Insight into Saturated Hydraulic Conductivity of Cemented Paste Backfill Containing Polycarboxylate Ether-Based Superplasticizer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Used
2.1.1. Tailings
2.1.2. Binders
2.1.3. Chemical Admixture
2.1.4. Mixing Water
2.2. Sample Preparation and Curing
2.3. Hydraulic Conductivity Test
2.4. Microstructural Analyses
3. Results and Discussions
3.1. Time Dependent Evolution of Hydraulic Conductivity of CPB
3.2. Effect of Temperature on the Hydraulic Conductivity
3.3. Effect of Binder Type on the Hydraulic Conductivity
3.4. Effect of Water-to-Cement Ratio on the Hydraulic Conductivity
3.5. Effect of Sulfate Content on the Hydraulic Conductivity
4. Summary and Conclusions
- The addition of ether-based superplasticizer decreased the hydraulic conductivity of the CPB. The reduction was largely attributable to the influence of this superplasticizer on particles mobility and cement hydration. These results then imply that the addition of polycarboxylate ether-based superplasticizer to CPBs should result in an increase of the environmental performance of CPBs;
- The hydraulic conductivity of the CPB decreased with curing time regardless of the mix composition, superplasticizer content, or curing condition. It generally decreased rapidly in the early age (up to 7 days) and continued slowly beyond that;
- Increase in the curing temperature resulted in a significant decrease in the hydraulic conductivity. The behavior was largely due to faster cement hydration at high temperatures which led to more hydration products and finer pore structure;
- Presence of sulfide minerals or sulphate ions in natural tailings influenced the hydraulic conductivity by inducing an excessive generation of expansive compounds that fill the pores in the CPB;
- Replacement of PCI with blast furnace slag was observed to improve the hydraulic conductivity significantly of the CPB containing ether-based superplasticizer. However, replacement with fly ash has an opposite effect although the marginal changes are small. These results suggest that the partial replacement of the Portland cement of CPB that contains polycarboxylate ether-based superplasticizer with Slag should improve its environmental performance;
- A high water-to-cement ratio produced CPB with high hydraulic conductivity, implying that a lower water-to-cement ratio required for CPB with superplasticizer is beneficial towards the improvement of its permeability, and thus enhancing its environmental performance.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fridjonsson, E.O.; Hasan, A.; Fourie, A.B.; Johns, M.L. Pore structure in a gold mine cemented paste backfill. Miner. Eng. 2013, 53, 144–151. [Google Scholar] [CrossRef]
- Cui, L.; Fall, M. An evolutive elasto-plastic model for cemented paste backfill. Comput. Geotech. 2016, 71, 19–29. [Google Scholar] [CrossRef]
- Jiang, H.; Fall, M.; Cui, L. Freezing behaviour of cemented paste backfill material in column experiments. Constr. Build. Mater. 2017, 147, 837–846. [Google Scholar] [CrossRef]
- Belibi Tana, A.E.; Yin, S.; Wang, L. Investigation on mechanical characteristics and microstructure of cemented whole tilings backfill. Minerals 2021, 11, 592. [Google Scholar] [CrossRef]
- Ren, W.; Gao, R.; Zhang, Y.; Hou, M. Rheological properties of ultra-fine tailings cemented paste backfill under ultrasonic wave action. Minerals 2021, 11, 718. [Google Scholar] [CrossRef]
- Shao, X.; Sun, W.; Li, X.; Wang, L.; Fang, Z.; Zhao, B.; Sun, J.; Tian, C.; Xu, B. Experimental study on the mechanical properties and failure characteristics of layered aeolian sand paste-like backfill—A case study from Shanghe coal mine. Minerals 2021, 11, 577. [Google Scholar] [CrossRef]
- Wang, Y.; Fall, M.; Wu, A. Initial temperature-dependence of strength development and self-desiccation in cemented paste backfill that contains sodium silicate. Cem. Concr. Compos. 2016, 67, 101–110. [Google Scholar] [CrossRef]
- Tang, Y.; Zheng, J.; Guo, L.; Zhao, Y. Effect of gypsum addition on the mechanical and microstructural performance of sulphide-rich cemented paste backfill. Minerals 2021, 11, 283. [Google Scholar] [CrossRef]
- Wang, S.; Wang, F.; Yin, D.; Jiang, T.; Zhang, Z. Experimental study on mechanical properties of paste backfill with flue-gas desulphurisation gypsum under combined action of dry–wet cycles and chloride erosion. Minerals 2021, 11, 882. [Google Scholar] [CrossRef]
- Xu, X.; Sun, X.; Yao, W.; Wu, P.; Qiu, J.; Guo, Z.; Liu, N. Strength and ultrasonic characteristics of cemented paste backfill incorporating foaming agent. Minerals 2021, 11, 681. [Google Scholar] [CrossRef]
- Abdul-Hussain, N.; Fall, M. Unsaturated hydraulic properties of cemented tailings backfill that contains sodium silicate. Eng. Geol. 2011, 123, 288–301. [Google Scholar] [CrossRef]
- Grabinsky, M.; Bawden, W.; Simon, D.; Thompson, B. In situ properties of cemented paste backfill in an Alimak stope. Proc. GeoEdmonton 2008, 8, 790–796. [Google Scholar]
- Skousen, J.G.; Sexstone, A.; Ziemkiewicz, P.F. Acid mine drainage control and treatment. Reclamation of drastically disturbed lands. In Agronomy Monographs; American Society of Agronomy: Madison, WI, USA, 2000. [Google Scholar]
- Akcil, A.; Koldas, S. Acid Mine Drainage (AMD): Causes, treatment and case studies. J. Clean. Prod. 2006, 14, 1139–1145. [Google Scholar] [CrossRef]
- Simate, G.S.; Ndlovu, S. Acid mine drainage: Challenges and opportunities. J. Environ. Chem. Eng. 2014, 2, 1785–1803. [Google Scholar] [CrossRef]
- Vaughan, D.J.; Lennie, A.R. The iron sulphide minerals: Their chemistry and role in nature. Sci. Prog. 1991, 75, 371–388. [Google Scholar]
- Gerasimov, A.; Kotova, E.; Ustinov, I. Applied Mineralogy of Anthropogenic Accessory Minerals. In International Congress on Applied Mineralogy; Springer: Cham, Germany, 2019; pp. 70–74. [Google Scholar]
- Ren, M.; Wang, X. Accessory Mineral Analysis of Alkali-rich Granite from Gejiu Tin District. Microsc. Microanal. 2019, 25, 2322–2323. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, J.A.; Testa, S.M. Acid Mine Drainage, Rock Drainage, and Acid Sulfate Soils: Causes, Assessment, Prediction, Prevention, and Remediation; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Jennings, S.R.; Blicker, P.S.; Neuman, D.R. Acid Mine Drainage and Effects on Fish Health and Ecology: A Review; Reclamation Research Group: Bozeman, MT, USA, 2008. [Google Scholar]
- Abdul-Hussain, A.; Fall, M.; Su, G. Evolution of hydraulic and mechanical properties of gelfill. In Proceedings of the 14th Pan-American Conference on Soil Mechanics and Geotechnical Engineering (PCSMGE), the 64th Canadian Geotechnical Conference (CGC), Toronto, ON, Canada, 2–6 October 2011. [Google Scholar]
- Bull, A.; Fall, M. Temperature dependency of the release of Asernic from cemented paste backfill made with Portland cement. J. Environ. Manag. 2020, 269, 110772. [Google Scholar] [CrossRef] [PubMed]
- Fall, M.; Adrien, D.; Célestin, J.C.; Pokharel, M.; Touré, M. Saturated hydraulic conductivity of cemented paste backfill. Miner. Eng. 2009, 22, 1307–1317. [Google Scholar] [CrossRef]
- Godbout, J.; Bussière, B.; Belem, T. Evolution of cemented paste backfill saturated hydraulic conductivity at early curing time. In Proceedings of the 60th Canadian Geotechnical Society Conference (OttawaGeo 2007), Ottawa, ON, Canada, 21–24 October 2007. [Google Scholar]
- Pokharel, M.; Fall, M. Combined influence of sulphate and temperature on the saturated hydraulic conductivity of hardened cemented paste backfill. Cem. Concr. Compos. 2013, 38, 21–28. [Google Scholar] [CrossRef]
- Veenstra, R.L.; Grabinsky, M.W.; Bawden, W.F.; Thompson, B.D. A numerical analysis of how permeability affects the development of pore water pressure in early age cemented paste backfill in a backfilled stope. In Proceedings of the Eleventh International Symposium on Mining with Backfill, Perth, Australia, 20–22 May 2014; Australian Centre for Geomechanics: Crawley, Australia, 2014; pp. 83–95. [Google Scholar]
- Cihangir, F.; Akyol, Y. Mechanical, hydrological and microstructural assessment of the durability of cemented paste backfill containing alkali-activated slag. Int. J. Min. Reclam. Environ. 2018, 32, 123–143. [Google Scholar] [CrossRef]
- Ke, X.; Zhou, X.; Wang, X.; Wang, T.; Hou, H.; Zhou, M. Effect of tailings fineness on the pore structure development of cemented paste backfill. Constr. Build. Mater. 2016, 126, 345–350. [Google Scholar] [CrossRef]
- Yilmaz, E.; Belem, T.; Benzaazoua, M.; Bussière, B. Assessment of the modified CUAPS apparatus to estimate in situ properties of cemented paste backfill. Geotech. Test. J. 2010, 33, 351–362. [Google Scholar]
- Mollah, M.Y.A.; Adams, W.J.; Schennach, R.; Cocke, D.L. A review of cement superplasticizer interactions and their models. Adv. Cem. Res. 2000, 12, 153–161. [Google Scholar] [CrossRef]
- Kauppi, A.; Andersson, K.M.; Bergström, L. Probing the effect of superplasticizer adsorption on the surface forces using the colloidal probe AFM technique. Cem. Concr. Res. 2005, 35, 133–140. [Google Scholar] [CrossRef]
- Gelardi, G.; Flatt, R.J. Working mechanisms of water reducers and superplasticizers. In Science and Technology of Concrete Admixtures; Woodhead Publishing: Thorston, UK, 2016; pp. 257–278. [Google Scholar]
- Björnström, J.; Chandra, S. Effect of superplasticizers on the rheological properties of cements. Mater. Struct. 2003, 36, 685–692. [Google Scholar] [CrossRef]
- Bravo, M.; de Brito, J.; Evangelista, L.; Pacheco, J. Superplasticizer’s efficiency on the mechanical properties of recycled aggregates concrete: Influence of recycled aggregates composition and incorporation ratio. Constr. Build. Mater. 2017, 153, 129–138. [Google Scholar] [CrossRef]
- Plank, J.; Hirsch, C. Impact of zeta potential of early cement hydration phases on superplasticizer adsorption. Cem. Concr. Res. 2007, 37, 537–542. [Google Scholar] [CrossRef]
- Pourchet, S.; Liautaud, S.; Rinaldi, D.; Pochard, I. Effect of the repartition of the PEG side chains on the adsorption and dispersion behaviors of PCP in presence of sulfate. Cem. Concr. Res. 2012, 42, 431–439. [Google Scholar] [CrossRef]
- Pameijer, C.H. Biocompatibility of luting cements for dental applications. In Biocompatibility of Dental Biomaterials; Woodhead Publishing: Thorston, UK, 2017; pp. 77–94. [Google Scholar]
- ASTM C143/C143M-15a; Standard Test Method for Slump of Hydraulic-Cement Concrete. ASTM International: West Conshohocken, PA, USA, 2015. Available online: www.astm.org (accessed on 25 January 2017).
- Aldhafeeri, A.; Fall, M.; Pokharel, M.; Pouramini, Z. Temperature dependency of the reactivity of cemented paste backfill. Appl. Geochem. 2016, 72, 10–19. [Google Scholar] [CrossRef]
- Yilmaz, E.; Kesimal, A.; Deveci, H.; Ercikdi, B. The factors affecting the performance of paste backfill: Physical, chemical and mineralogical characterization. In Proceedings of the First Engineering Sciences Congress for Young Researcher (MBGAK’03), Istanbul, Turkey, 17–20 February 2003. [Google Scholar]
- Archibald, J.F.; Chew, J.L.; Lausch, P. Use of ground waste glass and normal portland cement mixtures for improving slurry and paste backfill support performance. In 100th Annual General Meeting of the Canadian Institute of Mining; Metallurgy and Petroleum: Montreal, QC, Canada, 1998. [Google Scholar]
- Hassani, F.; Archibald, J. Mine Backfill; CIM: Montreal, QC, Canada, 1998. [Google Scholar]
- Ercikdi, B.; Kesimal, A.; Cihangir, F.; Deveci, H.; Alp, I. Cemented paste backfill of sulphide-rich tailings: Importance of binder type and dosage. Cem. Concr. Compos. 2009, 31, 268–274. [Google Scholar] [CrossRef]
- Bullard, J.W.; Jennings, H.M.; Livingston, R.A.; Nonat, A.; Scherer, G.W.; Schweitzer, J.S. Mechanisms of Cement Hydration. Cem. Concr. Res. 2011, 41, 1208–1223. [Google Scholar] [CrossRef]
- Marchon, D.; Flatt, R.J. Mechanisms of cement hydration. In Science and Technology of Concrete Admixtures; Woodhead Publishing: Thorston, UK, 2016. [Google Scholar]
- Li, W.; Fall, M. Strength and self-desiccation of slag-cemented paste backfill at early ages: Link to initial sulphate concentration. Cem. Concr. Compos. 2018, 89, 160–168. [Google Scholar] [CrossRef]
- Zhou, Q.; Glasser, F.P. Thermal stability and decomposition mechanisms of ettringite at <120 °C. Cem. Concr. Res. 2001, 31, 1333–1339. [Google Scholar] [CrossRef]
- Pane, I.; Hansen, W. Investigation of blended cement hydration by isothermal calorimetry and thermal analysis. Cem. Concr. Res. 2005, 35, 1155–1164. [Google Scholar] [CrossRef]
- Gabrovšek, R.; Vuk, T.; Kaučič, V. Evaluation of the hydration of Portland cement containing various carbonates by means of thermal analysis. Acta Chim. Slov. 2006, 53, 159–165. [Google Scholar]
- Piqué, T.M.; Balzamo, H.; Vázquez, A. Evaluation of the hydration of portland cement modified with polyvinyl alcohol and nano clay. In Key Engineering Materials; Trans Tech Publications Ltd.: Bäch SZ, Switzerland, 2011; Volume 466, pp. 47–56. [Google Scholar]
- Ghirian, A.; Fall, M. Coupled behavior of cemented paste backfill at early ages. Geotech. Geol. Eng. 2015, 33, 1141–1166. [Google Scholar] [CrossRef]
- Fernandez-Alvarez, J.M.; Duran, A.; Navarro-Blasco, I.Í.; Lanas, J.; Sirera, R.; Alvarez, J.I. Influence of nanosilica and a polycarboxylate ether superplasticizer on the performance of lime mortars. Cem. Concr. Res. 2013, 43, 12–24. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; An, X.; Liu, C. Effect of polycarboxylate-type superplasticizer on the paste fluidity based on the water film thickness of flocs. Sci. China Technol. Sci. 2014, 57, 1522–1531. [Google Scholar] [CrossRef]
- Haruna, S.; Fall, M. Time-and temperature-dependent rheological properties of cemented paste backfill that contains superplasticizer. Powder Technol. 2020, 360, 731–740. [Google Scholar] [CrossRef]
- Lothenbach, B.; Winnefeld, F.; Figi, R. The influence of superplasticizers on the hydration of Portland cement. In Proceedings of the 12th ICCC, Montreal, QC, Canada, 9–12 July 2007; pp. W1–W5.03. [Google Scholar]
- Zhang, Y.R.; Kong, X.M.; Lu, Z.B.; Lu, Z.C.; Hou, S.S. Effects of the charge characteristics of polycarboxylate superplasticizers on the adsorption and the retardation in cement pastes. Cem. Concr. Res. 2015, 67, 184–196. [Google Scholar] [CrossRef]
- Puertas, F.; Santos, H.; Palacios, M.; Martínez-Ramírez, S. Polycarboxylate superplasticiser admixtures: Effect on hydration, microstructure and rheological behaviour in cement pastes. Adv. Cem. Res. 2005, 17, 77–89. [Google Scholar] [CrossRef]
- He, Y.; Zhang, X.; Shui, L.; Wang, Y.; Gu, M.; Wang, X.; Peng, L. Effects of PCEs with various carboxylic densities and functional groups on the fluidity and hydration performances of cement paste. Constr. Build. Mater. 2019, 202, 656–668. [Google Scholar] [CrossRef]
- Arezoumandi, M.; Volz, J.S. A comparative study of the mechanical properties, fracture behavior, creep, and shrinkage of high-volume fly ash concrete. J. Sustain. Cem.-Based Mater. 2013, 2, 173–185. [Google Scholar] [CrossRef]
- Zhang, Y.; Kong, X. Influences of superplasticizer, polymer latexes and asphalt emulsions on the pore structure and impermeability of hardened cementitious materials. Constr. Build. Mater. 2014, 53, 392–402. [Google Scholar] [CrossRef]
- Vakhshouri, B.; Nejadi, S. Compressive strength and mixture proportions of self-compacting lightweight concrete. Comput. Concr 2017, 19, 555–566. [Google Scholar] [CrossRef]
- Elberling, B.; Nicholson, R.V. Field determination of sulphide oxidation rates in mine tailings. Water Resour. Res. 1996, 32, 1773–1784. [Google Scholar] [CrossRef]
- Tariq, A.; Nehdi, M. Developing durable paste backfill from sulphidic tailings. In Proceedings of the Institution of Civil Engineers—Waste and Resource Management; Thomas Telford Ltd.: London, UK, 2007; Volume 160, pp. 155–166. [Google Scholar]
- Silvester, E.J.; Bruckard, W.J.; Woodcock, J.T. Surface and chemical properties of chlorite in relation to its flotation and depression. Miner. Processing Extr. Metall. 2011, 120, 65–70. [Google Scholar] [CrossRef]
- Kennedy, M. Petrophysical Properties. In Developments in Petroleum Science; Elsevier: Amsterdam, The Netherlands, 2015; Volume 62, pp. 21–72. [Google Scholar]
- Fall, M.; Célestin, J.C.; Pokharel, M.; Touré, M. A contribution to understanding the effects of temperature on the mechanical properties of cemented mine backfill. Eng. Geol. 2010, 14, 397–413. [Google Scholar] [CrossRef]
- Wu, D.; Cai, S.J. Coupled effect of cement hydration and temperature on hydraulic behavior of cemented tailings backfill. J. Cent. South Univ. 2015, 22, 1956–1964. [Google Scholar] [CrossRef]
- Palou, M.T.; Kuzielová, E.; Žemlička, M.; Boháč, M.; Novotný, R. The effect of curing temperature on the hydration of binary Portland cement. J. Therm. Anal. Calorim. 2016, 125, 1301–1310. [Google Scholar] [CrossRef]
- Liu, B.; Luo, G.; Xie, Y. Effect of curing conditions on the permeability of concrete with high volume mineral admixtures. Constr. Build. Mater. 2018, 167, 359–371. [Google Scholar] [CrossRef]
- Aligizaki, K.K. Pore Structure of Cement-Based Materials: Testing, Interpretation and Requirements; Taylor & Francis: London, UK, 2006. [Google Scholar]
- Bouzoubaa, N.; Foo, S. Use of fly ash and slag in concrete: A Best Practice Guide. Mater. Technol. Lab. MTL 2004, 16, 1–40. [Google Scholar]
- Kumar, S.; Kumar, R.; Bandopadhyay, A.; Alex, T.C.; Kumar, B.R.; Das, S.K.; Mehrotra, S.P. Mechanical activation of granulated blast furnace slag and its effect on the properties and structure of portland slag cement. Cem. Concr. Compos. 2008, 30, 679–685. [Google Scholar] [CrossRef]
- Niu, Q.; Feng, N.; Yang, J.; Zheng, X. Effect of superfine slag powder on cement properties. Cem. Concr. Res. 2002, 32, 615–621. [Google Scholar] [CrossRef]
- Narmluk, M.; Nawa, T. Effect of fly ash on the kinetics of Portland cement hydration at different curing temperatures. Cem. Concr. Res. 2011, 41, 579–589. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Kong, X.; Hou, S.; Liu, Y.; Han, S. Study on the rheological properties of fresh cement asphalt paste. Constr. Build. Mater. 2012, 27, 534–544. [Google Scholar] [CrossRef]
- Wang, X.Y. Effect of fly ash on properties evolution of cement based materials. Constr. Build. Mater. 2014, 69, 32–40. [Google Scholar] [CrossRef]
- Langan, B.W.; Weng, K.; Ward, M.A. Effect of silica fume and fly ash on heat of hydration of Portland cement. Cem. Concr. Res. 2002, 32, 1045–1051. [Google Scholar] [CrossRef]
- Rahhal, V.; Talero, R. Influence of two different fly ashes on the hydration of Portland cements. J. Therm. Anal. Calorim. 2004, 78, 191–205. [Google Scholar] [CrossRef]
- Papadakis, V.G. Effect of fly ash on Portland cement systems: Part II. High-calcium fly ash. Cem. Concr. Res. 2000, 30, 1647–1654. [Google Scholar] [CrossRef]
- Al-Manaseer, A.A.; Onofrei, M.; Gray, M.N.; Shenton, B. The effect of silica fume and water/cement ratio on the hydraulic conductivity of cement-based grout. MRS Online Proc. Libr. Arch. 1990, 212, 433–440. [Google Scholar] [CrossRef]
- Shamsai, A.; Peroti, S.; Rahmani, K.; Rahemi, L. Effect of water-cement ratio on abrasive strength, porosity and permeability of nano-silica concrete. World Appl. Sci. J. 2012, 17, 929–933. [Google Scholar]
- Xiao, B.; Fall, M.; Roshani, A. Towards understanding the rheological properties of Slag-Cemented paste backfill. Int. J. Min. Reclam. Environ. 2020, 35, 268–290. [Google Scholar] [CrossRef]
- Bellmann, F.; Möser, B.; Stark, J. Influence of sulfate solution concentration on the formation of gypsum in sulfate resistance test specimen. Cem. Concr. Res. 2006, 36, 358–363. [Google Scholar] [CrossRef]
- Fall, M.; Benzaazoua, M. Modeling the effect of sulphate on strength development of paste backfill and binder mixture optimization. Cem. Concr. Res. 2005, 35, 301–314. [Google Scholar] [CrossRef]
- Chen, X.; Shi, X.; Zhou, J.; Du, X.; Chen, Q.; Qiu, X. Effect of overflow tailings properties on cemented paste backfill. J. Environ. Manag. 2019, 235, 133–144. [Google Scholar] [CrossRef] [PubMed]
- Roshani, A.; Fall, M.; Kennedy, K. Impact of drying on geo-environmental properties of mature fine tailings pre-dewatered with super absorbent polymer. Int. J. Environ. Sci. Technol. 2017, 14, 453–462. [Google Scholar] [CrossRef]
- Li, W.; Fall, M. Sulphate effect on the early age strength and self-desiccation of cemented paste backfill. Constr. Build. Mater. 2016, 106, 296–304. [Google Scholar] [CrossRef]
- Fang, K.; Fall, M. Chemically induced changes in the shear behaviour of interface between rock and tailings backfill undergoing cementation. Rock Mech. Rock Eng. 2019, 52, 3047–3062. [Google Scholar] [CrossRef]
Material | Characteristics | ||||
---|---|---|---|---|---|
Gs | D10 (µm) | D30 (µm) | D50 (µm) | D60 (µm) | |
ST | 2.7 | 1.9 | 9.0 | 22.5 | 31.5 |
NT | 3.1 | 3.2 | 15.8 | 35.5 | 49.5 |
Tailings | Mineral | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Quartz | Albite | Dolomite | Calcite | Chlorite | Magnetite | Pyrite | Talc | Pyrrhotite | Pyrite | Spinel | Others | Total | |
ST (wt.%) | 99.8 | - | - | - | - | - | - | - | - | - | - | 0.2 | 100 |
NT (wt.%) | 15 | 32.8 | 15 | 4.2 | 16.1 | 2.4 | 1 | 7 | 1.8 | 0.3 | 1.8 | 2.6 | 100 |
Binder Type | MgO (wt.%) | CaO (wt.%) | SiO2 (wt.%) | Al2O3 (wt.%) | Fe2O3 (wt.%) | SO3 (wt.%) | Relative Density | Specific Surface Area (cm2/g) |
---|---|---|---|---|---|---|---|---|
PCI | 2.65 | 62.82 | 18.03 | 4.53 | 2.70 | 3.82 | 3.1 | 1300 |
FA | 5.58 | 21.47 | 38.06 | 19.45 | 5.33 | 2.7 | 2.6 | 2200 |
BFS | 10.98 | 41.14 | 34.32 | 9.54 | - | 3.87 | 2.8 | 2100 |
Sample Name | Tailings Type | Binder Content (%) * | PCI in the Binder (%) | FA in the Binder (%) | BFS in the Binder (%) | W/C Ratio | Superplasticizer Content (%) | Sulfate Content (ppm) | Curing TemPerature (°C) |
---|---|---|---|---|---|---|---|---|---|
A. Time-dependent evolution of hydraulic conductivity | |||||||||
CPB-ST-0.0% | ST | 4.5 | 100 | 0 | 0 | 7.35 | 0.0 | 0 | 20 |
CPB-ST-0.125% | ST | 4.5 | 100 | 0 | 0 | 7.35 | 0.125 | 0 | 20 |
CPB-NT-0.125% | NT | 4.5 | 100 | 0 | 0 | 7.35 | 0.125 | 0 | 20 |
B. Effect of curing temperature on hydraulic conductivity | |||||||||
CPB-0.125-Tem 2 | ST | 4.5 | 100 | 0 | 0 | 7.35 | 0.125 | 0 | 2 |
CPB-0.125-Tem 20 | ST | 4.5 | 100 | 0 | 0 | 7.35 | 0.125 | 0 | 20 |
CPB-0.125-Tem 35 | NT | 4.5 | 100 | 0 | 0 | 7.35 | 0.125 | 0 | 35 |
C. Effect of binder type on the hydraulic conductivity | |||||||||
CPB-0.125-PCI | ST | 4.5 | 100 | 0 | 0 | 7.35 | 0.125 | 0 | 20 |
CPB-0.125-PCI/FA | ST | 4.5 | 50 | 50 | 0 | 7.35 | 0.125 | 0 | 20 |
CPB-0.125-PCI/BFS | ST | 4.5 | 50 | 0 | 50 | 7.35 | 0.125 | 0 | 20 |
D. Effect of W/C ratio on the hydraulic conductivity | |||||||||
CPB-0.125-W/C 5 | ST | 4.5 | 100 | 0 | 0 | 5 | 0.125 | 0 | 20 |
CPB-0.125-W/C 7.35 | St | 4.5 | 100 | 0 | 0 | 7.35 | 0.125 | 0 | 20 |
CPB-0.125-W/C 10 | ST | 4.5 | 100 | 0 | 0 | 10 | 0.125 | 0 | 20 |
E. Effect of sulfate on the hydraulic conductivity | |||||||||
CPB | ST | 4.5 | 100 | 0 | 0 | 7.35 | 0.0 | 0 | 20 |
CPB-sulf. | ST | 4.5 | 100 | 0 | 0 | 7.35 | 0.0 | 25,000 | 20 |
CPB-SP-0 ppm | ST | 4.5 | 100 | 0 | 0 | 7.35 | 0.125 | 0 | 20 |
CPB-SP-sulf | ST | 4.5 | 100 | 0 | 0 | 7.35 | 0.125 | 25,000 | 20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haruna, S.; Fall, M. Insight into Saturated Hydraulic Conductivity of Cemented Paste Backfill Containing Polycarboxylate Ether-Based Superplasticizer. Minerals 2022, 12, 93. https://doi.org/10.3390/min12010093
Haruna S, Fall M. Insight into Saturated Hydraulic Conductivity of Cemented Paste Backfill Containing Polycarboxylate Ether-Based Superplasticizer. Minerals. 2022; 12(1):93. https://doi.org/10.3390/min12010093
Chicago/Turabian StyleHaruna, Sada, and Mamadou Fall. 2022. "Insight into Saturated Hydraulic Conductivity of Cemented Paste Backfill Containing Polycarboxylate Ether-Based Superplasticizer" Minerals 12, no. 1: 93. https://doi.org/10.3390/min12010093
APA StyleHaruna, S., & Fall, M. (2022). Insight into Saturated Hydraulic Conductivity of Cemented Paste Backfill Containing Polycarboxylate Ether-Based Superplasticizer. Minerals, 12(1), 93. https://doi.org/10.3390/min12010093