Nawrot, N.; Wojciechowska, E.; Pazdro, K.; Szmagliński, J.; Pempkowiak, J. Uptake, accumulation, and translocation of Zn, Cu, Pb, Cd, Ni, and Cr by P. australis seedlings in an urban dredged sediment mesocosm: Impact of seedling origin and initial trace metal content. Sci. Total Environ. 2021, 768, 144983. [Google Scholar] [CrossRef]
- Mikołajczak, P.; Borowiak, K.; Niedzielski, P. Phytoextraction of rare earth elements in herbaceous plant species growing close to roads. Environ. Sci. Pollut. Res. 2017, 24, 14091–14103. [Google Scholar] [CrossRef] [Green Version]
- You, Y.; Wang, L.; Ju, C.; Wang, G.; Ma, F.; Wang, Y.; Yang, D. Effects of arbuscular mycorrhizal fungi on the growth and toxic element uptake of Phragmites australis (Cav.) Trin. ex Steud under zinc/cadmium stress. Ecotoxicol. Environ. Saf. 2021, 213, 112023. [Google Scholar] [CrossRef]
- Bayouli, I.T.; Bayouli, H.T.; Dell’Oca, A.; Meers, E.; Sun, J. Ecological indicators and bioindicator plant species for biomonitoring industrial pollution: Eco-based environmental assessment. Ecol. Indic. 2021, 125, 107508. [Google Scholar] [CrossRef]
- Liu, C.; Liu, W.; Huot, H.; Yang, Y.; Guo, M.; Morel, J.L.; Tang, Y.; Qiu, R. Responses of ramie (Boehmeria nivea L.) to increasing rare earth element (REE) concentrations in a hydroponic system. J. Rare Earths 2021. [Google Scholar] [CrossRef]
- Hussain, Z.; Rasheed, F.; Tanvir, M.A.; Zafar, Z.; Rafay, M.; Mohsin, M.; Pulkkinen, P.; Ruffner, C. Increased antioxidative enzyme activity mediates the phytoaccumulation potential of Pb in four agroforestry tree species: A case study under municipal and industrial wastewater irrigation. Int. J. Phytoremediat. 2020, 23, 704–714. [Google Scholar] [CrossRef]
- Mohsin, M.; Kuittinen, S.; Salam, M.M.A.; Peräniemi, S.; Laine, S.; Pulkkinen, P.; Kaipiainen, E.; Vepsäläinen, J.; Pappinen, A. Chelate-assisted phytoextraction: Growth and ecophysiological responses by Salix schwerinii EL Wolf grown in artificially polluted soils. J. Geochem. Explor. 2019, 205, 106335. [Google Scholar] [CrossRef]
- Nworie, O.E.; Qin, J.; Lin, C. Trace element uptake by herbaceous plants from the soils at a multiple trace element-contaminated site. Toxics 2019, 7, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasheed, F.; Zafar, Z.; Waseem, Z.A.; Rafay, M.; Abdullah, M.; Salam, M.M.A.; Mohsin, M.; Khan, W.R. Phytoaccumulation of Zn, Pb, and Cd in Conocarpus lancifolius irrigated with wastewater: Does physiological response influence heavy metal uptake? Int. J. Phytoremediat. 2020, 22, 287–294. [Google Scholar] [CrossRef]
- Kim, H.T.; Kim, J.G. Seasonal variations of metal (Cd, Pb, Mn, Cu, Zn) accumulation in a voluntary species, Salix subfragilis, in unpolluted wetlands. Sci. Total Environ. 2018, 610, 1210–1221. [Google Scholar] [CrossRef]
- Salam, M.M.A.; Kaipiainen, E.; Mohsin, M.; Villa, A.; Kuittinen, S.; Pulkkinen, P.; Pelkonen, P.; Mehtätalo, L.; Pappinen, A. Effects of contaminated soil on the growth performance of young Salix (Salix schwerinii EL Wolf) and the potential for phytoremediation of heavy metals. J. Environ. Manag. 2016, 183, 467–477. [Google Scholar] [CrossRef]
- Eid, E.M.; Shaltout, K.H. Bioaccumulation and translocation of heavy metals by nine native plant species grown at a sewage sludge dump site. Int. J. Phytoremediat. 2016, 18, 1075–1085. [Google Scholar] [CrossRef] [PubMed]
- Mohsin, M. Potentiality of Four Willow Varieties for Phytoremediation in a Pot Experiment. Master’s Thesis, Faculty of Science and Forestry, School of Forest Sciences, University of Eastern Finland, Kuopio, Finland, 2016. [Google Scholar]
- Vymazal, J. Concentration is not enough to evaluate accumulation of heavy metals and nutrients in plants. Sci. Total Environ. 2016, 544, 495–498. [Google Scholar] [CrossRef]
- Carpenter, D.; Boutin, C.; Allison, J.E.; Parsons, J.; Ellis, D.M. Uptake and effects of six rare earth elements (REEs) on selected native and crop species growing in contaminated soils. PLoS ONE 2015, 10, e0129936. [Google Scholar] [CrossRef] [Green Version]
- Ladislas, S.; El-Mufleh, A.; Gérente, C.; Chazarenc, F.; Andrès, Y.; Béchet, B. Potential of aquatic macrophytes as bioindicators of heavy metal pollution in urban stormwater runoff. Water Air Soil Pollut. 2012, 223, 877–888. [Google Scholar] [CrossRef]
Trace Metal | Geochemical Background [in mg/kg d.w.] | Geochemical Quality Classes | |||||||
---|---|---|---|---|---|---|---|---|---|
Preindustrial | World Soils | Shale Standard | Gdansk Region Sediments (Poland) | Sediments (Poland) | I | II | III | IV | |
[58] | [74] | [57] | [75] | [73] | [73] | [73] | [73] | [73] | |
As | - | 1.5 | 13 | - | <5 | <10 | <20 | <50 | ≥50 |
Cd | 1.0 | 0.62 | 0.3 | 0.5 | 1 | <1 | <3.5 | <6 | ≥6 |
Cr | 90 | 84 | 90 | 7 | 5 | <50 | <100 | <400 | ≥400 |
Cu | 50 | 25.8 | 45 | 5 | 6 | <40 | <100 | <200 | ≥200 |
Pb | 70 | 29.2 | 20 | 11 | 10 | <50 | <200 | <500 | ≥500 |
Hg | 0.25 | - | 0.4 | - | ≤0.05 | <0.1 | <0.5 | <1.0 | ≥1.0 |
Ni | - | 33.7 | 68 | 4 | 5 | <30 | <50 | <100 | ≥100 |
Zn | 175 | 59.8 | 95 | 41 | 48 | <200 | <1000 | <2000 | ≥2000 |
Element | Empirical SQGs with TEC and PEC in mg/kg·d.w. | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Smith et al. [78] | Long and Morgan [79] | Persaud et al. [80] | MENVIQ [81] | ANZECC/ARMCANZ [82] | Average Values Based on the Literature | |||||||
TEL | PEL | ERL | ERM | LEL | SEL | MET | TET | SQGV | SQGV-High | TEClit | PEClit | |
As | 5.9 | 17 | 33 | 85 | 6 | 33 | 7 | 17 | 20 | 70 | 14 | 44 |
Cd | 0.596 | 3.53 | 5 | 9 | 0.6 | 10 | 0.9 | 3 | 1.5 | 10 | 1.72 | 7 |
Cr | 37.3 | 90 | 80 | 145 | 26 | 110 | 55 | 100 | 80 | 370 | 56 | 163 |
Cu | 35.7 | 197 | 70 | 390 | 16 | 110 | 28 | 86 | 65 | 270 | 43 | 211 |
Pb | 35 | 91.3 | 35 | 110 | 31 | 250 | 42 | 170 | 50 | 220 | 39 | 168 |
Hg | 0.174 | 0.486 | 0.15 | 1.3 | 0.2 | 2 | 0.2 | 1 | 0.15 | 1.0 | 0.17 | 1 |
Ni | 18 | 36 | 30 | 50 | 16 | 75 | 35 | 61 | 21 | 52 | 24 | 55 |
Zn | 123 | 315 | 120 | 270 | 120 | 820 | 150 | 540 | 200 | 410 | 143 | 471 |
Limitations for empirical SQGs: | ||||||||||||
Advantages | (1) Allows for thresholds prediction at which a toxic response of benthic organisms is probable (2) A useful tool that allows making the first guess on the sediment contamination problem (3) Quite simple to use with a large database of lab and field tests | |||||||||||
Disadvantages | (1) The assessment of risk and possible negative outcomes associated with toxic concentration levels, which require a separate risk evaluation (2) “Grey” area between thresholds test errors (3) Difficult to apply in a context of contaminant mixtures (4) Relatively expensive research and development of new SQGs (5) The availability of SQGs guidelines criteria and documentation is limited |
Classification | Trace Metal [in mg/kg d.w.] | Contamination Class | ||||||
---|---|---|---|---|---|---|---|---|
I | I–II | II * | II–III | III | III–IV | IV | ||
LAWA [83] | Cd | ≤0.3 | ≤0.6 | ≤1.2 | ≤2.4 | ≤4.8 | ≤9.6 | >9.6 |
Cr | ≤80 | ≤90 | ≤100 | ≤200 | ≤400 | ≤800 | >800 | |
Cu | ≤20 | ≤40 | ≤60 | ≤120 | ≤240 | ≤480 | >480 | |
Pb | ≤25 | ≤50 | ≤100 | ≤200 | ≤400 | ≤800 | >800 | |
Hg | ≤0.2 | ≤0.4 | ≤0.8 | ≤1.6 | ≤3.2 | ≤6.4 | >6.4 | |
Ni | ≤30 | ≤40 | ≤50 | ≤100 | ≤200 | ≤400 | >400 | |
Zn | ≤100 | ≤150 | ≤200 | ≤400 | ≤800 | ≤1600 | >1600 | |
Modified LAWA [84] | As | 3–5 | <10 | <20 | <40 | < 70 | <100 | >100 |
Cd | 0.2–0.4 | <0.5 | <1.2 | <5 | < 10 | <25 | >25 | |
Cr | 60–80 | <90 | <100 | <150 | < 250 | <500 | >500 | |
Cu | 20–30 | <40 | <60 | <150 | <250 | <500 | >500 | |
Pb | 25–30 | <50 | <100 | <150 | <250 | <500 | >500 | |
Hg | 0.2–0.4 | <0.5 | <0.8 | <5 | <10 | <25 | >25 | |
Ni | 10–30 | <40 | <50 | <150 | <250 | <500 | >500 | |
Zn | 90–110 | <150 | <200 | <500 | <1000 | <2000 | >2000 |
Extraction Step | Fraction | Operational Definition | Chemical Reagents/Conditions |
---|---|---|---|
1 | F1 | Acid extractable (water and acid soluble) | Acetic acid: CH3COOH (0.11 mol/L); pH 2.85 |
2 | F2 | Reducible (Fe/Mn oxides) | Hydroxyloammonium chloride: NH2OH · HCl (0.1 mol/L), pH 2.0 |
3 | F3 | Oxidisable (organic substance and sulphides) | Hydrogen peroxide: H2O2 (8.8 mol/L) followed by ammonium acetate: CH3COONH4 (1.0 mol/L), pH 2.0 |
4 | F4 | Residual (remaining, non-silicate bound metals) | Acid digestion (e.g., Aqua regia: 3 HCl + HNO3 or HF + HNO3) |
Plant Species/Cultivars | Climate/Region | Analysed Pollutants | Trial | Source | Reference |
---|---|---|---|---|---|
Phragmites australis | Temperate/China | Zn and Cd | Pot experiment | Hydroponic | [109] |
Atraclytis seratuloides, Lygeum spartum, and Gymnocarpos decander | Mediterranean/Tunisia | Cr, Co, Zn, Pb | Field | Soil, cement site | [110] |
Phragmites australis | Temperate/Poland | Cr, Ni, Cu, Zn, Cd, Pb | Pot experiment | Sediment | [107] |
Vetiveria zizanoides | Tropical/India | As | Field | Soil | [101] |
Alopecurus pratensis, Elytrigia repens, Poa angustifolia, Holcus lanatus, Arrhenatherum elatius, Bromus inermis Leyss, Artemisia vulgaris, Urtica dioica, Achillea millefolium, Galium mollugo, Stellaria holostea, and Silene vulgaris | Temperate/Germany | Cr, Ni, Cu, Zn, Cd, Pb, As | Pot experiment (cold-house) | Soil | [3] |
Boehmeria nivea | Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu | Growth chamber | Hydroponic | [111] | |
Morus alba, Acacia nilotica, Acacia ampliceps, and Azadirachta indica | Tropical/Pakistan | Pb | Greenhouse | Municipal and industrial wastewater | [112] |
Salix schwerinii | Boreal/Finland | Ni, Cu, and Zn | Growth chamber | Soil | [113] |
Senecio vulgaris, Polygonum aviculare, and Poa annua | Mediterranean/Italy | Cr, Cu, Zn, Cd, and Pb | Field | Soil | [100] |
Klara (S. viminalis × S. schwerinii × S. dasyclados) | Boreal/Finland | Ni, Cu, and Zn | Pot experiment (greenhouse) | Soil | [105] |
Artemisia vulgaris Phalaris arundinacea Heracleum sphondylium Bistorta officinalis | Temperate/UK | Mn, Zn, and As Mn and Ni Cr and Zn Mn and Zn | Field | Soil | [114] |
Conocarpus lancifolius | Temperate/Pakistan | Zn, Cd, and Pb | Pot experiment (greenhouse) | Soil | [115] |
Salix subfragilis | Temperate/Korea | Mn, Cu, Zn, Cd, and Pb | Field trial | Sediment (wetland) | [116] |
Ruppia megacarpa, Zostera muelleri, and Ulva australis | Temperate-desert/Australia | Cu, Zn, Cd, Pb, As, and Se | Field trial | Estuary site | [98] |
Achillea millefolium, Artemisia vulgaris, Papaver rhoeas, Tripleurospermum inodorum, and Taraxacum officinale | Temperate/Poland | Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, and Lu | Field trial | Soil | [108] |
Salix schwerinii | Boreal/Finland | Cr, Ni, Cu, and Zn | Pot experiment (greenhouse) | Soil (landfill) | [117] |
Amaranthus viridis, Bassia indica, Conyza bonariensis Cronquist, Portulaca oleracea, Rumex dentatus, Solanum nigrum, Lycopersicon esculentum, Phragmites australis, and Pluchea dioscoridis | Semi-desert/Egypt | Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Fe | Field trial | Soil (sewage sludge dump site) | [118] |
Salix schwerinii, Klara, Karin and Salix myrsinifolia | Boreal/Finland | Cu and Zn | Pot experiment (greenhouse) | Soil | [119] |
Phalaris arundinacea | Temperate/Czech Republic | Cr, Cd, and Hg | Field trial | Constructed wetland | [120] |
Asclepias syriaca, Desmodium canadense, Panicum virgatum, Raphanus sativus, and Solanum lycopersicum | Boreal/Canada | Pr, Nd, Sm, Tb, Dy, and Er | Growth chamber | Soil | [121] |
Oenanthe sp., Juncus sp., Typha sp., Callitriche sp.1, and Callitriche sp.2 | Temperate/France | Cr, Ni, Cu, Zn, Cd, Pb, and As | Field trial | Urban stormwater | [122] |
Phragmites australis | Tropical/Iran | Fe, Ni, Cu, and Cd | Field trial | Sediments | [104] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nawrot, N.; Wojciechowska, E.; Mohsin, M.; Kuittinen, S.; Pappinen, A.; Rezania, S. Trace Metal Contamination of Bottom Sediments: A Review of Assessment Measures and Geochemical Background Determination Methods. Minerals 2021, 11, 872. https://doi.org/10.3390/min11080872
Nawrot N, Wojciechowska E, Mohsin M, Kuittinen S, Pappinen A, Rezania S. Trace Metal Contamination of Bottom Sediments: A Review of Assessment Measures and Geochemical Background Determination Methods. Minerals. 2021; 11(8):872. https://doi.org/10.3390/min11080872
Chicago/Turabian StyleNawrot, Nicole, Ewa Wojciechowska, Muhammad Mohsin, Suvi Kuittinen, Ari Pappinen, and Shahabaldin Rezania. 2021. "Trace Metal Contamination of Bottom Sediments: A Review of Assessment Measures and Geochemical Background Determination Methods" Minerals 11, no. 8: 872. https://doi.org/10.3390/min11080872
APA StyleNawrot, N., Wojciechowska, E., Mohsin, M., Kuittinen, S., Pappinen, A., & Rezania, S. (2021). Trace Metal Contamination of Bottom Sediments: A Review of Assessment Measures and Geochemical Background Determination Methods. Minerals, 11(8), 872. https://doi.org/10.3390/min11080872