Estimation of the Pb Content in a Tailings Dam Using a Linear Regression Model Based on the Chargeability and Resistivity Values of the Wastes (La Carolina Mining District, Spain)
Abstract
:1. Introduction
2. Mining in the Study Area
3. Materials and Methods
3.1. Geophysical Techniques
3.2. Geochemical Analysis
3.3. Statistical Analysis
4. Results and Discussion
4.1. Resistivity and Chargeability
4.2. Univariate and Multivariate Statistics
4.3. Estimation of the Pb Content
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Edraki, M.; Baumgartl, T.; Manlapig, E.; Bradshaw, D.; Franks, D.M.; Moran, C.J. Designing mine tailings for better environmental, social and economic outcomes: A review of alternative approaches. J. Clean. Prod. 2014, 84, 411–420. [Google Scholar] [CrossRef]
- Byrne, P.; Reid, I.; Wood, P.J. Sediment geochemistry of streams draining abandoned lead/ zinc mines in central Wales: The Afon Twymyn. J. Soils Sediments 2010, 10, 683–697. [Google Scholar] [CrossRef] [Green Version]
- Resongles, E.; Casiot, C.; Freydier, R.; Dezileau, L.; Viers, J.Ô.; Elbaz-Poulichet, F. Persisting impact of historical mining activity to metal (Pb, Zn, Cd, Tl, Hg) and metalloid (As, Sb) enrichment in sediments of the Gardon River, Southern France. Sci. Total Environ. 2014, 481, 509–521. [Google Scholar] [CrossRef] [PubMed]
- Ciszewski, D. The past and prognosis of mining cessation impact on river sediment pollution. J. Soils Sediments 2019, 19, 393–402. [Google Scholar] [CrossRef] [Green Version]
- Cortada, U.; Hidalgo, M.; Martínez, J.; Rey, J. Dispersion of metal(loid)s in fluvial sediments: An example from the Linares mining district (southern Spain). Int. J. Environ. Sci. Technol. 2019, 16, 469–484. [Google Scholar] [CrossRef]
- Mendoza, R.; Martínez, J.; Rey, J.; Hidalgo, M.; Campos, M. Metal(loid)s Transport in Hydrographic Networks of Mining Basins: The Case of the La Carolina Mining District (Southeast Spain). Geosciences 2020, 10, 391. [Google Scholar] [CrossRef]
- Hudson-Edwards, K.A.; Macklin, M.G.; Brewer, P.A.; Dennis, I.A. Assessment of Metal Mining-Contaminated River. 2008. Available online: http://www.eugris.info/displayresource.aspx?r=6681 (accessed on 10 June 2020).
- Lghoul, M.; Teixidó, T.; Peña, J.A.; Hakkou, R.; Kchikach, A.; Guerin, R.; Jaffal, M.; Zouhri, L. Electrical and Seismic Tomography Used to Image the Structure of a Tailings Pond at the Abandoned Kettara Mine, Morocco. Mine Water Environ. 2012, 31, 53–61. [Google Scholar] [CrossRef]
- Placencia-Gómez, E.; Parviainen, A.; Hokkanen, T.; Loukola-Ruskeeniemi, K. Integrated geophysical and geochemical study on AMD generation at the Haveri Au–Cu mine tailings, SW Finland. Environ. Earth Sci. 2010, 61, 1435–1447. [Google Scholar] [CrossRef]
- Martínez, J.; Hidalgo, M.; Rey, J.; Garrido, J.; Kohfahl, C.; Benavente, J.; Rojas, D. A multidisciplinary characterization of a tailings pond in the Linares-La Carolina mining district, Spain. J. Geochem. Explor. 2016, 162, 62–71. [Google Scholar] [CrossRef]
- Ceniceros-Gómez, A.E.; Macías-Macías, K.Y.; de la Cruz-Moreno, J.E.; Gutiérrez-Ruiz, M.E.; Martínez-Jardines, L.G. Characterization of mining tailings in México for the possible recovery of strategic elements. J. South Am. Earth Sci. 2018, 88, 72–79. [Google Scholar] [CrossRef]
- Cortada, U.; Hidalgo, M.; Martínez, J.; Rey, J. Impact in soils caused by metal(loid)s in lead metallurgy. The case of La Cruz Smelter (Southern Spain). J. Geochem. Explor. 2018, 190, 302–313. [Google Scholar] [CrossRef]
- Martínez, J.; Rey, J.; Hidalgo, M.; Garrido, J.; Rojas, D. Influence of measurement conditions on the resolution of electrical resistivity imaging: The example of abandoned mining dams in the la Carolina District (Southern Spain). Int. J. Miner. Process. 2014, 133, 67–72. [Google Scholar] [CrossRef]
- Cortada, U.; Martínez, J.; Rey, J.; Hidalgo, M.; Sandoval, S. Assessment of tailings pond seals using geophysical and hydrochemical techniques. Eng. Geol. 2017, 223, 59–70. [Google Scholar] [CrossRef]
- Rojas, D.; Hidalgo, M.; Kohfahl, C.; Rey, J.; Martínez, J.; Benavente, J. Oxidation Dynamics and Composition of the Flotation Plant Derived Tailing Impoundment Aquisgrana (Spain). Water Air Soil Pollut. 2019, 230, 158. [Google Scholar] [CrossRef]
- IGME. Inventario Nacional de Depósitos de Lodos. 2002. Available online: http://info.igme.es/catalogo/resource.aspx?portal=1&catalog=3&ctt=1&lang=por&dlang=eng&llt=dropdown&master=infoigme&shdt=false&shfo=false&resource=18 (accessed on 13 August 2021).
- Tamain, G. Recherches Géologiques et Minières en Sierra Morena Orientale (Espagne); Laboratoire de Géologie Structurale et Appliquée: Paris, France, 1972. [Google Scholar]
- Castelló, R.; Orviz, F. Mapa Geológico y Memoria Explicativa de la Hoja 884 (La Carolina), Escala 1:50.000. 1976. Available online: http://info.igme.es/cartografiadigital/geologica/Magna50.aspx (accessed on 13 August 2021).
- Lillo, F.J. Geology and Geochemistry of Linares—La Carolina Pb-ore Field (Sootheastern Border of the Hesperian Massif). 1992. Available online: https://etheses.whiterose.ac.uk/12721/ (accessed on 13 August 2021).
- Rey, J.; Hidalgo, M.; Martínez, J. Upper Ordovician–Lower Silurian transgressive–regressive cycles of the Central Iberian Zone (NE Jaén, Spain). Geol. J. 2005, 40, 477–495. [Google Scholar] [CrossRef]
- Azcárate, J.E. Mapa Geológico y Memoria Explicativa de la Hoja 905 (Linares), Escala 1:50.000; Instituto Geológico y Minero de España: Madrid, Spain, 1977. [Google Scholar]
- Junta de Andalucía. Libro Blanco de la Minería Andaluza; Junta de Andalucía: Seville, Spain, 1986; Volume 2. [Google Scholar]
- Telford, W.M.; Geldart, L.P.; Sheriff, R.E. Applied Geophysics, 2nd ed.; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar] [CrossRef]
- Store, H.; Storz, W.; Jacobs, F. Electrical Resistivity Tomography to Investigate Geological Structures of Earth’s Upper Crust. Geophys. Prospect. 2000, 48, 455–471. [Google Scholar] [CrossRef]
- Dahlin, T.; Zhou, B. A numerical comparison of 2D resistivity imaging with 10 electrode arrays. Geophys. Prospect. 2004, 52, 379–398. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, Y. Resolution of Resistivity Tomography Inferred from Numerical Simulation. Geophys. Prospect. 1992, 40, 453–463. [Google Scholar] [CrossRef]
- Griffiths, D.; Barker, R. Two-dimensional resistivity imaging and modeling in areas of complex geology. J. Appl. Geophys. 1993, 29, 211–226. [Google Scholar] [CrossRef]
- Summer, J.S. Principles of Induced Polarization for Geophysical Exploration; Developments in Economic Geology; Elsevier: Amsterdam, The Netherlands, 1976; Volume 5. [Google Scholar]
- Zhdanov, M. Chapter 12—Direct Current and Induced Polarization Methods. In Foundations of Geophysical Electromagnetic Theory and Methods, 2nd ed.; Zhdanov, M.S., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 439–493. [Google Scholar]
- Vinegar, H.J.; Waxman, M.H. Induced polarization of shaly sands. Geophysics 1984, 49, 1267–1287. [Google Scholar] [CrossRef]
- Mostafaei, K.; Ramazi, H. Compiling and verifying 3D models of 2D induced polarization and resistivity data by geostatistical methods. Acta Geophys. 2018, 66, 959–971. [Google Scholar] [CrossRef]
- Heritana A, R.; Riva, R.; Ralay, R.; Boni, R. Evaluation of flake graphite ore using self-potential (SP), electrical resistivity tomography (ERT) and induced polarization (IP) methods in east coast of Madagascar. J. Appl. Geophys. 2019, 169, 134–141. [Google Scholar] [CrossRef]
- Martínez, J.; Rey, J.; Sandoval, S.; Hidalgo, M.; Mendoza, R. Geophysical Prospecting Using ERT and IP Techniques to Locate Galena Veins. Remote Sens. 2019, 11, 2923. [Google Scholar] [CrossRef] [Green Version]
- Revil, A.; Karaoulis, M.; Johnson, T.; Kemna, A. Review: Some low-frequency electrical methods for subsurface characterization and monitoring in hydrogeology. Hydrogeol. J. 2012, 20, 617–658. [Google Scholar] [CrossRef]
- Chirindja, F.J.; Dahlin, T.; Juizo, D.; Steinbruch, F. Reconstructing the formation of a costal aquifer in Nampula province, Mozambique, from ERT and IP methods for water prospection. Environ. Earth Sci. 2017, 76, 36. [Google Scholar] [CrossRef] [Green Version]
- Zarroca, M.; Linares, R.; Velásquez-López, P.C.; Roqué, C.; Rodríguez, R. Application of electrical resistivity imaging (ERI) to a tailings dam project for artisanal and small-scale gold mining in Zaruma-Portovelo, Ecuador. J. Appl. Geophys. 2015, 113, 103–113. [Google Scholar] [CrossRef]
- Rey, J.; Martínez, J.; Hidalgo, M.; Mendoza, R.; Sandoval, S. Assessment of Tailings Ponds by a Combination of Electrical (ERT and IP) and Hydrochemical Techniques (Linares, Southern Spain). Mine Water Environ. 2020, 40, 298–307. [Google Scholar] [CrossRef]
- Martínez, J.; Mendoza, R.; Rey, J.; Sandoval, S.; Hidalgo, M.C. Characterization of Tailings Dams by Electrical Geophysical Methods (ERT, IP): Federico Mine (La Carolina, Southeastern Spain). Minerals 2021, 11, 145. [Google Scholar] [CrossRef]
- Langston, W.J.; Spence, S.K. Metal Analysis. A Handbook of ecotoxicology. Volume 2; Blackwell Sci.: London, UK, 1994. [Google Scholar]
- Xing, B.; Veneman, P.L.M. Microwave digestion for analysis of metals in soil. Commun. Soil Sci. Plant Anal. 1998, 29, 923–930. [Google Scholar] [CrossRef]
- U.S. EPA. Method 200.8: Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma-Mass Spectrometry; U.S. EPA: Cincinnati, OH, USA, 1994; Revision 5.4. [Google Scholar]
- Zhang, C.; Selinus, O. Statistics and GIS in environmental geochemistry—Some problems and solutions. J. Geochem. Explor. 1998, 64 Pt 1, 339–354. [Google Scholar] [CrossRef]
- Einax, J.W.; Truckenbrodt, D.; Kampe, O. River Pollution Data Interpreted by Means of Chemometric Methods. Microchem. J. 1998, 58, 315–324. [Google Scholar] [CrossRef]
- Lee, C.S.; Li, X.; Shi, W.; Cheung, S.C.; Thornton, I. Metal contamination in urban, suburban, and country park soils of Hong Kong: A study based on GIS and multivariate statistics. Sci. Total Environ. 2006, 356, 45–61. [Google Scholar] [CrossRef] [Green Version]
- Anju, M.; Banerjee, D.K. Multivariate statistical analysis of heavy metals in soils of a Pb–Zn mining area, India. Environ. Monit. Assess. 2012, 184, 4191–4206. [Google Scholar] [CrossRef] [PubMed]
- Astel, A.; Tsakovski, S.; Barbieri, P.; Simeonov, V. Comparison of self-organizing maps classification approach with cluster and principal components analysis for large environmental data sets. Water Res. 2007, 41, 4566–4578. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Wang, L.; Li, L.Y.; Lei, K.; Huang, L.; Kang, D. Multivariate statistical analysis of heavy metals in street dust of Baoji, NW China. J. Hazard. Mater. 2010, 173, 744–749. [Google Scholar] [CrossRef] [PubMed]
- Tahri, M.; Bounakhla, M.; Bilal, E.; Gruffat, J.J.; Moutte, J.; Garcia, D. Multivariate analysis of heavy metal contents in soils, sediments and water in the region of Meknes (Central Morocco). Environ. Monit. Assess. 2005, 102, 405–417. [Google Scholar] [CrossRef] [PubMed]
- Samouëlian, A.; Cousin, I.; Tabbagh, A.; Bruand, A.; Richard, G. Electrical resistivity survey in soil science: A review. Soil Tillage Res. 2005, 83, 173–193. [Google Scholar] [CrossRef] [Green Version]
- Real Decreto 18/2015. de 27 de Enero. Boletín Oficial de la Junta de Andalucía. Consejería de Medio Ambiente y Ordenación del Territorio. Consejería de Medio Ambiente y Ordenación del Territorio, Vol. Núm. 38. Junta de Andalucía. Available online: https://www.juntadeandalucia.es/boja/2015/38/3 (accessed on 13 August 2021).
- Rijkswaterstaat. Soil Remediation Circular Version of 1 July 2013. 2013. Available online: https://rwsenvironment.eu/subjects/soil/legislation-and/soil-remediation/ (accessed on 13 August 2021).
- Esquenazi, E.L.; Norambuena, B.K.; Bacigalupo, Í.M.; Estay, M.G. Evaluation of soil intervention values in mine tailings in northern Chile. PeerJ 2018, 2018, e5879. [Google Scholar] [CrossRef] [PubMed]
- Kyere, V.N.; Greve, K.; Atiemo, S.M.; Amoako, D.; Aboh, I.K.; Cheabu, B.S. Contamination and Health Risk Assessment of Exposure to Heavy Metals in Soils from Informal E-Waste Recycling Site in Ghana. Emerg. Sci. J. 2018, 2, 428. [Google Scholar] [CrossRef]
Resistivity (Ohm.m) | Chargeability (mV/V) | |||||||
---|---|---|---|---|---|---|---|---|
Position | Depth: 12.5 cm | Depth: 37.5 cm | Depth: 63.7 cm | Mean | Depth: 12.5 cm | Depth: 37.5 cm | Depth: 63.7 cm | Mean |
S-1 (0.0 m) | 225.40 | 92.22 | 36.17 | 117.93 | 16.60 | 13.90 | 9.47 | 13.32 |
S-2 (1.5 m) | 189.64 | 177.48 | 147.60 | 171.57 | 1.88 | 1.78 | 1.49 | 1.72 |
S-3 (3.0 m) | 289.71 | 217.29 | 104.23 | 203.74 | 0.70 | 0.80 | 0.91 | 0.80 |
S-4 (4.5 m) | 240.92 | 182.55 | 139.80 | 187.76 | 0.84 | 0.65 | 0.40 | 0.63 |
S-5 (6.0 m) | 158.76 | 141.98 | 114.94 | 138.56 | 4.65 | 4.49 | 4.19 | 4.44 |
S-6 (7.5 m) | 62.97 | 80.66 | 87.87 | 77.17 | 5.98 | 5.18 | 4.49 | 5.22 |
S-7 (9.0 m) | 140.21 | 131.25 | 89.45 | 120.30 | 3.69 | 3.20 | 3.02 | 3.30 |
S-8 (10.5 m) | 145.02 | 144.13 | 123.37 | 137.51 | 0.31 | 0.32 | 0.33 | 0.32 |
S-9 (12.0 m) | 171.50 | 166.30 | 120.02 | 152.61 | 0.04 | 0.09 | 0.16 | 0.10 |
S-10 (13.5 m) | 290.95 | 247.12 | 139.20 | 225.76 | 9.28 | 8.04 | 6.73 | 8.02 |
S-11 (15.0 m) | 1073.30 | 860.20 | 536.88 | 823.46 | 0.49 | 0.29 | 0.18 | 0.32 |
S-12 (16.5 m) | 1021.80 | 1288.70 | 1168.70 | 1159.73 | 2.72 | 1.58 | 0.74 | 1.68 |
S-13 (18.0 m) | 975.41 | 1227.70 | 1705.20 | 1302.77 | 4.71 | 4.49 | 3.63 | 4.28 |
S-14 (19.5 m) | 817.22 | 1158.90 | 1871.70 | 1282.61 | 3.38 | 3.04 | 2.35 | 2.92 |
S-15 (21.0 m) | 952.91 | 1157.20 | 1809.00 | 1306.37 | 8.85 | 7.57 | 5.86 | 7.43 |
S-16 (22.5 m) | 845.77 | 1204.60 | 1775.40 | 1275.26 | 2.45 | 2.37 | 2.00 | 2.27 |
S-17 (24.0 m) | 1576.20 | 2258.00 | 3485.40 | 2439.87 | 0.07 | 0.08 | 0.08 | 0.08 |
S-18 (25.5 m) | 1788.00 | 2268.20 | 2847.10 | 2301.10 | 0.01 | 0.01 | 0.00 | 0.01 |
S-19 (27.5 m) | 250.50 | 282.27 | 314.34 | 282.37 | 0.83 | 0.76 | 0.67 | 0.75 |
S-20 (29.0 m) | 281.96 | 251.90 | 150.55 | 228.14 | 1.39 | 1.49 | 1.63 | 1.50 |
Sample | Ag | As | Ba | Ca | Co | Cr | Cu | Fe | Mg | Mn | Ni | P | Pb | V | Zn |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S-1 | 6.1 | 71 | 1972 | 26,311 | 6 | 11 | 10 | 30,885 | 10,215 | 1834 | 16 | 434 | 8375 | 8 | 90 |
S-2 | 6.0 | 108 | 258 | 24,741 | 8 | 12 | 12 | 43,765 | 10,677 | 2055 | 19 | 521 | 8110 | 9 | 112 |
S-3 | 2.7 | 79 | 154 | 23,327 | 7 | 16 | 10 | 34,314 | 10,265 | 2106 | 17 | 489 | 3939 | 11 | 128 |
S-4 | 2.8 | 83 | 228 | 25,779 | 6 | 12 | 5 | 36,263 | 10,929 | 2171 | 15 | 452 | 4273 | 8 | 60 |
S-5 | 4.7 | 116 | 241 | 35,022 | 7 | 9 | 11 | 46,462 | 16,048 | 2677 | 19 | 390 | 7051 | 7 | 106 |
S-6 | 4.1 | 83 | 487 | 19,935 | 11 | 17 | 6 | 31,995 | 9030 | 2035 | 23 | 426 | 3656 | 9 | 104 |
S-7 | 1.4 | 111 | 319 | 16,870 | 10 | 18 | 8 | 36,421 | 8461 | 1863 | 23 | 505 | 1101 | 11 | 223 |
S-8 | 2.4 | 167 | 1488 | 21,225 | 8 | 9 | 12 | 44,579 | 9753 | 2518 | 17 | 536 | 2878 | 10 | 647 |
S-9 | 5.0 | 95 | 3965 | 27,255 | 6 | 3 | 7 | 78,618 | 12,220 | 5284 | 10 | 452 | 8772 | 5 | 260 |
S-10 | 1.2 | 67 | 162 | 21,636 | 7 | 4 | 5 | 34,425 | 8482 | 2154 | 13 | 568 | 2274 | 6 | 195 |
S-11 | 1.3 | 67 | 521 | 14,665 | 7 | 6 | 6 | 37,266 | 5957 | 2111 | 14 | 552 | 1837 | 8 | 264 |
S-12 | 4.9 | 94 | 1133 | 20,212 | 8 | 15 | 9 | 45,707 | 9608 | 2534 | 19 | 437 | 6703 | 11 | 154 |
S-13 | 5.9 | 82 | 1010 | 21,922 | 8 | 12 | 10 | 48,747 | 10,962 | 2710 | 20 | 439 | 7917 | 9 | 148 |
S-14 | 5.8 | 86 | 952 | 22,255 | 8 | 12 | 10 | 48,722 | 11,275 | 2736 | 19 | 430 | 8003 | 9 | 133 |
S-15 | 5.6 | 102 | 960 | 22,188 | 8 | 12 | 10 | 49,082 | 10,995 | 2718 | 20 | 444 | 7962 | 9 | 124 |
S-16 | 5.6 | 100 | 1038 | 22,194 | 8 | 12 | 14 | 51,072 | 11,410 | 2809 | 20 | 447 | 8514 | 9 | 140 |
S-17 | 4.6 | 92 | 942 | 20,904 | 7 | 13 | 9 | 47,336 | 10,380 | 2638 | 19 | 443 | 6463 | 10 | 118 |
S-18 | 2.0 | 63 | 312 | 17,427 | 7 | 12 | 9 | 37,074 | 8206 | 2210 | 18 | 468 | 2213 | 9 | 89 |
S-19 | 2.4 | 79 | 482 | 16,931 | 8 | 11 | 9 | 43,618 | 8078 | 2420 | 19 | 496 | 2683 | 9 | 126 |
S-20 | 1.4 | 126 | 462 | 8649 | 8 | 4 | 7 | 46,616 | 3603 | 1767 | 13 | 585 | 2466 | 8 | 134 |
S-21 | 1.3 | 63 | 188 | 11,802 | 6 | 5 | 7 | 38,404 | 4198 | 1862 | 11 | 600 | 1679 | 8 | 181 |
S-22 | 1.2 | 53 | 485 | 15,589 | 4 | 5 | 7 | 26,461 | 6456 | 1496 | 10 | 529 | 2030 | 6 | 114 |
S-23 | 1.5 | 72 | 350 | 13,337 | 7 | 5 | 10 | 34,235 | 5494 | 1643 | 14 | 587 | 2362 | 7 | 239 |
S-24 | 3.3 | 81 | 785 | 18,252 | 8 | 10 | 11 | 41,967 | 8480 | 2361 | 17 | 503 | 3979 | 9 | 138 |
S-25 | 4.5 | 90 | 877 | 19,103 | 8 | 9 | 12 | 44,565 | 9164 | 2476 | 17 | 481 | 5467 | 8 | 131 |
S-26 | 4.4 | 86 | 885 | 18,886 | 7 | 10 | 9 | 44,230 | 9111 | 2455 | 17 | 469 | 5732 | 9 | 127 |
Element | (mg·kg−1) | Variance | Skewness | Kurtosis | |||||
---|---|---|---|---|---|---|---|---|---|
Min. | Max. | Mean | Median | Range | Std. Deviation | ||||
Ag | 1 | 6 | 4 | 4 | 5 | 2 | 4 | −0.04 | −1.60 |
As | 53 | 167 | 89 | 85 | 114 | 24 | 560 | 1.45 | 3.55 |
Ba | 154 | 3965 | 794 | 504 | 3811 | 786 | 618,079 | 2.87 | 10.47 |
Ca | 8649 | 35,022 | 20,246 | 20,558 | 26,373 | 5389 | 29,048,445 | 0.34 | 1.44 |
Co | 4 | 11 | 7 | 8 | 7 | 1 | 2 | 0.23 | 2.47 |
Cr | 3 | 18 | 10 | 11 | 15 | 4 | 17 | −0.08 | −0.65 |
Cu | 5 | 14 | 9 | 9 | 9 | 2 | 5 | 0.00 | −0.44 |
Fe | 26,461 | 78,618 | 42,416 | 43,691 | 52,157 | 9863 | 97,296,006 | 1.81 | 6.49 |
Mg | 3603 | 16,048 | 9209 | 9386 | 12,445 | 2628 | 6,908,878 | −0.05 | 1.22 |
Mn | 1496 | 5284 | 2370 | 2285 | 3788 | 698 | 488,367 | 2.94 | 12.25 |
Ni | 10 | 23 | 17 | 17 | 13 | 4 | 13 | −0.41 | −0.30 |
P | 390 | 600 | 487 | 475 | 210 | 57 | 3267 | 0.51 | −0.71 |
Pb | 1101 | 8772 | 4863 | 4126 | 7671 | 2618 | 6,858,494 | 0.18 | −1.61 |
V | 5 | 11 | 9 | 9 | 6 | 2 | 2 | −0.42 | 0.30 |
Zn | 60 | 647 | 165 | 132 | 587 | 111 | 12,372 | 3.50 | 14.72 |
Rotated Component Matrix | ||||
---|---|---|---|---|
Element | Component | |||
1 | 2 | 3 | 4 | |
Mg | 0.895 | −0.019 | 0.092 | 0.054 |
Ag | 0.883 | 0.127 | 0.190 | −0.076 |
Pb | 0.876 | −0.078 | 0.278 | −0.053 |
Ca | 0.853 | −0.241 | −0.071 | 0.021 |
Cu | 0.564 | 0.353 | 0.013 | 0.504 |
Chargeability | 0.419 | −0.213 | −0.614 | −0.134 |
Ni | 0.257 | 0.900 | −0.204 | −0.017 |
Cr | 0.201 | 0.886 | −0.182 | −0.190 |
V | −0.112 | 0.873 | −0.119 | 0.157 |
Co | −0.206 | 0.736 | −0.051 | 0.122 |
Fe | 0.288 | −0.271 | 0.863 | 0.180 |
Mn | 0.362 | −0.355 | 0.824 | 0.040 |
Ba | 0.344 | −0.406 | 0.640 | 0.151 |
As | 0.034 | 0.139 | 0.131 | 0.891 |
Zn | −0.232 | −0.121 | 0.173 | 0.837 |
P | −0.796 | −0.271 | −0.162 | 0.344 |
% Var | 29.71 | 22.62 | 15.63 | 12.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendoza, R.; Martínez, J.; Hidalgo, M.C.; Campos-Suñol, M.J. Estimation of the Pb Content in a Tailings Dam Using a Linear Regression Model Based on the Chargeability and Resistivity Values of the Wastes (La Carolina Mining District, Spain). Minerals 2022, 12, 7. https://doi.org/10.3390/min12010007
Mendoza R, Martínez J, Hidalgo MC, Campos-Suñol MJ. Estimation of the Pb Content in a Tailings Dam Using a Linear Regression Model Based on the Chargeability and Resistivity Values of the Wastes (La Carolina Mining District, Spain). Minerals. 2022; 12(1):7. https://doi.org/10.3390/min12010007
Chicago/Turabian StyleMendoza, Rosendo, Julián Martínez, Maria Carmen Hidalgo, and Maria José Campos-Suñol. 2022. "Estimation of the Pb Content in a Tailings Dam Using a Linear Regression Model Based on the Chargeability and Resistivity Values of the Wastes (La Carolina Mining District, Spain)" Minerals 12, no. 1: 7. https://doi.org/10.3390/min12010007
APA StyleMendoza, R., Martínez, J., Hidalgo, M. C., & Campos-Suñol, M. J. (2022). Estimation of the Pb Content in a Tailings Dam Using a Linear Regression Model Based on the Chargeability and Resistivity Values of the Wastes (La Carolina Mining District, Spain). Minerals, 12(1), 7. https://doi.org/10.3390/min12010007