Temperature-Induced Phase Transition in a Feldspar-Related Compound BaZn2As2O8∙H2O
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Raman Spectra Evolution of BaAs2Zn2O8∙H2O upon Heating
3.2. Crystal Structure Evolution of BaAs2Zn2O8∙H2O upon Heating
3.3. Thermal Expansion of BaAs2Zn2O8∙H2O
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smith, J.V.; Brown, W.L. Feldspar Minerals. Crystal Structures, Physical, Chemical and Microstructural Properties; Springer Verlag: Berlin/Heidelberg, Germany, 1988; Volume 1, 828 p. [Google Scholar]
- Parsons, I. Feldspars and Their Reactions; Kluwer Academic Publishers: Amsterdam, The Netherlands, 1994; 650 p. [Google Scholar]
- Deer, W.A.; Howie, R.A.; Zusmann, J. Rock-Forming Minerals. Framework Silicates: Feldspars; The Geological Society: London, UK, 2001; Volume 4A, 973 p. [Google Scholar]
- Bokij, G.B.; Borutsky, B.E. Minerals. Framework Silicates, Issue 1. In Silicates with Broken Frameworks. Feldspars; Nauka: Moscow, Russia, 2003; Volume 1, 583 p. (In Russian) [Google Scholar]
- Pakhomova, A.; Simonova, D.; Koemets, I.; Koemets, E.; Aprilis, G.; Bykov, M.; Gorelova, L.; Fedotenko, T.; Prakapenka, V.; Dubrovinsky, L. Polymorphism of feldspars above 10 GPa. Nat. Comm. 2020, 11, 2721. [Google Scholar] [CrossRef]
- Pakhomova, A.S.; Bykova, E.; Bykov, M.; Glazyrin, K.; Gasharova, B.; Liermann, H.-P.; Mezouar, M.; Gorelova, L.A.; Krivovichev, S.V.; Dubrovinsky, L. Closer look into close packing: Pentacoordinated silicon in the high-pressure polymorph of danburite. IUCrJ 2017, 4, 671–677. [Google Scholar] [CrossRef] [Green Version]
- Pakhomova, A.; Aprilis, G.; Bykov, M.; Gorelova, L.; Krivovichev, S.; Belov, M.P.; Abrikosov, I.A.; Dubrovinsky, L. Penta- and hexa-coordinated beryllium and phosphorous in high-pressure modifications of CaBe2P2O8. Nat. Comm. 2019, 10, 2800. [Google Scholar] [CrossRef] [Green Version]
- Gorelova, L.A.; Pakhomova, A.S.; Krivovichev, S.V.; Dubrovinsky, L.S.; Kasatkin, A.V. High pressure phase transitions of paracelsian BaAl2Si2O8. Sci. Rep. 2019, 9, 12652. [Google Scholar] [CrossRef] [Green Version]
- Gorelova, L.A.; Pakhomova, A.S.; Krzhizhanovskaya, M.G.; Winkler, B.; Krivovichev, S.V.; Dubrovinsky, L.S. Pressure-induced phase transitions in danburite-type borosilicates. J. Phys. Chem. C 2020, 124, 26048–26061. [Google Scholar] [CrossRef]
- Gorelova, L.A.; Pakhomova, A.S.; Krzhizhanovskaya, M.G.; Pankin, D.V.; Krivovichev, S.V.; Dubrovinsky, L.S.; Kasatkin, A.V. Crystal structure evolution of slawsonite SrAl2Si2O8 and paracelsian BaAl2Si2O8 upon compression and decompression. J. Phys. Chem. C 2021, 125, 13014–13023. [Google Scholar] [CrossRef]
- Gorelova, L.; Pakhomova, A.; Aprilis, G.; Yin, Y.; Laniel, D.; Winkler, B.; Krivovichev, S.; Pekov, I.; Dubrovinskia, N.; Dubrovinsky, L.S. Edge-sharing BO4 tetrahedra and penta-coordinated silicon in the high-pressure modification of NaBSi3O8. Inorg. Chem. Front. 2022, 9, 1735–1742. [Google Scholar] [CrossRef]
- Krivovichev, S.V. Feldspar polymorphs: Diversity, complexity, stability. Zap. Ross. Mineral. Obshch. 2020, 149, 16–66. [Google Scholar] [CrossRef]
- Vergasova, L.P.; Krivovichev, S.V.; Britvin, S.N.; Burns, P.C.; Ananiev, V.V. Filatovite, K[(Al,Zn)2(As,Si)2O8], a new mineral species from the Tolbachik volcano, Kamchatka peninsula, Russia. Eur. J. Mineral. 2004, 16, 533–536. [Google Scholar] [CrossRef] [Green Version]
- Shchipalkina, N.V.; Pekov, I.V.; Britvin, S.N.; Koshlyakova, N.N.; Sidorov, E.G. Arsenic and phosphorus in feldspar framework: Sanidine–filatovite solid solution series from fumarolic exhalations of the Tolbachik volcano, Kamchatka, Russia. Phys. Chem. Minerals. 2020, 47, 1. [Google Scholar] [CrossRef]
- Filatov, S.K.; Krivovichev, S.V.; Burns, P.C.; Vergasova, L.P. Crystal structure of filatovite, K[(Al,Zn)2(As,Si)2O8], the first arsenate of the feldspar group. Eur. J. Mineral. 2004, 16, 537–543. [Google Scholar] [CrossRef]
- Bolotina, N.B.; Rastsvetaeva, R.K.; Kashaev, A.A. Refinement of the twinned structure of cymrite from the Ruby Creek deposit (Alaska). Crystallogr. Rep. 2010, 55, 569–574. [Google Scholar] [CrossRef]
- Fasshauer, D.W.; Chatterjee, N.D.; Marler, B. Synthesis, structure, thermodynamic properties, and stability relations of K-cymrite, K[AlSi3O8]⋅H2O. Phys. Chem. Miner. 1997, 24, 455–462. [Google Scholar] [CrossRef]
- Zhang, R.Y.; Liou, Y.G.; Iizuka, Y.; Yang, J.S. First record of K-cymrite in North Qaidam UHP eclogite, Western China. Am. Mineral. 2009, 94, 222–228. [Google Scholar] [CrossRef]
- Mikhno, A.O.; Schmidt, U.; Korsakov, A.V. Origin of K-cymrite and kokchetavite in the polyphase mineral inclusions from Kokchetav UHP calc-silicate rocks: Evidence from confocal Raman imaging. Eur. J. Mineral. 2013, 25, 807–816. [Google Scholar] [CrossRef]
- Romanenko, A.V.; Rashchenko, S.V.; Sokol, A.G.; Korsakov, A.V.; Seryotkin, Y.V.; Glazyrin, K.V.; Musiyachenko, K. Crystal structures of K-cymrite and kokchetavite from single-crystal X-ray diffraction. Am. Mineral. 2021, 106, 404–409. [Google Scholar] [CrossRef]
- Đorđević, T. Ba(ZnAsO4)2∙H2O, a non-centrosymmetric framework structure related to feldspar. Eur. J. Mineral. 2011, 23, 437–447. [Google Scholar] [CrossRef]
- Smedley, P.L.; Kinniburgh, D.G. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 2002, 17, 517–568. [Google Scholar] [CrossRef] [Green Version]
- Miretzky, P.; Cirelli, A.F. Remediation of arsenic-contaminated solid by iron amendments: A review. Crit. Rev. Environ. Sci. Technol. 2010, 40, 93–115. [Google Scholar] [CrossRef]
- Smith, E.; Naidu, R.; Alston, A.M. Arsenic in the soils environment: A review. Adv. Agron. 1998, 64, 149–195. [Google Scholar]
- Agilent. CrysAlis PRO; Agilent Technologies: Yarnton, UK, 2012. [Google Scholar]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. A 2008, 64, 112. [Google Scholar] [CrossRef] [PubMed]
- Bubnova, R.S.; Firsova, V.A.; Filatov, S.K. Software for determining the thermal expansion tensor and the graphic representation of its characteristic surface (Theta to Tensor-TTT). Glass Phys. Chem. 2013, 39, 347–350. [Google Scholar] [CrossRef]
- Lucas, F.; Elfakir, A.; Wallez, G.; Quarton, M. Synthesis and Rietveld refinement of new phosphate and arsenate analogues of paracelsian. Can. Mineral. 1998, 36, 1045–1051. [Google Scholar]
- Lucas, F.; Elfakir, A.; Quarton, M. X-ray powder diffraction data of AII(ZnXVO4)2 compounds (A = Sr, Ba; X = P, As). Powder Diffr. 1999, 14, 222–230. [Google Scholar] [CrossRef]
- Izatulina, A.; Gurzhiy, V.; Frank-Kamenetskaya, O. Weddellite from renal stones: Structure refinement and dependence of crystal chemical features on H2O content. Am. Mineral. 2014, 99, 2–7. [Google Scholar] [CrossRef]
- Mills, S.J.; Christy, A.G. The Great Barrier Reef Expedition 1828–29: The crystal structure and occurrence of weddellite, ideally CaC2O4∙2.5H2O, from the Low Isles, Queensland. Mineral. Mag. 2016, 80, 399–406. [Google Scholar] [CrossRef]
- Curetti, N.; Pastero, L.; Bernasconi, D.; Cotellucci, A.; Corazzai, I.; Archetti, M.; Pavese, A. Thermal stability of calcium oxalates from CO2 sequestration for storage purposes: An in situ HT-XRPD and TGA combined study. Minerals 2022, 12, 53. [Google Scholar] [CrossRef]
- Britvin, S.N.; Krzhizhanovskaya, M.G.; Zolotarev, A.A.; Gorelova, L.A.; Obolonskaya, E.V.; Vlasenko, N.S.; Shilovskikh, V.V.; Murashko, M.N. Crystal chemistry of schreibersite, (Fe,Ni)3P. Am. Mineral. 2021, 106, 1520–1529. [Google Scholar] [CrossRef]
- Dollimore, D.; Griffiths, D.L. Differential thermal analysis study of various oxalates in oxygen and nitrogen. J. Therm. Anal. Calorim. 1970, 2, 229–250. [Google Scholar] [CrossRef]
- Kutaish, N.; Aggarwal, P.; Dollimore, D. Thermal analysis of calcium oxalate samples obtained by various preparative routes. Thermochim. Acta. 1997, 297, 131–137. [Google Scholar] [CrossRef]
- Pastero, L.; Curetti, N.; Ortenzi, M.A.; Schiavoni, M.; Destefanis, E.; Pavese, A. CO2 capture and sequestration in stable Ca-oxalate, via Ca-ascorbate promoted green reaction. Sci. Total Environ. 2019, 666, 1232–1244. [Google Scholar] [CrossRef] [PubMed]
- Frost, R.L.; Weier, M.L. Thermal treatment of whewellite—A thermal analysis and Raman spectroscopic study. Thermochim. Acta. 2004, 409, 79–85. [Google Scholar] [CrossRef]
- Szekely, T.; Varhegyi, G.; Till, F.; Szabo, P.; Jakab, E. The effects of heat and mass transport on the results of thermal decomposition studies: Part 1. The three reactions of calcium oxalate monohydrate. J. Anal. Appl. Pyrolysis. 1987, 11, 71–81. [Google Scholar] [CrossRef]
- Price, D.; Dollimore, D.; Fatemi, N.; Whitehead, R. Mass spectrometric determination of kinetic parameters for solid state decomposition reactions. Part 1. Method; calcium oxalate decomposition. Thermochim. Acta. 1980, 42, 323–332. [Google Scholar] [CrossRef]
- Kloprogge, T.; Boström, T.E.; Weier, M.L. In situ observation of the thermal decomposition of weddelite by heating stage environmental scanning electron microscopy. Am. Miner. 2004, 89, 245–248. [Google Scholar] [CrossRef]
- Windig, W.; Kistemaker, P.; Haverkamp, J.; Meuzelaar, H. The effects of sample preparation, pyrolysis and pyrolyzate transfer conditions on pyrolysis mass spectra. J. Anal. Appl. Pyrolysis 1979, 1, 39–52. [Google Scholar] [CrossRef]
- Anderson, E.M.; Ericsson, I. Thermal degradation of organic polymers using different metals as the pyrolysis filament. J. Anal. Appl. Pyrolysis 1981, 3, 35–47. [Google Scholar] [CrossRef]
- Yeates, R.M.; Harrison, W.T.A. Synthesis, crystal structure and properties of Na3Zn4O(AsO4)3∙6H2O, a new framework zincoarsenate. J. Mater. Chem. 2002, 12, 1103–1106. [Google Scholar] [CrossRef]
- Wiggin, S.B.; Weller, M.T. A chiral, 16-ring channels framework and a layered caesium zincoarsenate. Chem. Commun. 2006, 1100–1102. [Google Scholar] [CrossRef]
- Megaw, H.D. The architecture of feldspars. In The Feldsparsi; MacKenzie, W.S., Zussman, J., Eds.; NATO Advanced Study Institute, 1972; Manchester University Press: Manchester, UK, 1974; pp. 2–24. [Google Scholar]
- Gorelova, L.A.; Filatov, S.K.; Krzhizhanovskaya, M.G.; Bubnova, R.S. High-temperature behavior of danburite-like-borosilicates MB2Si2O8 (M = Ca, Sr, Ba). Phys. Chem. Glasses. 2015, 56, 189–196. [Google Scholar]
- Sleight, A.W. Thermal Contraction. Endeavor 1995, 19, 64–68. [Google Scholar] [CrossRef]
- Henderson, C.M.B. Composition, thermal expansion and phase transitions in framework silicates: Revisitation and review of natural and synthetic analogues of nepheline-, feldspar- and leucite-mineral groups. Solids 2021, 2, 1–49. [Google Scholar] [CrossRef]
- Gorelova, L.A.; Vereshchagin, O.S.; Kasatkin, A.V. Thermal Expansion and Polymorphism of Slawsonite SrAl2Si2O8. Minerals 2022, 11, 1150. [Google Scholar] [CrossRef]
- Zema, M.; Tarantino, S.C.; Boiocchi, M.; Callegari, A.M. Crystal structure of adamite at high temperature. Mineral. Mag. 2016, 80, 901–914. [Google Scholar] [CrossRef]
- Filatov, S.K. Vysokotemperaturnaya Kristallokhimiya. Teoriya, Metody I Rezul’taty Issledovanii; (High-temperature crystal chemistry: Theory, methods and results of investigations); Nedra: Leningrad, Russia, 1990; p. 289. (In Russian) [Google Scholar]
- Geier, B.H.; Weber, K. Reinerit Zn3[AsO3]2, ein neues Mineral der Tsumeb Mine Südwestafrika. Neues Jahrb. Mineral. Monatsh. 1958, 1958, 160–167. [Google Scholar]
- Cesbron, F.P.; Erd, R.C.; Czamanski, G.K.; Vachey, H. Leiteite: A new mineral from Tsumeb. Mineral. Rec. Tsumeb Issue 1977, 95–97. [Google Scholar]
- Ghose, S.; Sen Gupta, P.K.; Schlemper, E.O. Leiteite, ZnAs2O4: A novel type of tetrahedral layer structure with arsenite chains. Am. Mineral. 1987, 72, 629–632. [Google Scholar]
- Jinnouchi, S.; Yoshiasa, A.; Sugiyama, K.; Shimura, R.; Arima, H.; Momma, K.; Miyawaki, R. Crystal structure refinements of legrandite, adamite, and paradamite: The complex structure and characteristic hydrogen bonding network of legrandite. J. Mineral. Petrol. Sci. 2016, 111, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Neuhold, F.; Kolitsch, U.; Bernhardt, H.-J.; Lengauer, C.L. Arsenohopeite, a new zinc arsenate mineral from the Tsumeb mine, Namibia. Mineral. Mag. 2012, 76, 603–612. [Google Scholar] [CrossRef]
- Elliott, P. Cardite, Zn5.5(AsO4)2(AsO3OH)(OH)3∙3H2O, a new zinc arsenate mineral from Broken Hill, New South Wales, Australia. Mineral. Petrol. 2021, 115, 467–475. [Google Scholar] [CrossRef]
- Hawthorne, F.C.; Cooper, M.A.; Abdu, Y.A.; Ball, N.A.; Back, M.E.; Tait, K.T. Davidlloydite, ideally Zn3(AsO4)2(H2O)4, a new arsenate mineral from the Tsumeb mine, Otjikoto (Oshikoto) region, Namibia: Description and crystal structure. Mineral. Mag. 2012, 76, 45–57. [Google Scholar] [CrossRef]
- Keller, P.; Hess, H.; Riffel, H. Die Kristallstruktur von Koritnigit, Zn[H2O|HOAsO3]. Neues Jahrb. Mineral. Monatsh. 1980, 138, 316–332. [Google Scholar]
- Yoshiasa, A.; Miyano, Y.; Isobe, H.; Sugiyama, K.; Arima, H.; Nakatsuka, A.; Momma, K.; Miyawaki, R. Structural refinement of köttigite–parasymplesite solid solution: Unique cation site occupancy and chemical bonding with water molecules. J. Mineral. Petrol. Sci. 2016, 111, 363–369. [Google Scholar] [CrossRef] [Green Version]
- Cooper, M.A.; Abdu, Y.A.; Ball, N.A.; Hawthorne, F.C.; Back, M.E.; Tait, K.T.; Schlüter, J.; Malcherek, T.; Pohl, D.; Gebhard, G. Ianbruceite, ideally [Zn2(OH)(H2O)(AsO4)](H2O)2, a new arsenate mineral from the Tsumeb mine, Otjikoto (Oshikoto) region, Namibia: Description and crystal structure. Mineral. Mag. 2012, 76, 1119–1131. [Google Scholar] [CrossRef]
- Hawthorne, F.C.; Abdu, Y.A.; Tait, K.T. Hydrogen bonding in the crystal structure of legrandite: Zn2(AsO4)(OH)(H2O). Can. Mineral. 2013, 51, 233–241. [Google Scholar] [CrossRef] [Green Version]
- Riffel, H.; Keller, P.; Hess, H. Die Kristallstruktur von Warikahnit, Zn3[(H2O)2|(AsO4)2]. Tscher. Miner. Petrog. Mitteilungen. 1980, 27, 187–199. [Google Scholar] [CrossRef]
- Pekov, I.V.; Yapaskurt, V.O.; Belakovsky, D.I.; Vigasina, M.F.; Zubkova, N.V.; Sidorov, E.G. New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. VII. Pharmazincite, KZnAsO4. Mineral. Mag. 2017, 81, 1001–1008. [Google Scholar] [CrossRef]
- Hofmeister, W.; Tillman, E. Strukturelle untersuchungen an arsenbrackebuschit. TMPM 1978, 25, 153–163. [Google Scholar] [CrossRef]
- Keller., P.; Lissner, F.; Schleid, T. The crystal structure of arsendescloizite PbZn(OH)[AsO4], from Tsumeb (Namibia). Neues Jahrb. Mineral. Monatsh. 2003, 374–384. [Google Scholar] [CrossRef]
- Clark, A.M.; Criddle, A.J.; Roberts, A.C.; Bonardi, M.; Moffatt, E.A. Feinglosite, a new mineral related to brackebuschite, from Tsumeb, Namibia. Mineral. Mag. 1997, 61, 285–289. [Google Scholar] [CrossRef]
- Krause, W.; Belendorff, K.; Bernhardt, H.J.; McCammon, C.A.; Effenberger, H.; Mikenda, W. Crystal chemistry of the tsumcorite-group minerals. New data on ferrilotharmeyerite, tsumcorite, thometzekite, mounanaite, helmutwinklerite, and a redefinition of gartrellite. Eur. J. Mineral. 1998, 10, 179–206. [Google Scholar] [CrossRef] [Green Version]
- Tillmanns, E.; Gebert, W. The crystal structure of tsumcorite, a new mineral from the Tsumeb Mine, S.W. Africa. Acta Crystallogr. 1973, B29, 2789–2794. [Google Scholar] [CrossRef]
- Effenberger, H.; Krause, W.; Bernhardt, H.J.; Martin, M. On the symmetry of tsumcorite group minerals based on the new species rappoldite and zincgartrellite. Mineral. Mag. 2000, 64, 1109–1126. [Google Scholar] [CrossRef] [Green Version]
- Clark, L.A.; Pluth, J.J.; Steele, I.; Smith, J.V.; Sutton, S.R. Crystal structure of austinite, CaZn(AsO4)OH. Mineral. Mag. 1997, 61, 677–683. [Google Scholar] [CrossRef]
- Giuseppetti, G.; Tadini, C. The crystal structure of austinite, CaZn(AsO4)(OH), from Kamareza, Laurion (Greece). Neues Jahrb. Mineral. Monatsh. 1988, 159–166. [Google Scholar]
- Keller, P.; Lissner, F.; Schleid, T. The crystal structures of zincroselite and gaitite: Two natural polymorphs of Ca2Zn[AsO4]2·2H2O from Tsumeb, Namibia. Eur. J. Mineral. 2004, 16, 353–359. [Google Scholar] [CrossRef]
- Yang, Y.W.; Evans, S.H.; Downs, R.T.; Yang, H. Lotharmeyerite, Ca(Zn,Mn)2(AsO4)2(H2O,OH)2. Acta Crystallogr. 2012, E68, i9–i10. [Google Scholar] [CrossRef] [Green Version]
- Keller, P.; Riffel, H.; Hess, H. Die kristallstruktur von prosperit, Ca2Zn4[H2O|(AsO4)4]. Z. Kristallogr. 1982, 158, 33–42. [Google Scholar] [CrossRef]
- Rieck, B.; Giester, G.; Lengauer, C.L.; Chanmuang, C.N.; Topa, D. Stergiouite, CaZn2(AsO4)2·4H2O—A new mineral from the Lavrion Mining District, Greece. Mineral. Petrol. 2020, 114, 319–327. [Google Scholar] [CrossRef]
- Shen, H.; Hao, J.; Sun, N.; Li, G.; Xue, Y.; Luo, L. Arsenoveszelyite, IMA 2021-076a, in CNMNC Newsletter 66. Eur. J. Mineral. 2022, 34, 253. [Google Scholar] [CrossRef]
- Ismagilova, R.M.; Rieck, B.; Kampf, A.R.; Giester, G.; Zhitova, E.S.; Lengauer, C.L.; Krivovichev, S.V.; Zolotarev, A.A.; Ciesielczuk, J.; Mikhailova, J.A.; et al. Goldhillite, Cu5Zn(AsO4)2(OH)6∙H2O, a new mineral species, and redefinition of philipsburgite, Cu5Zn[(AsO4)(PO4)](OH)∙H2O, as an As–P ordered species. Mineral. Mag. 2022, 86, 436–446. [Google Scholar] [CrossRef]
- Olmi, F.; Santucci, A.; Trosti-Ferroni, R. Sabelliite, a new copper-zinc arsenate-antimonate mineral from Sardinia, Italy. Eur. J. Mineral. 1995, 7, 1325–1330. [Google Scholar] [CrossRef]
- Olmi, F.; Sabelli, C.; Trosti-Ferroni, R. The crystal structure of sabelliite. Eur. J. Mineral. 1995, 7, 1331–1337. [Google Scholar] [CrossRef] [Green Version]
- Plieth, K.; Sanger, G. Die struktur des stranskiite Zn2Cu(AsO4)2. Z. Kristallogr. 1967, 124, 91–100. [Google Scholar] [CrossRef]
- Calvo, C.; Leung, K.Y. Refinement of the structure of stranskiite. Z. Kristallogr. 1969, 130, 231–233. [Google Scholar] [CrossRef] [Green Version]
- Williams, S.A. Theisite, a new mineral from Colorado. Mineral. Mag. 1982, 46, 49–50. [Google Scholar] [CrossRef]
- Sejkora, J.; Ondruš, P.; Novák, M. Veselovskýite, triclinic (Zn,Cu,Co)Cu4(AsO4)2(AsO3OH)2·9H2O, a Zn-dominant analogue of lindackerite. Neues Jahrb. Mineral. Abhandl. 2010, 187, 83–90. [Google Scholar] [CrossRef]
- Chukanov, N.V.; Pushcharovsky, D.Y.; Zubkova, N.V.; Pekov, I.V.; Pasero, M.; Merlino, S.; Möckel, S.; Rabadanov, M.K.; Belakovskiy, D.I. Zincolivenite CuZn(AsO4)(OH): A new adamite-group mineral with ordered distribution of Cu and Zn. Doklady Earth Sci. 2007, 415, 841–845. [Google Scholar] [CrossRef]
- Ginderow, D.; Cesbron, F. Structure de la mapimite, Zn2Fe3(AsO4)3(OH)4·10H2O. Acta Crystallogr. 1981, B37, 1040–1043. [Google Scholar] [CrossRef]
- Schmetzer, K.; Amthauer, G.; Stähle, V.; Medenbach, O. Metaköttigit, (Zn,Fe3+)(Zn,Fe3+,Fe2+)2(AsO4)2·8(H2O,OH), ein neues Mineral aus Mapimi, Mexiko. Neues Jahrb. Mineral. Monatsh. 1982, 506–518. [Google Scholar]
- Hughes, J.M.; Bloodaxe, E.S.; Kobel, K.D. The atomic arrangement of ojuelaite, ZnFe3+2(AsO4)2(OH)2·4H2O. Mineral. Mag. 1996, 60, 519–521. [Google Scholar] [CrossRef]
- Adiwidjaja, G.; Friese, K.; Klaska, K.H.; Moore, P.B.; Schlüter, J. The crystal structure of the new mineral wilhelmkleinite ZnFe3+2(OH)2(AsO4)2. Z. Kristallogr. 2000, 215, 96–101. [Google Scholar] [CrossRef]
- Cooper, M.A.; Hawthorne, F.C. Local Pb2+–□ disorder in the crystal structure of jamesite, Pb2ZnFe3+2(Fe3+2.8Zn1.2)(AsO4)4(OH)8[(OH)1.2O0.8], and revision of the chemical formula. Can. Mineral. 1999, 37, 53–60. [Google Scholar]
- Roberts, A.C.; Grice, J.D.; Cooper, M.A.; Hawthorne, F.C.; Feinglos, M.N. Arakiite, a new Zn-bearing hematolite-like mineral from Långban, Värmland, Sweden. Mineral. Rec. 2000, 31, 253–256. [Google Scholar]
- Moore, P.B. The crystal structure of chlorophoenicite. Am. Mineral. 1968, 53, 1110–1119. [Google Scholar]
- Biagioni, C.; Orlandi, P. Claraite, (Cu,Zn)15(AsO4)2(CO3)4(SO4)(OH)14·7H2O: Redefinition and crystal structure. Eur. J. Mineral. 2017, 29, 1031–1044. [Google Scholar] [CrossRef] [Green Version]
- Sun, N.; Grey, I.E.; Li, G.; Rewitzer, C.; Xue, Y.; Mumme, W.G.; Shen, H.; Hao, J.; MacRae, C.M.; Riboldi Tunnicliffe, A.; et al. Cuprozheshengite, IMA 2021-095a, in: CNMNC Newsletter 67. Eur. J. Mineral. 2022, 34, 359. [Google Scholar] [CrossRef]
- Lam, A.E.; Groat, L.A.; Ercit, T.S. The crystal structure of dugganite, Pb3Zn3Te6+As2O14. Can. Mineral. 1998, 36, 823–830. [Google Scholar]
- Keller, P. Ekatite, (Fe3+,Fe2+,Zn)12(OH)6[AsO3]6[AsO3,HOSiO3]2, a new mineral from Tsumeb, Nambia, and its crystal structure. Eur. J. Mineral. 2001, 13, 769–777. [Google Scholar] [CrossRef]
- Schlüter, J.; Malcherek, T.; Mihailova, B.; Gebhard, G. The new mineral erikapohlite, Cu3(Zn,Cu,Mg)4Ca2(AsO4)6·2H2O, the Ca-dominant analogue of keyite, from Tsumeb, Namibia. Neues Jahrb. Mineral. Abhandl. 2013, 190, 319–325. [Google Scholar] [CrossRef]
- Pekov, I.V.; Chukanov, N.V.; Zadov, A.E.; Roberts, A.C.; Jensen, M.C.; Zubkova, N.V.; Nikischer, A.J. Eurekadumpite (Cu,Zn)16(TeO3)2(AsO4)3Cl(OH)18·7H2O—A new hypergene mineral. Zap. Ross. Mineral. Obsh. 2010, 139, 26–35. [Google Scholar]
- Medenbach, O.; Schmetzer, K.; Abraham, K. Fahleite from Tsumeb/Namibia, a new mineral belonging to the smolianinovite group. Neues Jahrb. Mineral. Monatsh. 1988, 4, 167–171. [Google Scholar]
- Schmetzer, K.; Medenbach, O. Gerdtremmelite, (Zn,Fe)(Al,Fe)2[(AsO4)|(OH)5], a new mineral from Tsumeb, Namibia. Neues Jahrb. Mineral. Monatsh. 1985, 1, 1–6. [Google Scholar]
- Moore, P.B.; Araki, T. Holdenite, a novel cubic close-packed structure. Am. Mineral. 1977, 62, 513–521. [Google Scholar]
- Cooper, M.A.; Hawthorne, F.C. The effect of differences in coordination on ordering of polyvalent cations in close-packed structures: The crystal structure of arakiite and comparison with hematolite. Can. Mineral. 1999, 37, 1471–1482. [Google Scholar]
- Mills, S.J.; Kolitsch, U.; Miyawaki, R.; Groat, L.A.; Poirier, G. Joelbruggerite, Pb3Zn3(Sb5+,Te6+)As2O13(OH,O), the Sb5+ analog of dugganite, from the Black Pine mine, Montana. Am. Mineral. 2009, 94, 1012–1017. [Google Scholar] [CrossRef]
- Cooper, M.A.; Hawthorne, F.C. The crystal structure of keyite, Cu2+3(Zn,Cu2+)4Cd2(AsO4)6(H2O)2, an oxysalt mineral with essential cadium. Can. Mineral. 1996, 34, 623–630. [Google Scholar]
- Peacor, D.R. The crystal structure of kolicite, Mn7(OH)4[As2Zn4Si2O16(OH)4]. Am. Mineral. 1980, 65, 483–487. [Google Scholar]
- Grey, I.E.; Mumme, W.G.; Bordet, P. A new crystal-chemical variation of the alunite-type structure in monoclinic PbZn0.5Fe3(AsO4)2(OH)6. Can. Mineral. 2008, 46, 1355–1364. [Google Scholar] [CrossRef]
- Cooper, M.A.; Hawthorne, F.C. Crystal structure of kraisslite, Zn3(Mn,Mg)25(Fe3+,Al)(As3+O3)2[(Si,As5+)O4]10(OH)16, from the Sterling Hill mine, Ogdensburg, Sussex County, New Jersey, USA. Mineral. Mag. 2012, 76, 2819–2836. [Google Scholar] [CrossRef]
- Dunn, P.J. Magnesium-chlorophoenicite redefined and new data on chlorophoenicite. Can. Mineral. 1981, 19, 333–336. [Google Scholar]
- Hawthorne, F.C. Long-range and short-range cation order in the crystal structures of carlfrancisite and mcgovernite. Mineral. Mag. 2018, 82, 1101–1118. [Google Scholar] [CrossRef]
- Plášil, J.; Sejkora, J.; Čejka, J.; Škácha, P.; Goliáš, V.; Ederová, J. Characterization of phosphate-rich metalodèvite from Príbram, Czech Republic. Can. Mineral. 2010, 48, 113–122. [Google Scholar] [CrossRef]
- Elliott, P.; Turner, P.; Jensen, P.; Kolitsch, U.; Pring, A. Description and crystal structure of nyholmite, a new mineral related to hureaulite, from Broken Hill, New South Wales, Australia. Mineral. Mag. 2009, 73, 723–735. [Google Scholar] [CrossRef]
- Keller, P.; Hess, H. Die Kristallstrukturen von O‘Danielit, Na(Zn,Mg)3H2(AsO4)3, und Johillerite, Na(Mg,Zn)3Cu(AsO4)3. Neues Jahrb. Mineral. Monatsh. 1988, 9, 395–404. [Google Scholar]
- Hatert, F. A new nomenclature scheme for the alluaudite supergroup. Eur. J. Mineral. 2019, 31, 807–822. [Google Scholar] [CrossRef]
- Dunn, P.J. Ogdensburgite a new calcium-zinc-ferric iron arsenate mineral from Sterling Hill, New Jersey. Mineral. Rec. 1981, 12, 369–370. [Google Scholar]
- Peacor, D.R.; Dunn, P.J.; Ramik, R.A.; Sturman, B.D.; Zeihen, L.G. Philipsburgite, a new copper zinc arsenate hydrate related to kipushite, from Montana. Can. Mineral. 1985, 23, 255–258. [Google Scholar]
- Elliott, P.; Kampf, A.R. Puttapaite, IMA 2020-025. CNMNC Newsletter No. 56. Mineral. Mag. 2020, 84, 623–627. [Google Scholar] [CrossRef]
- Cooper, M.A.; Hawthorne, F.C.; Langhof, J.; Hålenius, U.; Holtstam, D. Wiklundite, ideally Pb2[4](Mn2+,Zn)3(Fe3+,Mn2+)2(Mn2+,Mg)19(As3+O3)2[Si,As5+)O4]6(OH)18Cl6, a new mineral from Långban, Filipstad, Värmland, Sweden: Description and crystal structure. Mineral. Mag. 2017, 81, 841–855. [Google Scholar] [CrossRef]
- Li, G.; Sun, N.; Shen, H.; Xue, Y.; Hao, J. Zheshengite, IMA 2022-011, in CNMNC Newsletter 67. Eur. J. Mineral. 2022, 34, 359–364. [Google Scholar] [CrossRef]
- Pekov, I.V.; Koshlyakova, N.N.; Zubkova, N.V.; Lykova, I.S.; Britvin, S.N.; Yapaskurt, V.O.; Agakhanov, A.A.; Shchipalkina, N.V.; Turchkova, A.G.; Sidorov, E.G. Fumarolic arsenates–A special type of arsenic mineralization. Eur. J. Mineral. 2018, 30, 305–322. [Google Scholar] [CrossRef]
- Pekov, I.V.; Lykova, I.; Koshlyakova, N.N.; Belakovskiy, D.I.; Vigasina, M.F.; Turchkova, A.G.; Britvin, S.N.; Sidorov, E.G.; Scheidl, K.S. A new mineral species zincobradaczekite, NaCuCuZn2(AsO4)3, and a new isomorphous series bradaczekite-zincobradaczekite in the alluaudite group. Phys. Chem. Mineral. 2020, 47, 36. [Google Scholar] [CrossRef]
- Williams, S.A. Khinite, parakhinite, and dugganite, three new tellurates from Tombstone, Arizona. Am. Mineral. 1978, 63, 1016–1019. [Google Scholar]
- Strunz, H. Stranskiit, ein neues Mineral. Sci. Nat. 1960, 47, 376. [Google Scholar] [CrossRef]
Temperature, °C | 27 | 50 | 100 | 150 | 200 | 250 | 300 | 23 |
---|---|---|---|---|---|---|---|---|
T00 | T01 | T02 | T03 | T04 | T05 | T06 | T07 | |
Space group | P21 | P21/c | ||||||
a, Å | 5.2854 (4) | 5.2840 (3) | 5.2882 (3) | 5.2918 (3) | 5.2957 (3) | 5.2986 (3) | 5.3037 (4) | 8.8073 (11) |
b, Å | 10.3919 (8) | 10.3901 (5) | 10.3940 (5) | 10.3948 (6) | 10.3964 (6) | 10.3948 (6) | 10.3959 (7) | 9.9861 (11) |
c, Å | 8.0394 (7) | 8.0347 (5) | 8.0395 (5) | 8.0425 (5) | 8.0451 (5) | 8.0462 (5) | 8.0483 (6) | 9.4060 (11) |
β, ° | 95.445 (8) | 95.359 (5) | 95.346 (5) | 95.309 (5) | 95.262 (6) | 95.263 (6) | 95.285 (7) | 91.471 (10) |
Volume, Å3 | 439.58 (6) | 439.19 (4) | 439.97 (4) | 440.49 (4) | 441.07 (5) | 441.30 (5) | 441.87 (5) | 826.99 (17) |
Z | 2 | 2 | ||||||
Data collection | ||||||||
Wavelength, Å | 0.71073 | 0.71073 | ||||||
Max. θ° | 31.672 | 29.300 | 29.285 | 29.280 | 29.355 | 29.360 | 29.486 | 33.799 |
Index ranges | −7 ≤ h ≤ 7 −14 ≤ k ≤ 15 −9 ≤ l ≤ 11 | −7 ≤ h ≤ 4 −14 ≤ k ≤ 13 −10 ≤ l ≤ 10 | −7 ≤ h ≤ 4 −14 ≤ k ≤ 13 −10 ≤ l ≤ 10 | −7 ≤ h ≤ 4 −14 ≤ k ≤ 13 −10 ≤ l ≤ 10 | −4 ≤ h ≤ 7 −14 ≤ k ≤ 14 −10 ≤ l ≤ 10 | −4 ≤ h ≤ 7 −14 ≤ k ≤ 14 −10 ≤ l ≤ 10 | −7 ≤ h ≤ 4 −13 ≤ k ≤ 14 −10 ≤ l ≤ 11 | −13 ≤ h ≤ 13 −15 ≤ k ≤ 14 −14 ≤ l ≤ 14 |
No.meas.refl. | 5422 | 4853 | 4848 | 4879 | 4383 | 4883 | 4635 | 10016 |
No.uniq.refl. | 2356 | 2033 | 2034 | 2040 | 1997 | 2026 | 2061 | 2957 |
No.obs.refl (I > 2σ(I)) | 2083 | 1755 | 1728 | 1709 | 1570 | 1650 | 1577 | 1319 |
Refinement of the structure | ||||||||
No. of variables | 128 | 123 | 123 | 128 | 128 | 128 | 128 | 118 |
Rint | 0.0657 | 0.0480 | 0.0495 | 0.0495 | 0.0585 | 0.0533 | 0.0525 | 0.1495 |
R1, all data | 0.0526 | 0.0507 | 0.0526 | 0.0540 | 0.0617 | 0.0606 | 0.0706 | 0.2347 |
R1, I > 2σ(I) | 0.0443 | 0.0388 | 0.0381 | 0.0399 | 0.0410 | 0.0423 | 0.0459 | 0.1052 |
wR2, all data | 0.0965 | 0.0692 | 0.0680 | 0.0691 | 0.0651 | 0.0779 | 0.0801 | 0.2999 |
wR2, I > 2σ(I) | 0.0938 | 0.0664 | 0.0637 | 0.0657 | 0.0608 | 0.0725 | 0.0739 | 0.2259 |
GooF | 0.990 | 1.015 | 1.007 | 1.004 | 0.945 | 1.009 | 1.011 | 1.031 |
Temperature, °C | 23 | 50 | 100 | 150 | 200 | 250 | 300 |
---|---|---|---|---|---|---|---|
T00 | T01 | T02 | T03 | T04 | T05 | T06 | |
AsO4 tetrahedra | |||||||
As1–O2 (Å) | 1.680 (12) | 1.672 (11) | 1.682 (11) | 1.679 (12) | 1.662 (12) | 1.675 (12) | 1.676 (14) |
As1–O4 (Å) | 1.691 (11) | 1.679 (10) | 1.675 (12) | 1.669 (11) | 1.686 (12) | 1.684 (13) | 1.677 (13) |
As1–O5 (Å) | 1.674 (10) | 1.695 (10) | 1.701 (10) | 1.681 (10) | 1.700 (11) | 1.691 (11) | 1.679 (12) |
As1–O6 (Å) | 1.678 (10) | 1.670 (9) | 1.670 (10) | 1.662 (10) | 1.672 (10) | 1.672 (11) | 1.651 (11) |
<As1–O> (Å) | 1.681 | 1.679 | 1.682 | 1.673 | 1.680 | 1.681 | 1.670 |
Volume (Å3) | 2.436 | 2.428 | 2.441 | 2.401 | 2.434 | 2.435 | 2.390 |
As2–O1 (Å) | 1.678 (12) | 1.684 (12) | 1.685 (11) | 1.683 (12) | 1.685 (12) | 1.686 (12) | 1.680 (13) |
As2–O3 (Å) | 1.681 (12) | 1.670 (11) | 1.667 (11) | 1.664 (11) | 1.680 (12) | 1.663 (13) | 1.671 (13) |
As2–O7 (Å) | 1.688 (11) | 1.686 (10) | 1.674 (10) | 1.679 (10) | 1.691 (10) | 1.664 (11) | 1.684 (12) |
As2–O8 (Å) | 1.667 (11) | 1.672 (11) | 1.660 (11) | 1.675 (12) | 1.660 (12) | 1.658 (13) | 1.661 (13) |
<As2–O> (Å) | 1.678 | 1.678 | 1.672 | 1.675 | 1.679 | 1.668 | 1.674 |
Volume (Å3) | 2.424 | 2.423 | 2.395 | 2.411 | 2.428 | 2.380 | 2.408 |
ZnO4 tetrahedra | |||||||
Zn1–O1 (Å) | 1.975 (12) | 1.980 (12) | 1.979 (11) | 1.979 (12) | 1.972 (12) | 1.977 (12) | 1.982 (13) |
Zn1–O3 (Å) | 1.953 (11) | 1.964 (11) | 1.965 (11) | 1.965 (11) | 1.959 (12) | 1.960 (13) | 1.964 (13) |
Zn1–O5 (Å) | 1.935 (10) | 1.929 (9) | 1.922 (9) | 1.931 (9) | 1.935 (10) | 1.926 (10) | 1.931 (11) |
Zn1–O6 (Å) | 1.903 (12) | 1.909 (11) | 1.910 (12) | 1.913 (13) | 1.882 (13) | 1.895 (14) | 1.909 (14) |
<Zn1–O> (Å) | 1.942 | 1.946 | 1.944 | 1.947 | 1.937 | 1.939 | 1.946 |
Volume (Å3) | 3.645 | 3.667 | 3.655 | 3.676 | 3.614 | 3.627 | 3.661 |
Zn2–O2 (Å) | 1.968 (11) | 1.969 (11) | 1.961 (11) | 1.971 (12) | 1.974 (12) | 1.967 (13) | 1.969 (13) |
Zn2–O4 (Å) | 1.955 (11) | 1.968 (10) | 1.955 (12) | 1.959 (11) | 1.945 (13) | 1.948 (13) | 1.959 (13) |
Zn2–O7 (Å) | 1.941 (12) | 1.934 (11) | 1.935 (12) | 1.938 (12) | 1.947 (12) | 1.949 (13) | 1.947 (14) |
Zn2–O8 (Å) | 1.934 (10) | 1.940 (10) | 1.941 (10) | 1.934 (10) | 1.935 (11) | 1.939 (11) | 1.936 (11) |
<Zn2–O> (Å) | 1.949 | 1.953 | 1.948 | 1.951 | 1.950 | 1.951 | 1.953 |
Volume (Å3) | 3.699 | 3.723 | 3.702 | 3.711 | 3.701 | 3.709 | 3.711 |
BaO8 polyhedra | |||||||
Ba–O1 (Å) | 2.726 (11) | 2.715 (10) | 2.723 (10) | 2.728 (11) | 2.728 (11) | 2.725 (11) | 2.734 (12) |
Ba–O2 (Å) | 2.770 (13) | 2.774 (11) | 2.783 (11) | 2.778 (12) | 2.794 (12) | 2.789 (12) | 2.785 (14) |
Ba–O3 (Å) | 2.697 (11) | 2.702 (9) | 2.708 (9) | 2.711 (10) | 2.701 (11) | 2.726 (11) | 2.711 (11) |
Ba–O4 (Å) | 2.761 (10) | 2.763 (10) | 2.781 (11) | 2.782 (11) | 2.781 (12) | 2.783 (12) | 2.787 (12) |
Ba–O5 (Å) | 2.902 (10) | 2.879 (10) | 2.880 (11) | 2.897 (11) | 2.874 (12) | 2.888 (12) | 2.896 (13) |
Ba–O7 (Å) | 2.744 (11) | 2.752 (11) | 2.756 (11) | 2.761 (12) | 2.736 (11) | 2.766 (12) | 2.746 (14) |
Ba–O9 (Å) | 2.897 (11) | 2.905 (9) | 2.912 (10) | 2.916 (10) | 2.904 (11) | 2.924 (11) | 2.908 (12) |
Ba–O9 (Å) | 2.985 (11) | 2.971 (10) | 2.988 (11) | 2.980 (11) | 2.999 (11) | 3.000 (12) | 3.010 (13) |
<Ba–O> (Å) | 2.810 | 2.808 | 2.816 | 2.819 | 2.815 | 2.825 | 2.822 |
Volume (Å3) | 36.106 | 36.119 | 36.322 | 36.461 | 36.245 | 36.606 | 36.465 |
Mineral Name | Chemical Formula | Structural Motif | Reference |
---|---|---|---|
ZnO–As2O3 System | |||
Reinerite | [4]Zn3([3]AsO3)2 | Framework | [52] |
Leiteite | [4]Zn[3]As2O4 | Layers | [53,54] |
ZnO–As2O5–H2O System | |||
Adamite | [5]Zn6]Zn([4]AsO4)(OH) | Framework | [55] |
Arsenohopeite | [6]Zn[4]Zn2([4]AsO4)2·4H2O | Framework | [56] |
Cardite | [4]Zn5.5([4]AsO4)2([4]AsO3OH)(OH)3·3H2O | Framework | [57] |
Davidlloydite | [6]Zn[4]Zn2([4]AsO4)2·4H2O | Framework | [58] |
Koritnigite | [6]Zn([4]AsO3OH)·H2O | Layers | [59] |
Köttigite | [6]Zn3([4]AsO4)2·8H2O | Layers | [60] |
Ianbruceite | [5]Zn[6]ZnO[[4]AsO3(OH)](H2O)3.53 | Layers | [61] |
Legrandite | [5]Zn[6]Zn([4]AsO4)(OH)·H2O | Framework | [55,62] |
Paradamite | [5]Zn2([4]AsO4)(OH) | Framework | [55] |
Warikahnite | [4]Zn[5]Zn2[6]Zn3([4]AsO4)4·4H2O | Framework | [63] |
K2O–ZnO–As2O3 System | |||
Filatovite | K[4](Al,Zn)2[4](As,Si)2O8 | Framework | [15] |
Pharmazincite | K[4]Zn[4]AsO4 | Framework | [64] |
PbO–ZnO–As2O5–H2O System | |||
Arsenbrackebuschite | Pb2(Fe,[6]Zn)([4]AsO4)2(OH,H2O) | Chains | [65] |
Arsendescloizite | Pb[6]Zn([4]AsO4)(OH) | Framework | [66] |
Feinglosite | Pb2Zn(AsO4)2·H2O | No structure | [67] |
Helmutwinklerite | Pb[6]Zn2([4]AsO4)2·2H2O | Layers | [68] |
Tsumcorite | Pb[6]Zn2([4]AsO4)2·2H2O | Layers | [69] |
Zincgartrellite | Pb[6]Zn2([4]AsO4)2(H2O,OH)2 | Layers | [70] |
CaO–ZnO–As2O5–H2O System | |||
Austinite | Ca [6] Zn( [4] AsO4)(OH) | Framework | [71,72] |
Gaitite | Ca2[6]Zn([4]AsO4)2·2H2O | Chains | [73] |
Lotharmeyerite | Ca [6] Zn2( [4] AsO4)2·2H2O | Framework | [74] |
Prosperite | Ca2[6]Zn4([4]AsO4)4·H2O | Framework | [75] |
Stergiouite | Ca[4]Zn2([4]AsO4)2·4H2O | Framework | [76] |
Zincroselite | Ca2[6]Zn([4]AsO4)2·2H2O | Chains | [73] |
CuO–ZnO–As2O5–H2O and CuO–ZnO–As2O5 Systems | |||
Arsenoveszelyite | Cu2[4]Zn([4]AsO4)(OH)3·2H2O | Layers | [77] |
Goldhillite | Cu5[4]Zn([4]AsO4)2(OH)6·H2O | Layers | [78] |
Sabelliite | Cu2[4],[6] Zn( [4] AsO4)(OH)3 | Framework | [79,80] |
Stranskiite | Cu[5]Zn2([4]AsO4)2 | Framework | [81,82] |
Theisite | Cu5Zn5(AsO4)2(OH)14 | No structure | [83] |
Veselovskite | [6]ZnCu4([4]AsO4)2([4]AsO3OH)2·9H2O | Framework | [84] |
Zincolivenite | Cu[5]Zn([4]AsO4)(OH) | Framework | [85] |
Fe2O3–ZnO–As2O5–H2O System | |||
Mapimite | [6]Zn2Fe3([4]AsO4)3(OH)4·10H2O | Framework | [86] |
Metaköttigite | ([6]Zn,Fe)3([4]AsO4)2·8(H2O,OH) | Layers | [87] |
Ojuelaite | [6]ZnFe2([4]AsO4)2(OH)2·4H2O | Framework | [88] |
Wilhelmkleinite | [6] ZnFe2([4]AsO4)2(OH)2 | Framework | [89] |
Other Minerals Containing ZnOn and AsOn Polyhedra | |||
Arakiite | [4]ZnMn12Fe2([3]AsO3)([4]AsO4)2(OH)23 | Layers | [90,91] |
Chlorophoenicite | (Mn,Mg,[6]Zn)3[4]Zn2([4]AsO4)(OH,O)6 | Layers | [92] |
Claraite | (Cu,[5],[6]Zn)15(CO3)4([4]AsO4)2(SO4)(OH)14·7H2O | Layers | [93] |
Cuprozheshengite | Pb4CuZn2(AsO4)2(PO4)2(OH)2 | No structure | [94] |
Dugganite | Pb3[4]Zn3(TeO6)([4]AsO4)2 | Framework | [95] |
Ekatite | (Fe,Fe,[4]Zn)12([4]AsO3)6([4]AsO3,SiO3OH)2(OH)6 | Framework | [96] |
Erikapohlite | (□0.5Cu0.5)CuCa[6]Zn2([4]AsO4)3·H2O | Framework | [97] |
Eurekadumpite | (Cu,Zn)16(TeO3)2(AsO4)3Cl(OH)18·7H2O | Layers(?) | [98] |
Fahleite | CaZn5Fe2(AsO4)6·14H2O | No structure | [99] |
Ferrilotharmeyerite | CaZn[6]Fe([4]AsO4)2(OH)·H2O | Layers | [68] |
Gerdtremmelite | ZnAl2(AsO4)(OH)5 | No structure | [100] |
Holdenite | Mn6[4]Zn3([4]AsO4)2(SiO4)(OH)8 | Framework | [101] |
Jamesite | Pb2[6]ZnFe2(Fe,[6]Zn)4([4]AsO4)4(OH)8(OH,O)2 | Framework | [102] |
Joelbruggerite | Pb3[4]Zn3Sb[4]As2O13(OH) | Framework | [103] |
Keyite | (□0.5Cu0.5)CuCd[6]Zn2([4]AsO4)3·H2O | Framework | [104] |
Kolicite | [4]Zn4Mn2+7([4]AsO4)2(SiO4)2(OH)8 | Framework | [105] |
Kolitschite | Pb[[5]Zn0.5,□0.5]Fe3([4]AsO4)2(OH)6 | Framework | [106] |
Kraisslite | [4]Zn3(Mn,Mg)25(Fe,Al)([3]AsO3)2[(Si,[4]As)O4]10(OH)16 | Framework | [107] |
Magnesiochlorophoenicite | Mg3[4]Zn2([4]AsO4)(OH,O)6 | Layers | [108] |
Mcgovernite | [4]Zn3(Mn,Mg,Fe,Al)42([3]AsO3)2([4]AsO4)4[(Si,[4]As)O4]8(OH)42 | Layers | [109] |
Metalodèvite | Zn(UO2)2(AsO4)2·10H2O | No structure | [110] |
Nyholmite | Cd3[6]Zn2([4]AsO3OH)2([4]AsO4)2·4H2O | Framework | [111] |
Odanielite | Na□[6]Zn[6]Zn2([4]AsO4)[[4]AsO3(OH)]2 | Framework | [112,113] |
Ogdensburgite | Ca2Fe4Zn(AsO4)4(OH)6·6H2O | No structure (layers?) | [114] |
Philipsburgite | Cu5[4]Zn([4]AsO4)(PO4)(OH)6·H2O | Framework | [115] |
Puttapaite | Pb2Mn2ZnCr4O2(AsO4)4(OH)6·12H2O | No structure | [116] |
Wiklundite | Pb2(Mn,[6]Zn)3(Fe,Mn)2(Mn,Mg)19([3]AsO3)2[(Si,[4]As)O4]6(OH)18Cl6 | Layers | [117] |
Zheshengite | Pb4ZnZn2(AsO4)2(PO4)2(OH)2 | No structure | [118] |
Zincobradaczekite | NaCuCu[6]Zn2([4]AsO4)3 | Framework | [113,119,120] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorelova, L.A.; Vereshchagin, O.S.; Bocharov, V.N.; Pankin, D.V.; Đorđević, T. Temperature-Induced Phase Transition in a Feldspar-Related Compound BaZn2As2O8∙H2O. Minerals 2022, 12, 1262. https://doi.org/10.3390/min12101262
Gorelova LA, Vereshchagin OS, Bocharov VN, Pankin DV, Đorđević T. Temperature-Induced Phase Transition in a Feldspar-Related Compound BaZn2As2O8∙H2O. Minerals. 2022; 12(10):1262. https://doi.org/10.3390/min12101262
Chicago/Turabian StyleGorelova, Liudmila A., Oleg S. Vereshchagin, Vladimir N. Bocharov, Dmitrii V. Pankin, and Tamara Đorđević. 2022. "Temperature-Induced Phase Transition in a Feldspar-Related Compound BaZn2As2O8∙H2O" Minerals 12, no. 10: 1262. https://doi.org/10.3390/min12101262
APA StyleGorelova, L. A., Vereshchagin, O. S., Bocharov, V. N., Pankin, D. V., & Đorđević, T. (2022). Temperature-Induced Phase Transition in a Feldspar-Related Compound BaZn2As2O8∙H2O. Minerals, 12(10), 1262. https://doi.org/10.3390/min12101262