Multisource Seismic Full Waveform Inversion of Metal Ore Bodies
Abstract
:1. Introduction
2. Synthetic Datasets
3. Multisource Full Waveform Inversion
3.1. Theory
3.1.1. Conventional Full Waveform Inversion
3.1.2. Source Independent Full Waveform Inversion
3.1.3. Multisource FWI Workflow
- Directly apply FWI to the passive source seismic data to construct an initial model for the active source seismic data FWI;
- Merge the active source and passive source seismic data using a specific method to compensate for the low-frequency information; and
- Use the seismic interferometry method to process the passive source data and generate virtual shot gathers, then directly inverts it to provide an initial model for the active seismic FWI [29].
3.2. Numerical Examples
3.2.1. Test 1: Test with Ideal Condition
3.2.2. Test 2: Numerical Test with Unknown Source Wavelets
3.2.3. Test 3: Numerical Test with Noise and Unknown Source Wavelets
3.2.4. Test 4: Numerical Test with Noise, Unknown Source Wavelets, and Less Passive Shots
3.2.5. Test 5: Numerical Test with Real Noise, Unknown Source Wavelets and Fewer Passive Shots and Fewer Receivers for Both Passive and Active Dataset
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Malehmir, A.; Dahlin, P.; Lundberg, E.; Juhlin, C.; Sjöström, H.; Högdahl, K. Reflection seismic investigations in the Dannemora area, central Sweden: Insights into the geometry of polyphase deformation zones and magnetite-skarn deposits. J. Geophys. Res. Solid Earth 2011, 116, B11307. [Google Scholar] [CrossRef]
- Malehmir, A.; Durrheim, R.; Bellefleur, G.; Urosevic, M.; Juhlin, C.; White, D.J.; Milkereit, B.; Campbell, G. Seismic methods in mineral exploration and mine planning: A general overview of past and present case histories and a look into the future. Geophysics 2012, 77, WC173–WC190. [Google Scholar] [CrossRef] [Green Version]
- Place, J.; Malehmir, A.; Högdahl, K.; Juhlin, C.; Nilsson, K.P. Seismic characterization of the Grangesberg iron deposit and its mining-induced structures, central Sweden. Interpret. J. Subsurf. Charact. 2015, 3, Sy41–Sy56. [Google Scholar] [CrossRef]
- Singh, B.; Malinowski, M.; Hloušek, F.; Koivisto, E.; Heinonen, S.; Hellwig, O.; Buske, S.; Chamarczuk, M.; Juurela, S. Sparse 3D Seismic Imaging in the Kylylahti Mine Area, Eastern Finland: Comparison of Time Versus Depth Approach. Minerals 2019, 9, 305. [Google Scholar] [CrossRef] [Green Version]
- Bräunig, L.; Buske, S.; Malehmir, A.; Bäckström, E.; Schön, M.; Marsden, P. Seismic depth imaging of iron-oxide deposits and their host rocks in the Ludvika mining area of central Sweden. Geophys. Prospect. 2020, 68, 24–43. [Google Scholar] [CrossRef] [Green Version]
- Lailly, P.; Bednar, J. The seismic inverse problem as a sequence of before stack migrations. In Proceedings of the Conference on Inverse Scattering—Theory and Application, Tulsa, OK, USA, 16–18 May 1983. [Google Scholar]
- Tarantola, A. Inversion of seismic reflection data in the acoustic approximation. Geophysics 1984, 49, 1259–1266. [Google Scholar] [CrossRef]
- Pratt, R.G. Seismic waveform inversion in the frequency domain, Part 1: Theory and verification in a physical scale model. Geophysics 1999, 64, 888–901. [Google Scholar] [CrossRef] [Green Version]
- Pratt, R.G.; Shipp, R.M. Seismic waveform inversion in the frequency domain, Part 2: Fault delineation in sediments using crosshole data. Geophysics 1999, 64, 902–914. [Google Scholar] [CrossRef]
- Sirgue, L.; Pratt, R.G. Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies. Geophysics 2004, 69, 231–248. [Google Scholar] [CrossRef] [Green Version]
- Brenders, A.J.; Pratt, R.G. Full waveform tomography for lithospheric imaging: Results from a blind test in a realistic crustal model. Geophys. J. Int. 2007, 168, 133–151. [Google Scholar] [CrossRef] [Green Version]
- Brossier, R.; Operto, S.; Virieux, J. Seismic imaging of complex onshore structures by 2D elastic frequency-domain full-waveform inversion. Geophysics 2009, 74, WCC105–WCC118. [Google Scholar] [CrossRef]
- Virieux, J.; Operto, S. An overview of full-waveform inversion in exploration geophysics. Geophysics 2009, 74, WCC1–WCC26. [Google Scholar] [CrossRef]
- Kamei, R.; Pratt, R.G.; Tsuji, T. Waveform tomography imaging of a megasplay fault system in the seismogenic Nankai subduction zone. Earth Planet. Sci. Lett. 2012, 317, 343–353. [Google Scholar] [CrossRef]
- Warner, M.; Ratcliffe, A.; Nangoo, T.; Morgan, J.; Umpleby, A.; Shah, N.; Vinje, V.; Štekl, I.; Guasch, L.; Win, C.; et al. Anisotropic 3D full-waveform inversion. Geophysics 2013, 78, R59–R80. [Google Scholar] [CrossRef]
- Yao, G.; Wu, D.; Wang, S.-X. A review on reflection-waveform inversion. Pet. Sci. 2020, 17, 334–351. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.-Y.; Han, L.-G.; Han, M.; Wang, Z.-Q. Elastic full waveform inversion based on visibility analysis and energy compensation for metallic deposit exploration. Chin. J. Geophys. 2015, 58, 4605–4616. [Google Scholar]
- Egorov, A.; Bóna, A.; Pevzner, R.; Tertyshnikov, K. Potential of full waveform inversion of vertical hard rock environment seismic profile data in. ASEG Ext. Abstr. 2019, 2018, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Mao, B.; Han, L.; Hu, Y.; Zhang, P. Low-frequency seismic data reconstruction based similarity phenomenon for metal mine full waveform inversion in frequency domain. Chin. J. Geophys. 2019, 62, 4010–4019. [Google Scholar]
- Hlousek, F.; Malinowski, M.; Buske, S.; Bräunig, L.; Singh, B.; Malehmir, A.; Markovic, M.; Koivisto, E.; Heinonen, S.; Sito, L.; et al. A tailored workflow for advanced high-resolution seismic imaging of mineral exploration targets. In Mineral Exploration Symposium; European Association of Geoscientists & Engineers: Houten, The Netherlands, 2020; pp. 1–3. [Google Scholar]
- Singh, B.; Górszczyk, A.; Malehmir, A.; Hlousek, F.; Buske, S.; Sito, L.; Marsden, P. 3D Velocity Model Building in Hardrock Environment Using FWI: A Case Study from Blötberget Mine, Sweden. In Proceedings of the NSG2020 3rd Conference on Geophysics for Mineral Exploration and Mining, Belgrade, Srbija, 30 August–3 September 2020; pp. 1–5. [Google Scholar]
- Song, C.; Wu, Z.; Alkhalifah, T. Passive seismic event estimation using multiscattering waveform inversion. Geophysics 2019, 84, KS59–KS69. [Google Scholar] [CrossRef]
- Lyu, B.; Nakata, N. Iterative passive-source location estimation and velocity inversion using geometric-mean reverse-time migration and full-waveform inversion. Geophys. J. Int. 2020, 223, 1935–1947. [Google Scholar] [CrossRef]
- Wang, H.; Guo, Q.; Alkhalifah, T.; Wu, Z. Regularized elastic passive equivalent source inversion with full-waveform inversion: Application to a field monitoring microseismic data set. Geophysics 2020, 85, Ks207–Ks219. [Google Scholar] [CrossRef]
- Kamei, R.; Lumley, D. Passive seismic imaging and velocity inversion using full wavefield methods. In SEG Technical Program Expanded Abstracts 2014; Society of Exploration Geophysicists: Denver, CO, USA, 2014; pp. 2273–2277. [Google Scholar]
- Kamei, R.; Lumley, D. Full waveform inversion of repeating seismic events to estimate time-lapse velocity changes. Geophys. J. Int. 2017, 209, 1239–1264. [Google Scholar] [CrossRef]
- Sun, J.; Xue, Z.; Zhu, T.; Fomel, S.; Nakata, N. Full-waveform inversion of passive seismic data for sources and velocities. In SEG Technical Program Expanded Abstracts 2016; Society of Exploration Geophysicists: Dallas, TX, USA, 2016; pp. 1405–1410. [Google Scholar]
- Zhang, P.; Han, L.G.; Jin, Z.Y.; Zhang, F.J. Passive Source Illumination Compensation Based Full Waveform Inversion. In Proceedings of the 78th EAGE Conference and Exhibition 2016, online, 30 May–2 June 2016; pp. 1–3. [Google Scholar]
- Zhang, P.; Han, L.; Yin, Y.; Feng, Q. Passive seismic full waveform inversion using reconstructed body-waves for subsurface velocity construction. Explor. Geophys. 2019, 50, 124–135. [Google Scholar] [CrossRef]
- Zhang, P.; Xing, Z.Z.; Hu, Y. Velocity construction using active and passive multi-component seismic data based on elastic full waveform inversion. Chin. J. Geophys. 2019, 62, 3974–3987. [Google Scholar]
- Choi, Y.; Shin, C.; Min, D.J.; Ha, T. Efficient calculation of the steepest descent direction for source-independent seismic waveform inversion: An amplitude approach. J. Comput. Phys. 2005, 208, 455–468. [Google Scholar] [CrossRef]
- Choi, Y.; Alkhalifah, T. Source-independent time-domain waveform inversion using convolved wavefields: Application to the encoded multisource waveform inversion. Geophysics 2011, 76, R125–R134. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Wu, R.-S.; Han, L. Source-independent seismic envelope inversion based on the direct envelope Fréchet derivative. Geophysics 2018, 83, R581–R595. [Google Scholar] [CrossRef]
- Lian, Y.; Lv, Q.; Han, L.; Zhao, J. The Research of Seismic Modeling in Complex Metal Ore Region-Take Luzong Luohe-Nihe-Dabaozhuang Deposits for an Example. Acta Geol. Sin. 2011, 85, 887–899. [Google Scholar]
Parameters/Data Sets | The Active Seismic Dataset | The Passive Seismic Dataset |
---|---|---|
Source wavelet | 20 Hz Ricker wavelet | 10 Hz Ricker wavelet, or 10 Hz Ricker wavelet convoluted with random sequences |
Model size (nx × nz) | 376 × 126 | 376 × 126 |
Model dx and dz | 10 m | 10 m |
Sample rate/Record length | 0.8 ms/2 s | 0.8 ms/2 s |
Source number | 75 | 50 |
Receiver number | 376 | 376 |
Datasets |
---|
1. Dataset 1: Active dataset without low frequencies information (no data below 5 Hz); |
2. Dataset 2: Dataset 1 with random noise; |
3. Dataset 3: Passive dataset with 10 Hz source wavelet for all the source locations; |
4. Dataset 4: Passive dataset with different source wavelets for different source locations; |
5. Dataset 5: Dataset 4 with random noise; |
6. Dataset 6: Ten randomly picked passive shot gathers from dataset 5; |
7. Dataset 7: Ten randomly picked pass shot gathers from dataset 4 with real noise, and every 5th receiver channel is used; |
8. Dataset 8: Dataset 1 with real noise and every 5th receiver channel is used. |
Tests |
---|
1. Test 1 (noise-free, known source locations and known one single wavelet for all source locations, use datasets 1 and 3, the conventional FWI) |
2. Test 2 (noise-free, known source locations and unknown wavelets for each source location, use datasets 1 and 4, the source-independent FWI) |
3. Test 3 (with noise, known source locations and unknown wavelets for each source location, use datasets 2 and 5, the source-independent FWI) |
4. Test 4 (fewer passive data, with noise, known source locations and unknown wavelets for each source location, use datasets 2 and 6, the source-independent FWI) |
5. Test 5 (fewer passive data, with noise, known source locations and unknown wavelets for each source location, fewer receivers for both active and passive data, use datasets 7 and 8, the source-independent FWI) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Zhang, P.; Xu, Z.; Gong, X.; Han, L. Multisource Seismic Full Waveform Inversion of Metal Ore Bodies. Minerals 2022, 12, 4. https://doi.org/10.3390/min12010004
Zhang F, Zhang P, Xu Z, Gong X, Han L. Multisource Seismic Full Waveform Inversion of Metal Ore Bodies. Minerals. 2022; 12(1):4. https://doi.org/10.3390/min12010004
Chicago/Turabian StyleZhang, Fengjiao, Pan Zhang, Zhuo Xu, Xiangbo Gong, and Liguo Han. 2022. "Multisource Seismic Full Waveform Inversion of Metal Ore Bodies" Minerals 12, no. 1: 4. https://doi.org/10.3390/min12010004
APA StyleZhang, F., Zhang, P., Xu, Z., Gong, X., & Han, L. (2022). Multisource Seismic Full Waveform Inversion of Metal Ore Bodies. Minerals, 12(1), 4. https://doi.org/10.3390/min12010004