Fault Activity in Clay Rock Site Candidate of High Level Radioactive Waste Repository, Tamusu, Inner Mongolia
Abstract
:1. Introduction
2. Geological Setting
2.1. Tectonic Setting
2.2. Tectonic Characteristics
3. Sample Collection and Analysis
3.1. Sample Collection
3.1.1. Samples from Tamusu Fault (F2)
3.1.2. Samples from Wulantiebuke Fault (F4)
3.1.3. Samples from Narenhala Fault (F7)
3.2. Analysis Method
3.2.1. Quartz Micro Morphology
3.2.2. Major Elements Analysis
3.2.3. Carbon and Oxygen Isotope Analysis
3.2.4. Mossbauer Spectroscopy Analysis
4. Analysis Results
4.1. Micro Characteristics of Quartz Grains in Fault Gouge
4.2. Characteristics of Major Elements in Fault Gouge and Host Rock
4.3. Carbon and Oxygen Isotope Characteristics of Fault Gouge and Host Rock
4.4. Mossbauer Spectroscopy Characteristics of Fault Gouge and Host Rock
5. Discussion
5.1. Micro Characteristics of Quartz Grains
5.2. Major Elements
5.3. Carbon and Oxygen Isotope Characteristics and Their Implications
5.4. Fe Species
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IAEA. Geological Disposal of Radioactive Waste: Technological Implications for Retrievability, NW-T-1.19. 2009. Available online: https://www.iaea.org/publications/8022/geological-disposal-of-radioactive-waste-technological-implications-for-retrievability (accessed on 21 August 2021).
- Wang, C.X.; Liu, X.D.; Liu, P.H. The general situation of clay site for high-level waste geological disposal repository. Radiat. Prot. 2008, 28, 310–316. [Google Scholar]
- Yuan, G.; Zhang, L.; Zeng, Q.; Huang, Z.; Li, J.; Wang, H.; Deng, X. Prediction of rock mass quality in target depth for Tamusu area of Alxa pre-selected region for geological disposal of high-level nuclear waste. J. Eng. Geol. 2018, 26, 1690–1700. (In Chinese) [Google Scholar]
- Wintsch, R.P.; Christoffersen, R.; Kronenberg, A.K. Fluid-rock reaction weakening of fault zones. J. Geophys. Res. Solid Earth 1995, 100, 13021–13032. [Google Scholar] [CrossRef]
- Zheng, G.D. Iron Speciation by Mössbauer Spectroscopy and Its Implications in Various Studies on the Earth Surface Processes. Bull. Mineral. Petrol. Geochem. 2008, 27, 161–168. [Google Scholar]
- Sibson, R.H.; Moore, J.M.M.; Rankin, A.H. Seismic pumping–A hydrothermal fluid transport mechanism. J. Geol. Soc. 1975, 131, 653–659. [Google Scholar] [CrossRef]
- Sibson, R.H. Implications of fault-alve behavior for rupture nucleation and recurrence. Tectonophysics 1992, 211, 283–293. [Google Scholar] [CrossRef]
- Sinisi, R.; Petrullo, A.V.; Agosta, F.; Paternoster, M.; Belviso, C.; Grassa, F. Contrasting fault fluids along high-angle faults: A case study from Southern Apennines (Italy). Tectonophysics 2016, 690, 206–218. [Google Scholar] [CrossRef]
- Boles, A.; Mulch, A.; Ben VD, P. Near-surface clay authigenesis in exhumed fault rock of the Alpine Fault Zone (New Zealand); O-H-Ar isotopic, XRD and chemical analysis of illite and chlorite. J. Struct. Geol. 2018, 111, 27–41. [Google Scholar] [CrossRef] [Green Version]
- Kanaori, Y.; Kazuhiro, T.; Katsuyoshi, M. Further studies on the use of Quartz grain from fault gouges establish the age of faulting. Eng. Geol. 1985, 21, 175–194. [Google Scholar] [CrossRef]
- Niwa, M.; Shimada, K.; Aoki, K.; Ishimaru, T. Microscopic features of quartz and clay particles from fault gouges and infilled fractures in granite: Discriminating between active and inactive faulting. Eng. Geol. 2016, 210, 180–196. [Google Scholar] [CrossRef]
- Wiseall, A.C.; Cuss, R.J.; Hough, E.; Kemp, S.J. The role of fault gouge properties on fault reactivation during hydraulic stimulation; an experimental study using analogue faults. J. Nat. Gas Sci. Eng. 2018, 59, 21–34. [Google Scholar] [CrossRef]
- Guan, W.C.; Liu, X.D.; Liu, P.H. Study on the geological characteristics of claystone in Tamusu area of Bayingebi basin. World Nucl. Geosci. 2014, 31, 95–102. (In Chinese) [Google Scholar]
- Zhang, C.Y.; Nie, F.J.; Hou, S.R.; Wang, J.L.; Deng, W.; Zhang, L. Tectonic evolution characteristics of Bayingebi basin and its control on the mineralization of sandstone type uranium deposits. Uranium Geol. 2015, 31, 384–388. (In Chinese) [Google Scholar]
- Chen, G.; Shi, J.; Jiang, T.; Zhang, H.; Li, W.; Wang, B. LA-ICP-MS zircon U-Pb dating and geochemistry of granitoids in Tamusu, Alxa Right Banner, Inner Mongolia. Geol. Bull. China 2015, 34, 1884–1896. (In Chinese) [Google Scholar]
- Zhang, F.L.; Yi, F.; Chen, Y.L.; Xu, F. Determination of the optimum thickness of an absorber in Mössbauer spectroscopy. J. Wuhan Univ. (Nat. Sci. Ed.) 1997, 43, 348–352. (In Chinese) [Google Scholar]
- Kanaori, Y.; Miyakoshi, K.; Kakuta, T.; Satake, Y. Dating fault activity by surface textures of quartz grains from fault gouges. Eng. Geol. 1980, 16, 243–262. [Google Scholar] [CrossRef]
- Shen, J.; Yang, W.; Liu, T.; Huang, X.; Zheng, W.; Wang, G.; Yu, L. Micro-morphology of quartz in the Bailong river fault gouge, west Qinling, China, and its chornological significance. Bull. Mineral. Petrol. Geochem. 2014, 33, 271–278. (In Chinese) [Google Scholar]
- Zhang, J.; Yin, Y.; Zhang, Y.; Ma, L. Mössbauer apparatus—A powerful characterization technique. Mod. Instrum. Med. Treat. 2003, 9, 33–36. [Google Scholar]
- Kanaori, Y. A SEM cathodoluminescence study of quartz in mildly deformed granite from the region of the Atotsugawa fault, central Japan. Tectonophysics 1986, 131, 133–146. [Google Scholar] [CrossRef]
- Goddard, J.V.; Evans, J.P. Chemical Changes and Fluid-Rock Interaction in Faults of Crystalline Thrust Sheets, Northwestern Wyoming, U.S.A. J. Struct. Geol. 1995, 17, 533–547. [Google Scholar] [CrossRef]
- Chen WM, D.; Tanaka, H.; Huang, H.J.; Lu, C.B.; Lee, C.Y.; Wang, C.Y. Fluid infiltration associated with seismic faulting: Examining chemical and mineralogical compositions of fault rocks from the active Chelungpu fault. Tectonophysics 2007, 443, 243–254. [Google Scholar] [CrossRef]
- Chen, J.; Yang, X.; Ma, S.; Spiers, C.J. Mass removal and clay mineral dehydration/rehydration in carbonate-rich surface exposures of the 2008 Wenchuan Earthquake fault: Geochemical evidence and implications for fault zone evolution and coseismic slip. J. Geophys. Res. Solid Earth 2013, 118, 474–496. [Google Scholar] [CrossRef] [Green Version]
- Isaacs, A.J.; Evans, J.P.; Sheng-Rong, S.; Kolesar, P.T. Structural, Mineralogical, and Geochemical Characterization of the Chelungpu Thrust Fault, Taiwan. Terr. Atmos. Ocean. Ences 2007, 18, 183–221. [Google Scholar] [CrossRef] [Green Version]
- Schleicher, A.M.; Tourscher, S.N.; van der Pluijm, B.A.; Warr, L.N. Constraints on mineralization, fluid-rock interaction, and mass transfer during faulting at 2–3 km depth from the SAFOD drill hole. J. Geophys. Res. Solid Earth 2009, 114, B04202. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, H.; Fujimoto, K.; Ohtani, T.; Ito, H. Structural and chemical characterization of shear zones in the freshly activated Nojima fault, Awaji Island, southwest Japan. J. Geophys. Res. Solid Earth 2001, 106, 8789–8810. [Google Scholar] [CrossRef]
- Matsuda, T.; Omura, K.; Ikeda, R.; Arai, T.; Kobayashi, K.; Still, K.; Tanaka, H.; Saw, T.I.; Hirano, S. Fracture-zone conditions on a recently active fault: Insights from mineralogical and geochemical analyses of the Hirabayashi NIED drill core on the Nojima fault, southwest Japan, which ruptured in the 1995 Kobe earthquake. Tectonophysics 2004, 378, 143–163. [Google Scholar] [CrossRef]
- Evans, J.P.; Chester, F.M. Fluid-rock interaction in faults of the San Andreas system: Inferences from San Gabriel fault rock geochemistry and microstructures. J. Geophys. Res. 1995, 100, 13007–13013. [Google Scholar] [CrossRef]
- Duan, Q.B.; Yang, X.S.; Chen, J.Y. Review of geochemical and petrophysical responses to fluid processes within seismogenic fault zones. Prog. Geophys. 2015, 30, 2448–2462. (In Chinese) [Google Scholar]
- Kirschner, D.L.; Kennedy, L.A. Limited syntectonic fluid flow in carbonate-hosted thrust faults of the Front Ranges, Canadian Rockies, inferred from stable isotope data and structures. J. Geophys. Res. Solid Earth 2001, 106, 8827–8840. [Google Scholar] [CrossRef]
- Pili, É.; Poitrasson, F.; Gratier, J.P. Carbon–oxygen isotope and trace element constraints on how fluids percolate faulted limestones from the San Andreas Fault system: Partitioning of fluid sources and pathways. Chem. Geol. 2002, 190, 231–250. [Google Scholar] [CrossRef]
- Pili, É.; Kennedy, B.M.; Conrad, M.E.; Gratier, J.P. Isotopic evidence for the infiltration of mantle and metamorphic CO2-H2O fluids from below in faulted rocks from the San Andreas Fault system. Chem. Geol. 2011, 281, 242–252. [Google Scholar] [CrossRef] [Green Version]
- Veizer, J.; Holser, W.T.; Wilgus, C.K. Correlation of 13C/12C and 34S/32S secular variations. Geochim. Cosmochim. Acta 1980, 44, 579–587. [Google Scholar] [CrossRef]
- Ohmoto, H. Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits. Econ. Geol. 1972, 67, 551–578. [Google Scholar] [CrossRef]
- Taylor, B.E. Magmatic volatiles; isotopic variation of C, H, and S. Rev. Mineral. Geochem. 1986, 16, 185–225. [Google Scholar]
- Guo, J.; Yan, X.; Zihong, L.I.; Chen, H.; Guirang, H.U. Carbon and oxygen isotope fractionation of carbonate rocks in the fault zone of Wenchuan earthquake: Implications for the mechanism of fault healing. Geol. Bull. China 2019, 38, 959–966. (In Chinese) [Google Scholar]
- Zheng, Y.F. Carbon-oxygen isotopic covariations in hydrothermal calcites during degassing of CO2, a quantitative evaluation and application to the Kushikino gold mining area in Japan. Miner. Depos. 1990, 25, 246–250. [Google Scholar] [CrossRef]
- Zheng, Y.F.; Hoefs, J. Carbon and oxygen isotopic covariations in hydrothermal calcites. Miner. Depos. 1993, 28, 79–89. [Google Scholar] [CrossRef]
- Kerich, R.; Tour, T.; Willmore, L. Fluid participation in deep fault zones: Evidence from geological, geochemical, and 18O/16O relations. J. Geophys. Res. Solid Earth 1984, 89, 4331–4343. [Google Scholar] [CrossRef]
- Wang, P.L.; Wu, J.J.; Yeh, E.C.; Song, S.R.; Chen, Y.G.; Lin, L.H. Isotopic constraints of vein carbonates on fluid sources and processes associated with the ongoing brittle deformation within the accretionary wedge of Taiwan. Terra Nova 2010, 22, 251–256. [Google Scholar] [CrossRef]
- Liu, J.J.; He, M.Q.; Li, Z.M. Oxygen and Carbon Isotopic Geochemistry of Baiyangping Silver-Copper Polymetallic Ore Concentration Area in Lanping Basin of Yunnan Province and Its Significance. Miner. Depos. 2004, 23, 1–10. (In Chinese) [Google Scholar]
- Zheng, G.D.; Fu, B.H.; Takahashi, Y.; Miyahara, M.; Kuno, A.; Matsuo, M.; Miyashita, Y. Iron speciation in fault gouge from the Ushikubi fault zone central Japan. Hyperfine Interact. 2008, 186, 39–52. [Google Scholar] [CrossRef]
- Ma, X.; Wang, H.; Zhang, Z.; Shi, P.; Zhao, J.; Zhang, H.; Song, Z. Distribution characteristics of iron species in three faults along the eastern margin of the Tibetan, China. Bull. Mineral. Petrol. Geochem. 2014, 33, 348–354. (In Chinese) [Google Scholar]
- Harding, T.P.; Tuminas, A.C. Structural interpretation of hydrocarbon traps sealed by basement normal block faults at stable flank of foredeep basins and at rift basins. AAPG Bull. 1989, 73, 812–840. [Google Scholar]
- Yang, W.M.; Huang, W.H. The characteristics of tectonic geochemistry of the fault zones on the southern and northern edges of Huainan coalfield, Anhui province. Geoscience 2002, 16, 251–256. [Google Scholar]
- Guo, C.; Li, G.; Wang, Z.; Zhang, W.; Liu, S.; Gong, Z.; Liu, X. Distribution of Iron Species in Faults and Its Indication of Fault Activity in Tamusu Area, Inner Mongolia. Geol. Rev. 2018, 64, 1365–1378. (In Chinese) [Google Scholar]
- Gudmundsson, A. Active fault zones and groundwater flow. Geophys. Res. Lett. 2000, 27, 2993–2996. [Google Scholar] [CrossRef]
- Gudmundsson, A.; Berg, S.S.; Lyslo, K.B.; Skurtveit, E. Fracture networks and fluid transport in active fault zones. J. Struct. Geol. 2001, 23, 343–353. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rao, Z.; Li, G.; Liu, X.; Liu, P.; Li, H.; Liu, S.; Zhu, M.; Guo, C.; Ni, F.; Gong, Z.; et al. Fault Activity in Clay Rock Site Candidate of High Level Radioactive Waste Repository, Tamusu, Inner Mongolia. Minerals 2021, 11, 941. https://doi.org/10.3390/min11090941
Rao Z, Li G, Liu X, Liu P, Li H, Liu S, Zhu M, Guo C, Ni F, Gong Z, et al. Fault Activity in Clay Rock Site Candidate of High Level Radioactive Waste Repository, Tamusu, Inner Mongolia. Minerals. 2021; 11(9):941. https://doi.org/10.3390/min11090941
Chicago/Turabian StyleRao, Zheng, Guangrong Li, Xiaodong Liu, Pinghui Liu, Honghui Li, Shuai Liu, Minqiang Zhu, Chao Guo, Fengjuan Ni, Zhijun Gong, and et al. 2021. "Fault Activity in Clay Rock Site Candidate of High Level Radioactive Waste Repository, Tamusu, Inner Mongolia" Minerals 11, no. 9: 941. https://doi.org/10.3390/min11090941
APA StyleRao, Z., Li, G., Liu, X., Liu, P., Li, H., Liu, S., Zhu, M., Guo, C., Ni, F., Gong, Z., & Asghar, F. (2021). Fault Activity in Clay Rock Site Candidate of High Level Radioactive Waste Repository, Tamusu, Inner Mongolia. Minerals, 11(9), 941. https://doi.org/10.3390/min11090941