Evolution of the Piauí Laterite, Brazil: Mineralogical, Geochemical and Geomicrobiological Mechanisms for Cobalt and Nickel Enrichment
Abstract
:1. Introduction
2. Geological Context
3. Profile Description and Sample Collection
4. Experimental Methods
4.1. Whole Rock Geochemistry
4.2. Bulk Mineralogy Using X-ray Diffraction
4.3. Spatially Resolved Mineralogy Using Electron Microscopy
4.4. Synchrotron Analysis
4.5. Identification of Microorganisms in Field Samples
5. Results
5.1. Whole Rock Geochemistry
5.2. Bulk Mineralogy
5.3. Petrography and Mineral Chemistry of the Laterite Profile
5.3.1. The Serpentinite Protolith
5.3.2. Co and Ni Mineralogy and Chemistry of the Saprolite Units
5.3.3. Ni mineralogy and Chemistry of the Green Silica Nodules
5.4. Cobalt and Nickel Speciation in Asbolane-Lithiophorite Intermediates
5.5. Composition and Diversity of the Microbial Community Present across the Piauí Laterite
5.5.1. Microbial Abundance and Diversity
5.5.2. Prokaryotic Community Composition
5.5.3. Fungal Community Composition
5.5.4. Microcosm Experiments
6. Discussion
6.1. Mineralogical Development the Piauí Lateritic Profile
6.2. Element Mobility during the Piauí Laterite Formation
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gleeson, S.A.; Herrington, R.J.; Durango, J.; Velásquez, C.A.; Koll, G. The mineralogy and geochemistry of the Cerro Matoso S.A. Ni laterite deposit, Montelíbano, Colombia. Econ. Geol. 2004, 99, 1197–1213. [Google Scholar] [CrossRef]
- Thorne, R.L.; Roberts, S.; Herrington, R. Climate change and the formation of nickel laterite deposits. Geology 2012, 40, 331–334. [Google Scholar] [CrossRef]
- Lambiv Dzemua, G.L.; Gleeson, S.A.; Schofield, P.F. Mineralogical characterization of the Nkamouna Co–Mn laterite ore, southeast Cameroon. Miner. Depos. 2013, 48, 155–171. [Google Scholar] [CrossRef]
- Butt, C.R.M.; Cluzel, D. Nickel Laterite Ore Deposits: Weathered Serpentinites. Elements 2013, 9, 123–128. [Google Scholar] [CrossRef]
- Mudd, G.M.; Weng, Z.; Jowitt, S.M.; Turnbull, I.D.; Graedel, T.E. Quantifying the recoverable resources of by-product metals: The case of cobalt. Ore Geol. Rev. 2013, 55, 87–98. [Google Scholar] [CrossRef]
- Putzolu, F.; Boni, M.; Mondillo, N.; Maczurad, M.; Pirajno, F. Ni-Co enrichment and High-Tech metals geochemistry in the Wingellina Ni-Co oxide-type laterite deposit (Western Australia). J. Geochem. Explor. 2019, 196, 282–296. [Google Scholar] [CrossRef]
- Samouhos, M.; Godelitsas, A.; Nomikou, C.; Taxiarchou, M.; Tsakiridis, P.; Zavasnik, J.; Gamaletsos, P.N.; Apostolikas, A. New insights into nanomineralogy and geochemistry of Ni-laterite ores from central Greece (Larymna and Evia deposits). Geochemistry 2018, 79, 268–279. [Google Scholar] [CrossRef]
- Teitler, Y.; Cathelineau, M.; Ulrich, M.; Ambrosi, J.P.; Munoz, M.; Sevin, B. Petrology and geochemistry of scandium in New Caledonian Ni-Co laterites. J. Geochem. Explor. 2019, 196, 131–155. [Google Scholar] [CrossRef]
- Aiglsperger, T.; Proenza, J.A.; Lewis, J.F.; Labrador, M.; Svojtka, M.; Rojas-Purón, A.; Longo, F.; Durisova, J. Critical metals (REE, Sc, PGE) in Ni-laterites from Cuba and the Dominican Republic. Ore Geol. Rev. 2016, 73, 127–147. [Google Scholar] [CrossRef]
- Brand, N.W.; Butt, C.R.M.; Elias, M. Nickel laterites: Classification and features. J. Aust. Geol. Geophys. 1998, 17, 81–88. [Google Scholar]
- Freyssinet, P.; Butt, C.R.M.; Morris, R.C.; Piantone, P. Ore-forming processes related to lateritic weathering. Econ. Geol. 2005, 100, 681–722. [Google Scholar] [CrossRef]
- Thorne, R.; Herrington, R.; Roberts, S. Composition and origin of the Çaldağ oxide nickel laterite, W. Turkey. Miner. Depos. 2009, 44, 581–595. [Google Scholar] [CrossRef]
- Mudd, G.M. Global trends and environmental issues in nickel mining: Sulfides versus laterites. Ore Geol. Rev. 2010, 38, 9–26. [Google Scholar] [CrossRef]
- Golightly, J.P. Progress in understanding the evolution of nickel laterites. Soc. Econ. Geol. Spec. Publ. 2010, 15, 451–475. [Google Scholar]
- Domènech, C.; Galí, S.; Soler, J.M.; Ancco, M.P.; Meléndez, W.; Rondón, J.; Villanova-de-Benavent, C.; Proenza, J.A. The Loma de Hierro Ni-laterite deposit (Venezuela): Mineralogical and chemical composition. Boletín Soc. Geológica Mex. 2020, 72, A050620. [Google Scholar] [CrossRef]
- Herrington, R.; Mondillo, N.; Boni, M.; Thorne, R.; Tavlan, M. Bauxite and Nickel-Cobalt Lateritic Deposits of the Tethyan Belt. Soc. Econ. Geol. Spec. Publ. 2016, 19, 349–387. [Google Scholar]
- Trescases, J.J.; Melfi, A.J.; de Oliveira, S.M.B. Nickeliferous laterites of Brazil. In Proceedings of the Laterisation Processes, Proceedings of the International Seminar on Laterisation Processes, Trivandrum, India, 11–14 December 1979; Balkema: Rotterdam, The Netherlands, 1981; pp. 170–184. [Google Scholar]
- de Oliveira, S.M.B.; Trescases, J.J.; Melfi, A.J. Lateritic nickel deposits of Brazil. Miner. Depos. 1992, 27, 137–146. [Google Scholar] [CrossRef]
- Melfi, A.J.; Trescases, J.J.; de Oliveira, S.M.B. Les “laterites” nickeliferes du Brésil. Cah. ORSTOM Série Géologie 1979, 11, 15–42. [Google Scholar]
- Dino, R. Gênese do Minério de Niquel de São João do Piauí Por Alteração Intempérica. Ph.D. Thesis, Instituto do Geosciéncias, Universidade de Sao Paulo, Sao Paulo, Brazil, 1984. [Google Scholar]
- Oxley, A.; Smith, M.E.; Caceres, O.Y. Why heap leach nickel laterites? Miner. Eng. 2016, 88, 53–60. [Google Scholar] [CrossRef]
- Oxley, A.; Smith, M.E.; Caceres, O.Y. The Piauí Nickel heap leach project, Brazil. Proc. Heap Leach Solut. 2015, 2015, 123–133. [Google Scholar]
- BRN. The Piauí Nickel Project Fact Sheet. 2021. Available online: https://www.braziliannickel.com/piaui-nickel-project/ (accessed on 30 December 2021).
- De Almeida, F.F.M.; Hasui, Y.; Brito Neves, B.B.; Fuck, R.A. Brazilian Structural Provinces: An introduction. Earth Sci. Rev. 1981, 17, 1–29. [Google Scholar] [CrossRef]
- Salgado, S.S.; Ferreira Filho, C.F.; Uhlein, A.; de Andrade Caxito, F. Geologia, Estratigrafia e Petrografia do Complexo de Brejo Seco, Faixa Riacho do Pontal, sudeste do Piauí. Geonomos 2014, 22, 10–21. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, R.G. Geophysical Framework, Isostasy and Causes of the Cenozoic Magmatism of the Province of Borborema and Its Continental Margin (Northeastern Brazil). Ph.D. Thesis, Instituto do Geosciéncias, Universidade Federal do Rio Grande do Norte, Natal, Brazil, 2008. [Google Scholar]
- Salgado, S.S.; Ferreira Filho, C.F.; de Andrade Caxito, F.; Uhlein, A.; Dantas, E.L.; Stevensen, R. The Ni-Cu-PGE mineralized Brejo Seco mafic-ultramafic layered intrusion, Riacho do Pontal Orogen: Onset of Tonian (ca. 900 Ma) continental rifting in Northeast Brazil. J. S. Am. Earth Sci. 2016, 70, 324–339. [Google Scholar] [CrossRef]
- Devlin, R.; (CSA Global, Perth, Australia). Mineral Resource Estimate, Brazilian Nickel Ltd, Piaui Nickel Project Sao Joao do Piauí, Piauí, Brazil. Unpublished Report No: R259.2013. 2013.
- Pouchou, J.L.; Pichoir, F. A New Model for Quantitative X-ray Microanalysis, Part I: Application to the Analysis of Homogeneous Samples. Rech. Aerosp. 1984, 3, 13–38. [Google Scholar]
- Pouchou, J.L.; Pichoir, F. A New Model for Quantitative X-ray Microanalysis, Part II: Application to In-depth Analysis of Heterogeneous Samples. Rech. Aerosp. 1984, 5, 47–65. [Google Scholar]
- Mosselmans, J.F.W.; Quinn, P.D.; Roque Rosell, J.; Atkinson, K.D.; Dent, A.J.; Cavill, S.I.; Hodson, M.E.; Kirk, C.A.; Schofield, P.F. The first environmental science experiments on the new microfocus spectroscopy beamline at Diamond. Mineral. Mag. 2008, 72, 197–200. [Google Scholar] [CrossRef]
- Mosselmans, J.F.W.; Quinn, P.D.; Dent, A.J.; Cavill, S.A.; Diaz-Moreno, S.; Peach, A.; Leicester, P.J.; Keylock, S.J.; Gregory, S.; Atkinson, K.D.; et al. I18-the microfocus spectroscopy beamline at the Diamond Light Source. J. Synchrotron Radiat. 2009, 16, 818–824. [Google Scholar] [CrossRef]
- Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 2005, 12, 537–541. [Google Scholar] [CrossRef] [Green Version]
- Lerotic, M.; Mak, R.; Wirick, S.; Meirer, F.; Jacobsen, C. MANTiS: A program for the analysis of X-ray spectromicroscopy data. J. Synchrotron Radiat. 2014, 21, 1206–1212. [Google Scholar] [CrossRef]
- Newsome, L.; Solano Arguedas, A.; Coker, V.S.; Boothman, C.; Lloyd, J.R. Manganese and cobalt redox cycling in laterites; Biogeochemical and bioprocessing implications. Chem. Geol. 2020, 531, 119330. [Google Scholar] [CrossRef]
- Lovley, D.R.; Phillips, E.J. Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl. Environ. Microbiol. 1986, 51, 683–689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lovley, D.R.; Phillips, E.J.P. Rapid assay for microbially reducible ferric iron in aquatic sediments. Appl. Environ. Microbiol. 1987, 53, 1536–1540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caldeira, J.F.; (Vale, Belo Horizonte, Brazil). Relatorio Preliminar De Pesquisa Integrado, Processos DNPM 803.156/2009 E 803.158/2009, Municipio: Capitao Gervasio Oliveira—PI, Belo Horizonte. VALE Unpublished Internal Report. July 2012.
- Al-Khirbash, S. Geology, mineralogy, and geochemistry of low grade Ni-lateritic soil (Oman Mountains, Oman). Chem. Erde 2016, 76, 363–381. [Google Scholar] [CrossRef]
- Chassé, M.; Griffin, W.L.; O’Reilly, S.Y.; Calas, G. Australian laterites reveal mechanisms governing scandium dynamics in the critical zone. Geochim. Cosmochim. Acta 2019, 260, 292–310. [Google Scholar] [CrossRef] [Green Version]
- Chassé, M.; Griffin, W.L.; O’Reilly, S.Y.; Calas, G. Scandium speciation in a world-class lateritic deposit. Geochem. Perspect. Lett. 2017, 3, 105–114. [Google Scholar] [CrossRef] [Green Version]
- McDonough, W.F.; Sun, S.-S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Villanova-de-Benavent, C.; Domènech, C.; Tauler, E.; Galí, S.; Tassara, S.; Proenza, J.A. Fe-Ni-bearing serpentines from the saprolite horizon of Caribbean Ni-laterite deposits: New insights from thermodynamic calculations. Miner. Depos. 2017, 52, 979–992. [Google Scholar] [CrossRef]
- Schwartz, S.; Guillot, S.; Reynard, B.; Lafay, R.; Debret, B.; Nicollet, C.; Lanari, P.; Auzende, A.L. Pressure-temperature estimates of the lizardite/antigorite transition in high pressure serpentinites. Lithos 2013, 178, 197–210. [Google Scholar] [CrossRef] [Green Version]
- Lambiv Dzemua, G.L.; Gleeson, S.A. Petrography, mineralogy, and geochemistry of the Nkamouna serpentinite: Implications for the formation of the cobalt-Manganese laterite deposit, southeast Cameroon. Econ. Geol. 2012, 107, 25–41. [Google Scholar] [CrossRef]
- Putzolu, F.; Balassone, G.; Boni, M.; Maczurad, M.; Mondillo, N.; Najorka, J.; Pirajno, F. Mineralogical association and Ni-Co deportment in the Wingellina oxide-type laterite deposit (Western Australia). Ore Geol. Rev. 2018, 97, 21–34. [Google Scholar] [CrossRef]
- Roqué-Rosell, J.; Mosselmans, J.F.W.; Proenza, J.A.; Labrador, M.; Galí, S.; Atkinson, K.D.; Quinn, P.D. Sorption of Ni by “lithiophorite–asbolane” intermediates in Moa Bay lateritic deposits, eastern Cuba. Chem. Geol. 2010, 275, 9–18. [Google Scholar] [CrossRef]
- Santos, A.L.; Dybowska, A.; Schofield, P.F.; Herrington, R.J.; Johnson, D.B. Chromium (VI) Inhibition of low pH Bioleaching of Limonitic Nickel-Cobalt Ore. Front. Microbiol. 2022, 12, 802991. [Google Scholar] [CrossRef]
- Santos, A.L.; Dybowska, A.; Schofield, P.F.; Herrington, R.J.; Johnson, D.B. Sulfur-enhanced reductive bioprocessing of cobalt-bearing materials for base metals recovery. Hydrometallurgy 2020, 195, 105396. [Google Scholar] [CrossRef]
- Carvalho e Silva, M.L.M.d.; de Oliveira, S.M.B. As fases portadoras de níquel do minério laterítico de níquel do Vermelho, Serra dos Carajás (PA). Rev. Bras. Geociências 1995, 25, 69–78. [Google Scholar] [CrossRef]
- Ratié, G.; Garnier, J.; Calmels, D.; Vantelon, D.; Guimarães, E.; Monvoisin, G.; Nouet, J.; Ponzevera, E.; Quantin, C. Nickel distribution and isotopic fractionation in a Brazilian lateritic regolith: Coupling Ni isotopes and Ni K-edge XANES. Geochim. Cosmochim. Acta 2018, 230, 137–154. [Google Scholar] [CrossRef] [Green Version]
- Andersen, J.C.Ø.; Rollinson, G.K.; Snook, B.; Herrington, R.; Fairhurst, R.J. Use of QEMSCAN for the characterization of Ni-rich and Ni-poor goethite in laterite ores. Miner. Eng. 2009, 22, 1119–1129. [Google Scholar] [CrossRef]
- Dublet, G.; Juillot, F.; Brest, J.; Noël, V.; Fritsch, E.; Proux, O.; Olivi, L.; Ploquin, F.; Morin, G. Vertical changes of the Co and Mn speciation along a lateritic regolith developed on peridotites (New Caledonia). Geochim. Cosmochim. Acta 2017, 217, 1–15. [Google Scholar] [CrossRef]
- Burns, R.G. The uptake of cobalt into ferromanganese nodules, soils and synthetic manganese (IV) oxides. Geochim. Cosmochim. Acta 1976, 40, 95–102. [Google Scholar] [CrossRef]
- Manceau, A.; Llorca, S.; Calas, G. Crystal chemistry of cobalt and nickel in lithiophorite and asbolane from New Caledonia. Geochim. Cosmochim. Acta 1987, 51, 105–113. [Google Scholar] [CrossRef]
- Manceau, A.; Drits, V.A.; Silvester, E.; Bartoli, C.; Lanson, B. Structural mechanism of Co2+ oxidation by the phyllomanganate buserite. Am. Mineral. 1997, 82, 1150–1175. [Google Scholar] [CrossRef]
- Manceau, A.; Combes, J.M. Structure of the Mn and Fe oxides and oxyhydroxides: A topological approach by EXAFS. Phys. Chem. Miner. 1988, 15, 283–295. [Google Scholar] [CrossRef]
- Cressey, G.; Henderson, C.M.B.; van der Laan, G. Use of L-edge X-ray absorption spectroscopy to characterize multiple valence states of 3d transition metals; a new probe for mineralogical and geochemical research. Phys. Chem. Miner. 1993, 20, 111–119. [Google Scholar] [CrossRef]
- Schofield, P.F.; Henderson, C.M.B.; Cressey, G.; van der Laan, G. 2p X-ray absorption spectroscopy in the Earth sciences. J. Synchrotron Radiat. 1995, 2, 93–98. [Google Scholar] [CrossRef]
- Smith, A.D.; Schofield, P.F.; Cressey, G.; Cressey, B.A.; Read, P.D. The development of X-ray photo-emission electron microscopy (XPEEM) for valence-state imaging of mineral intergrowths. Mineral. Mag. 2004, 68, 859–869. [Google Scholar] [CrossRef]
- Schofield, P.F.; Smith, A.D.; Scholl, A.; Doran, A.; Covey-Crump, S.J.; Young, A.T.; Ohldag, H. Chemical and oxidation-state imaging of mineralogical intergrowths: The application of X-ray photo-emission electron microscopy (XPEEM). Coord. Chem. Rev. 2014, 277–278, 31–43. [Google Scholar] [CrossRef]
- Mulroy, D.S.J. The Microbiology of Lateritic Co-Ni-Bearing Manganese Oxides. Ph.D. Thesis, University of Manchester, Manchester, UK, 2020. [Google Scholar]
- Dublet, G.; Juillot, F.; Morin, G.; Fritsch, E.; Fandeur, D.; Ona-Nguema, G.; Brown, G.E., Jr. Ni speciation in a New Caledonia lateritic regolith: A quantitative X-ray absorption spectroscopy investigation. Geochim. Cosmochim. Acta 2012, 95, 119–133. [Google Scholar] [CrossRef]
- Perez, O.C.; Coto, J.M.; Schippers, A. Quantification of the microbial community in lateritic deposits. Integr. Sci. Ind. Knowl. Biohydrometall. 2013, 825, 33–36. [Google Scholar] [CrossRef]
- Algora, C.; Vasileiadis, S.; Wasmund, K.; Trevisan, M.; Krüger, M.; Puglisi, E.; Adrian, L. Manganese and iron as structuring parameters of microbial communities in Arctic marine sediments from the Baffin Bay. FEMS Microbiol. Ecol. 2015, 91, fiv056. [Google Scholar] [CrossRef]
- Carmichael, S.K.; Bräuer, S.L. Microbial Diversity and Manganese Cycling: A Review of Manganese-oxidizing Microbial Cave Communities. In Microbial Life of Cave Systems; Engel, A.S., Ed.; Walter de Gruyter Gmbh: Berlin, Germany; Boston, MA, USA, 2015; Chapter 3; pp. 137–160. [Google Scholar]
- Daims, H. The Family Nitrospiraceae. In The Prokaryotes; Springer: Berlin/Heidelberg, Germany, 2014; pp. 733–749. [Google Scholar] [CrossRef]
- Colmer, A.R. Relation of the iron oxidizer, Thiobacillus ferrooxidans, to thiosulfate. J. Bacteriol. 1962, 83, 761–765. [Google Scholar] [CrossRef] [Green Version]
- Hallberg, K.B.; Hedrich, S.; Johnson, D.B. Acidiferrobacter thiooxydans, gen. nov. sp. nov.; an acidophilic, thermo-tolerant, facultatively anaerobic iron- and sulfur-oxidizer of the family Ectothiorhodospiraceae. Extremophiles 2011, 15, 271–279. [Google Scholar] [CrossRef]
- Norris, P.R. Acidimicrobiia class. nov. In Bergey’s Manual of Systematics of Archaea and Bacteria; Trujillo, M.E., Dedysh, S., De Vos, P., Hedlund, B., Kämpfer, P., Rainey, F.A., Whitman, W.B., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2015. [Google Scholar] [CrossRef]
- Pester, M.; Brambilla, E.; Alazard, D.; Rattei, T.; Weinmaier, T.; Han, J.; Lucas, S.; Lapidus, A.; Cheng, J.-F.; Goodwin, L.; et al. Complete genome sequences of Desulfosporosinus orientis DSM765T, Desulfosporosinus youngiae DSM17734T, Desulfosporosinus meridiei DSM13257T, and Desulfosporosinus acidiphilus DSM22704T. J. Bacteriol. 2012, 194, 6300–6301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senko, J.M.; Zhang, G.; McDonough, J.T.; Bruns, M.A.; Burgos, W.D. Metal Reduction at Low pH by a Desulfosporosinus species: Implications for the Biological Treatment of Acidic Mine Drainage. Geomicrobiol. J. 2009, 26, 71–82. [Google Scholar] [CrossRef]
- Dimkpa, C.; Svatos, A.; Merten, D.; Büchel, G.; Kothe, E. Hydroxamate siderophores produced by Streptomyces acidiscabies E13 bind nickel and promote growth in cowpea (Vigna unguiculata L.) under nickel stress. Can. J. Microbiol. 2008, 54, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Dorsey, C.W.; Tomaras, A.P.; Connerly, P.L.; Tolmasky, M.E.; Crosa, J.H.; Actis, L.A. The siderophore-mediated iron acquisition systems of Acinetobacter baumannii ATCC 19606 and Vibrio anguillarum 775 are structurally and functionally related. Microbiology 2004, 150, 3657–3667. [Google Scholar] [CrossRef] [Green Version]
- Kloepper, J.W.; Leong, J.; Teintze, M.; Schroth, M.N. Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 1980, 286, 885–886. [Google Scholar] [CrossRef]
- Podschun, R.; Fischer, A.; Ullmann, U. Siderophore production of Klebsiella species Isolated from Different Sources. Zent. Bakteriol. 1992, 276, 481–486. [Google Scholar] [CrossRef]
- Chen, W.-M.; Moulin, L.; Bontemps, C.; Vandamme, P.; Béna, G.; Boivin-Masson, C. Legume symbiotic nitrogen fixation by beta-proteobacteria is widespread in nature. J. Bacteriol. 2003, 185, 7266–7272. [Google Scholar] [CrossRef] [Green Version]
- Videira, S.S.; de Araujo, J.L.S.; da Silva Rodrigues, L.; Baldani, V.L.D.; Baldani, J.I. Occurrence and diversity of nitrogen-fixing Sphingomonas bacteria associated with rice plants grown in Brazil. FEMS Microbiol. Lett. 2009, 293, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Prosser, J.I.; Head, I.M.; Stein, L.Y. The Family Nitrosomonadaceae. In The Prokaryotes; Rosenberg, E., De Long, E.F., Lory, S., Stackebrandt, E., Thompson, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 901–918. [Google Scholar] [CrossRef]
- Stieglmeier, M.; Klingl, A.; Alves, R.J.E.; Rittmann, S.K.-M.R.; Melcher, M.; Leisch, N.; Schleper, C. Nitrososphaera viennensis gen. nov.; sp. nov.; an aerobic and mesophilic, ammonia-oxidizing archaeon from soil and a member of the archaeal phylum Thaumarchaeota. Int. J. Syst. Evol. Microbiol. 2014, 64, 2738–2752. [Google Scholar] [CrossRef]
- Baldani, J.I.; Rouws, L.; Cruz, L.M.; Olivares, F.L.; Schmid, M.; Hartmann, A. The Family Oxalobacteraceae. In The Prokaryotes; Springer: Berlin/Heidelberg, Germany, 2014; pp. 919–974. [Google Scholar] [CrossRef]
- Du, Y.; Yu, X.; Wang, G. Massilia tieshanensis sp. nov.; isolated from mining soil. Int. J. Syst. Evol. Microbiol. 2012, 62, 2356–2362. [Google Scholar] [CrossRef] [Green Version]
- Alori, E.T.; Glick, B.R.; Babalola, O.O. Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front. Microbiol. 2017, 8, 971. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, E.; Holmström, S.J.M. Siderophores in environmental research: Roles and applications. Microb. Biotechnol. 2014, 7, 196–208. [Google Scholar] [CrossRef]
- Babechuk, M.G.; Widdowson, M.; Kamber, B.S. Quantifying chemical weathering intensity and trace element release from two contrasting basalt profiles, Deccan Traps, India. Chem. Geol. 2014, 363, 56–75. [Google Scholar] [CrossRef]
- Tupaz, C.A.J.; Watanabe, Y.; Sanematsu, K.; Echigo, T.; Arcilla, C.; Ferrer, C. Ni-Co Mineralization in the Intex Laterite Deposit, Mindoro, Philippines. Minerals 2020, 10, 579. [Google Scholar] [CrossRef]
- Galí, S.; Soler, J.M.; Proenza, J.A.; Lewis, J.F.; Cama, J.; Tauler, E. Ni-enrichment and stability of Al-free garnierite solid-solutions: A thermodynamic approach. Clays Clay Miner. 2012, 60, 121–135. [Google Scholar] [CrossRef] [Green Version]
- Elias, M.; Donaldson, M.J.; Giorgetta, N. Geology, Mineralogy, and Geochemistry of Lateritic Nickel-Cobalt Deposits near Kalgoorlie, Western Australia. Econ. Geol. 1981, 76, 1775–1783. [Google Scholar] [CrossRef]
- Al-Khirbash, S.; Semhi, K.; Richard, L.; Nasir, S.; Al-Harthy, A. Rare earth element mobility during laterization of mafic rocks of the Oman ophiolite. Arab. J. Geosci. 2014, 7, 5443–5454. [Google Scholar] [CrossRef]
- Murray, K.J.; Webb, S.M.; Bargar, J.R.; Tebo, B.M. Indirect oxidation of Co(II) in the presence of the marine Mn (II)-oxidizing bacterium Bacillus sp. Strain SG-1. Appl. Environ. Microbiol. 2007, 73, 6905–6909. [Google Scholar] [CrossRef] [Green Version]
- Miller, G.W.; Sampson, D.; Fleay, J.; Conway-Mortimer, J.; Roche, E. Ravensthorpe nickel project beneficiation prediction MLR and interpretation of results. In Proceedings of the International Laterite Nickel Symposium, Charlotte, NC, USA, 14–18 March 2004; pp. 121–136. [Google Scholar]
- Dowding, C.E.; Fey, M.V. Morphological, chemical and mineralogical properties of some manganese-rich oxisols derived from dolomite in Mpumalanga province, South Africa. Geoderma 2007, 141, 23–33. [Google Scholar] [CrossRef]
- Stanković, S.; Martin, M.; Goldmann, S.; Gäbler, H.-E.; Ufer, K.; Haubrich, F.; Moutinho, V.F.; Giese, E.C.; Neumann, R.; Stropper, J.L.; et al. Effect of mineralogy on Co and Ni extraction from Brazilian limonitic laterites via bioleaching and chemical leaching. Miner. Eng. 2022, 184, 107604. [Google Scholar] [CrossRef]
- Smith, S.L.; Grail, B.M.; Johnson, D.B. Reductive bioprocessing of cobalt-bearing limonitic laterites. Miner. Eng. 2017, 106, 86–90. [Google Scholar] [CrossRef]
- Lane, D.J. 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics; Stackebrant, E., Goodfellow, M., Eds.; John Wiley & Sons Ltd.: London, UK, 1991; pp. 115–175. [Google Scholar]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Huntley, J.; Fierer, N.; Owens, S.M.; Betley, J.; Fraser, L.; Bauer, M.; et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012, 6, 1621–1624. [Google Scholar] [CrossRef] [Green Version]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Lozupone, C.A.; Turnbaugh, P.J.; Fierer, N.; Knight, R. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA 2010, 108, 4516–4522. [Google Scholar] [CrossRef]
- Kozich, J.J.; Westcott, S.L.; Baxter, N.T.; Highlander, S.K.; Schloss, P.D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 2013, 79, 5112–5120. [Google Scholar] [CrossRef] [Green Version]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011, 17, 10. [Google Scholar] [CrossRef]
- Joshi, N.A.; Fass, J.N. Sickle: A Sliding-Window, Adaptive, Quality-Based Trimming Tool for FastQ Files. 2011. Available online: http://github.com/najoshi/sickle (accessed on 31 August 2017).
- Nurk, S.; Bankevich, A.; Antipov, D.; Gurevich, A.A.; Korobeynikov, A.; Lapidus, A.; Prjibelski, A.D.; Pyshkin, A.; Sirotkin, A.; Sirotkin, Y.; et al. Assembling single-cell genomes and mini-metagenomes from chimeric MDA products. J. Comput. Biol. 2013, 20, 714–737. [Google Scholar] [CrossRef] [Green Version]
- Masella, A.P.; Bartram, A.K.; Truszkowski, J.M.; Brown, D.G.; Neufeld, J.D. PANDAseq: Paired-end assembler for Illumina sequences. BMC Bioinf. 2012, 13, 31. [Google Scholar] [CrossRef] [Green Version]
- Haas, B.J.; Gevers, D.; Earl, A.M.; Feldgarden, M.; Ward, D.V.; Giannoukos, G.; Ciulla, D.; Tabbaa, D.; Highlander, S.K.; Sodergren, E.; et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 2011, 21, 494–504. [Google Scholar] [CrossRef] [Green Version]
- Edgar, R.C. UPARSE: Highly accurate OUT sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef]
- Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef] [Green Version]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, A.E.; Muthumeenakshi, S.; Sreenivasaprasad, S.; Mills, P.R.; Swinburne, T.R. A PCR primer-specific to Cylindro-carpon heteronema for detection of the pathogen in apple wood. FEMS Microbiol. Lett. 1993, 108, 117–120. [Google Scholar] [CrossRef] [PubMed]
- Gardes, M.; Bruns, T.D. ITS primers with enhanced specificity for basidiomycetes--application to the identification of my-corrhizae and rusts. Mol. Ecol. 1993, 2, 113–118. [Google Scholar] [CrossRef]
- Taylor, D.L.; Walters, W.A.; Lennon, N.J.; Bochicchio, J.; Krohn, A.; Caporaso, J.G.; Pennanen, T. Accurate estimation of fun-gal diversity and abundance through improved lineage-specific primers optimized for Illumina amplicon sequencing. Appl. Environ. Microbiol. 2016, 82, 7217–7226. [Google Scholar] [CrossRef] [Green Version]
- Gweon, H.S.; Oliver, A.; Taylor, J.; Booth, T.; Gibbs, M.; Read, D.S.; Griffiths, R.I.; Schonrogge, K. PIPITS: An automated pipeline for analyses of fungal internal transcribed spacer sequences from the Illumina sequencing platform. Methods Ecol. Evol. 2015, 6, 973–980. [Google Scholar] [CrossRef] [Green Version]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef] [Green Version]
- Borneman, J.; Triplett, E.W. Molecular microbial diversity in soils from eastern Amazonia: Evidence for unusual microorganisms and microbial population shifts associated with deforestation. Appl. Environ. Microbiol. 1997, 63, 2647–2653. [Google Scholar] [CrossRef] [Green Version]
- Wirth, F.; Goldani, L.Z. Epidemiology of Rhodotorula: An emerging pathogen. Interdiscip. Perspect. Infect. Dis. 2012, 465717. [Google Scholar] [CrossRef] [Green Version]
- MacGillivray, A.R.; Shiaris, M.P. Biotransformation of polycyclic aromatic hydrocarbons by yeasts isolated from coastal sediments. Appl. Environ. Microbiol. 1993, 59, 1613–1618. [Google Scholar] [CrossRef] [Green Version]
- Jurjevic, Z.; Peterson, S.W.; Horn, B.W. Aspergillus section Versicolores: Nine new species and multilocus DNA sequence based phylogeny. IMA Fungus 2012, 3, 59–79. [Google Scholar] [CrossRef]
- Giraldo, A.; Gené, J.; Sutton, D.A.; Madrid, H.; Cano, J.; Crous, P.W.; Guarro, J. Phylogenetic circumscription of Arthrographis (Eremomycetaceae, Dothideomycetes). Persoonia 2014, 32, 102–114. [Google Scholar] [CrossRef]
Analyte | Unit | Serpentinite | Saprock | SAPFE | SAPSILFE | Green Silica Nodules | Mn Oxide | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F046 | F047 | F049 | F017 | F039 | F018 | F019 | F022 | F028 | F030 | F032 | F043 | F044 | F008 | F009 | F011 | F012 | F013 | F050 | ||
SiO2 | wt% | 38.7 | 40.1 | 39.1 | 37.4 | 38.8 | 12.6 | 24.7 | 22.2 | 20.5 | 48.2 | 28.6 | 45.9 | 64.3 | 88.4 | 94.1 | 92.8 | 90.5 | 85 | 6.31 |
Fe2O3 | wt% | 11.65 | 9.74 | 10.8 | 11.5 | 18.45 | 56.9 | 37 | 45.5 | 49.6 | 32.7 | 40.6 | 40 | 23.3 | 0.37 | 3.48 | 0.71 | 0.72 | 1.26 | 10.1 |
MnO | wt% | 0.22 | 0.21 | 0.24 | 0.14 | 0.17 | 0.69 | 0.44 | 0.61 | 0.43 | 0.29 | 0.44 | 0.34 | 0.16 | 0.01 | 0.04 | 0.01 | 0.01 | 0.02 | 40.3 |
Al2O3 | wt% | 2.3 | 2.31 | 2.11 | 1.19 | 2.33 | 5.79 | 3.97 | 4.67 | 5.06 | 3.58 | 4.69 | 2.45 | 2.52 | 0.1 | 0.04 | 0.01 | 0.12 | 0.14 | 3.39 |
CaO | wt% | 0.04 | 0.06 | 0.05 | 0.02 | 0.04 | 0.03 | 0.03 | 0.04 | 0.04 | 0.04 | 0.08 | 0.02 | 0.02 | 0.04 | 0.02 | 0.01 | 0.02 | 0.01 | 0.05 |
MgO | wt% | 34.8 | 34.6 | 34.9 | 35.7 | 26.5 | 6.17 | 14.95 | 9.25 | 10.4 | 3.4 | 7.99 | 0.51 | 2.48 | 4.19 | 0.65 | 1.4 | 2.16 | 5.29 | 2.01 |
Cr2O3 | wt% | 1.54 | 1.655 | 1.83 | 0.89 | 1.58 | 4.2 | 2.94 | 3.09 | 3.5 | 2.68 | 2.62 | 1.74 | 1.7 | 0.02 | 0.008 | 0.004 | 0.009 | 0.019 | 0.167 |
TiO2 | wt% | 0.03 | 0.03 | 0.03 | 0.02 | 0.04 | 0.1 | 0.07 | 0.12 | 0.11 | 0.07 | 0.06 | 0.08 | 0.08 | 0.06 | 0.05 | <0.01 | 0.01 | 0.02 | 0.01 |
Ni | wt% | 0.329 | 0.345 | 0.343 | 0.732 | 0.824 | 2.18 | 3.11 | 1.43 | 1.78 | 0.911 | 1.33 | 0.394 | 0.279 | 3.14 | 0.683 | 1.125 | 1.415 | 1.975 | 3.55 |
LOI | wt% | 12.1 | 12.3 | 12.1 | 13.7 | 13.65 | 8.75 | 11.8 | 11.9 | 8.73 | 7.59 | 12.15 | 7.46 | 5.08 | 2.66 | 0.73 | 1.18 | 1.61 | 2.85 | 13.35 |
Cd | ppm | <0.5 | <0.5 | 1 | <0.5 | 0.6 | <0.5 | 1.7 | 1.4 | 1.8 | 0.6 | 0.8 | <0.5 | 0.5 | 1.9 | 0.7 | 1.1 | 1.2 | 1.5 | 3.8 |
Co | ppm wt% | 138 | 102 | 130 | 158 | 224 | 812 | 628 | 610 | 616 | 318 | 632 | 194 | 136 | 25 | 3 | 49 | 47 | 56 | 4.36 |
Cu | ppm wt% | 11 | 15 | 10 | 299 | 579 | 1160 | 1410 | 723 | 782 | 671 | 303 | 713 | 418 | 157 | 39 | 172 | 233 | 286 | 1.02 |
Li | ppm | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 |
Mo | ppm | <1 | <1 | 1 | <1 | 2 | 3 | 2 | 2 | 1 | <1 | 1 | 3 | 2 | 1 | <1 | <1 | <1 | 1 | <1 |
Pb | ppm | 10 | 3 | 9 | 2 | <2 | 4 | 3 | 17 | <2 | <2 | 3 | 14 | 3 | 6 | 4 | 4 | 40 | <2 | <20 |
Sc | ppm | 5 | 5 | 5 | 6 | 6 | 26 | 20 | 21 | 20 | 16 | 21 | 19 | 11 | 1 | <1 | 1 | 2 | 5 | 8 |
Zn | ppm | 138 | 145 | 148 | 71 | 114 | 379 | 781 | 233 | 342 | 228 | 292 | 141 | 133 | 27 | 12 | 37 | 154 | 69 | 686 |
Ba BaO | ppm wt% | 8.4 | 3.2 | 5.1 | 61.7 | 64.5 | 157 | 198 | 129.5 | 161 | 165.5 | 262 | 29.1 | 38 | 7 | 3.8 | 2.6 | 22 | 10.4 | 9.93 |
Ce | ppm | 0.8 | 0.4 | 0.6 | <0.5 | 1.9 | <0.5 | <0.5 | 1.4 | 6.1 | 2.4 | 16.6 | 14.8 | 8.9 | <0.5 | 0.3 | 0.1 | 0.4 | 0.2 | 1150 |
Dy | ppm | 0.13 | 0.26 | 0.21 | <0.05 | 0.33 | 0.14 | 0.4 | 0.36 | 1.37 | 0.51 | 2.31 | 1.36 | 1.77 | 0.12 | <0.05 | <0.05 | 0.06 | 0.05 | 36.8 |
Er | ppm | 0.08 | 0.13 | 0.13 | <0.03 | 0.29 | 0.18 | 0.44 | 0.31 | 0.73 | 0.27 | 1.01 | 0.72 | 1.32 | 0.12 | 0.06 | <0.03 | 0.05 | <0.03 | 18.5 |
Eu | ppm | 0.09 | 0.12 | 0.1 | <0.03 | 0.19 | 0.05 | 0.13 | 0.1 | 0.5 | 0.19 | 0.77 | 0.32 | 0.46 | <0.03 | <0.03 | <0.03 | <0.03 | <0.03 | 12.85 |
Gd | ppm | 0.21 | 0.24 | 0.35 | 0.05 | 0.56 | 0.15 | 0.29 | 0.29 | 1.86 | 0.78 | 2.66 | 1.17 | 1.99 | 0.1 | 0.1 | <0.05 | 0.06 | <0.05 | 40.9 |
Ho | ppm | 0.04 | 0.05 | 0.05 | 0.02 | 0.06 | 0.06 | 0.08 | 0.11 | 0.26 | 0.12 | 0.43 | 0.26 | 0.39 | 0.04 | 0.02 | 0.01 | 0.01 | 0.02 | 6.62 |
La | ppm | 0.8 | 0.5 | 0.7 | <0.5 | 2.6 | <0.5 | 1.3 | 1.4 | 11.1 | 3 | 12.8 | 5.5 | 10.2 | 0.6 | 0.3 | 0.1 | 0.3 | 0.3 | 255 |
Lu | ppm | 0.02 | 0.03 | 0.03 | 0.02 | 0.03 | 0.07 | 0.05 | 0.07 | 0.11 | 0.05 | 0.13 | 0.15 | 0.18 | 0.03 | 0.02 | 0.01 | <0.01 | 0.02 | 2.45 |
Nd | ppm | 0.8 | 0.9 | 0.9 | <0.1 | 2.1 | 0.3 | 0.7 | 1.2 | 9.9 | 2.7 | 15.4 | 7.4 | 9.2 | <0.1 | 0.2 | <0.1 | 0.3 | 0.2 | 265 |
Pr | ppm | 0.2 | 0.16 | 0.18 | <0.03 | 0.43 | <0.03 | 0.06 | 0.2 | 1.98 | 0.79 | 3.02 | 1.42 | 1.95 | <0.03 | 0.04 | <0.03 | 0.06 | 0.03 | 73.9 |
Sm | ppm | 0.17 | 0.35 | 0.22 | <0.03 | 0.24 | 0.09 | 0.08 | 0.27 | 1.41 | 0.65 | 2.84 | 0.93 | 1.61 | 0.17 | 0.05 | <0.03 | 0.06 | <0.03 | 56.9 |
Tb | ppm | 0.02 | 0.04 | 0.04 | 0.01 | 0.05 | 0.02 | 0.05 | 0.06 | 0.25 | 0.1 | 0.39 | 0.21 | 0.29 | 0.01 | 0.01 | <0.01 | 0.01 | 0.02 | 6.83 |
Tm | ppm | 0.03 | 0.03 | 0.02 | <0.01 | 0.03 | 0.05 | 0.03 | 0.03 | 0.09 | 0.05 | 0.11 | 0.11 | 0.19 | 0.01 | 0.01 | 0.01 | 0.02 | 0.01 | 2.89 |
Yb | ppm | 0.08 | 0.15 | 0.12 | 0.07 | 0.21 | 0.28 | 0.39 | 0.44 | 0.55 | 0.29 | 0.85 | 0.69 | 1.25 | 0.06 | 0.09 | 0.03 | 0.04 | 0.1 | 18.7 |
ΣREE | ppm | 3.47 | 3.36 | 3.65 | 0.17 | 9.02 | 1.39 | 4 | 6.24 | 36.21 | 11.9 | 59.32 | 35.04 | 39.7 | 1.26 | 1.2 | 0.26 | 1.37 | 0.95 | 1947.34 |
Analyte | Unit | SAPAL | SAPMG | Magnesite | Kaolinite | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F014 | F015 | F033 | F002 | F005 | F006 | F007 | F023 | F024 | F025 | F026 | F029 | F031 | F034 | F038 | F040 | F041 | F003 | F035 | ||
SiO2 | wt% | 44.4 | 46.8 | 42 | 31 | 37.4 | 32.6 | 36.6 | 42.5 | 38.5 | 38.1 | 31.5 | 31.2 | 33.9 | 34.3 | 30 | 37.3 | 36.8 | 1.4 | 42.4 |
Fe2O3 | wt% | 7.32 | 3.36 | 7.54 | 14 | 9.47 | 11.9 | 7.36 | 11.65 | 14.6 | 11.15 | 14.1 | 27.4 | 14.45 | 16.2 | 3.28 | 9.63 | 7.82 | 0.2 | 10.3 |
MnO | wt% | 0.34 | 0.4 | 2.21 | 0.31 | 0.06 | 0.34 | 0.4 | 0.11 | 0.25 | 0.13 | 0.43 | 0.25 | 0.79 | 0.89 | 0.23 | 0.1 | 0.39 | 0.01 | 0.3 |
Al2O3 | wt% | 24.9 | 27.9 | 22 | 11.7 | 8.36 | 13.75 | 12.4 | 5.38 | 3.38 | 4.24 | 14.25 | 3.33 | 11.4 | 13.3 | 19.3 | 7.13 | 11.6 | 0.08 | 31 |
CaO | wt% | 0.09 | 0.08 | 0.1 | 0.05 | 0.09 | 0.13 | 0.12 | 0.04 | 0.04 | 0.06 | 0.14 | 0.04 | 0.19 | 0.16 | 0.11 | 0.06 | 0.11 | 0.25 | 0.04 |
MgO | wt% | 3.26 | 2.69 | 5.09 | 19.5 | 18.6 | 16.9 | 15.55 | 21.2 | 24.8 | 27.9 | 23.7 | 23.1 | 21 | 13.05 | 30.7 | 17 | 13.05 | 47.9 | 0.7 |
Cr2O3 | wt% | 0.12 | 0.02 | 0.05 | 0.24 | 0.79 | 0.12 | 0.13 | 0.51 | 2.04 | 1.23 | 0.05 | 1.53 | 0.06 | 0.24 | 0.07 | 0.87 | 0.15 | 0.01 | 0.43 |
TiO2 | wt% | 0.11 | 0.12 | 0.67 | 2.2 | 0.04 | 1.38 | 1.81 | 0.03 | 0.06 | 0.03 | 1.77 | 0.12 | 1.89 | 1.31 | 0.65 | 0.05 | 2.09 | <0.01 | 0.22 |
Ni | wt% | 1.685 | 1.4 | 2.31 | 6.45 | 8.65 | 6.36 | 8.48 | 1.105 | 2.11 | 2.67 | 1.28 | 1.855 | 2.2 | 2.2 | 1.17 | 9.22 | 8 | 0.0355 | 0.498 |
LOI | wt% | 17.65 | 16.85 | 16.2 | 11.85 | 14.1 | 14.1 | 15.05 | 16.45 | 14.45 | 14.5 | 13.65 | 11.75 | 14.3 | 15.05 | 14.95 | 13.7 | 15.35 | 51.1 | 14 |
Cd | ppm | <0.5 | <0.5 | 0.7 | 2.1 | 0.9 | 2.3 | 3.4 | 0.6 | 1.6 | 2.2 | 1.3 | 1.4 | 1.9 | 1.4 | 1.4 | 1.2 | 2.6 | <0.5 | <0.5 |
Co | ppm | 835 | 996 | 2960 | 1240 | 295 | 546 | 715 | 108 | 289 | 185 | 47 | 346 | 156 | 1510 | 236 | 394 | 728 | 13 | 516 |
Cu | ppm | 881 | 848 | 1170 | 507 | 659 | 593 | 625 | 353 | 324 | 294 | 409 | 1140 | 594 | 1510 | 211 | 822 | 632 | 66 | 652 |
Li | ppm | 10 | 10 | 20 | 20 | 20 | 100 | 70 | 30 | <10 | 10 | 80 | 10 | 70 | 60 | 110 | 30 | 60 | <10 | <10 |
Mo | ppm | 2 | <1 | 2 | 2 | 3 | 3 | 2 | 1 | <1 | <1 | 1 | <1 | 1 | 1 | 2 | 1 | 1 | <1 | <1 |
Pb | ppm | 4 | <2 | <2 | 10 | 11 | 8 | 10 | 4 | 3 | 7 | 2 | 7 | 7 | 14 | 6 | <2 | <2 | <2 | 5 |
Sc | ppm | 13 | 13 | 29 | 26 | 5 | 29 | 24 | 16 | 9 | 9 | 32 | 11 | 60 | 19 | 10 | 6 | 24 | <1 | 16 |
Zn | ppm | 317 | 345 | 394 | 1100 | 502 | 609 | 724 | 268 | 161 | 126 | 172 | 378 | 290 | 429 | 347 | 573 | 732 | 12 | 169 |
Ba | ppm | 317 | 251 | 3600 | 44 | 30.8 | 77.6 | 90.6 | 46.8 | 67.9 | 84.1 | 209 | 49.8 | 537 | 1520 | 78.2 | 32.9 | 132 | 17.6 | 72.9 |
Ce | ppm | 64.7 | 19.7 | 689 | 7.8 | 2.5 | 17.3 | 28.9 | 1.9 | 2.8 | 4.6 | 48.2 | 1.9 | 78.8 | 91.2 | 32.9 | 12.3 | 36.2 | <0.5 | 8.5 |
Dy | ppm | 32.8 | 2.79 | 22.3 | 1.83 | 2.14 | 14 | 20.7 | 1.25 | 0.92 | 1.16 | 4.03 | 0.44 | 8.96 | 4.24 | 7.81 | 2.97 | 26.8 | 0.14 | 0.89 |
Er | ppm | 14.65 | 1.72 | 10 | 1.09 | 1.27 | 7.22 | 11.3 | 0.66 | 0.54 | 0.77 | 1.96 | 0.2 | 4.67 | 2.47 | 4.69 | 1.7 | 14.15 | 0.08 | 0.42 |
Eu | ppm | 14.6 | 1.75 | 9.3 | 0.51 | 0.44 | 4.41 | 6.05 | 0.6 | 0.27 | 0.28 | 1.14 | 0.08 | 1.65 | 1.39 | 3.28 | 0.67 | 7.98 | 0.06 | 0.2 |
Gd | ppm | 50.8 | 3.94 | 30.6 | 2.49 | 2.1 | 20.4 | 30.3 | 1.86 | 0.96 | 1.27 | 4.09 | 0.41 | 9.07 | 5.49 | 15.25 | 2.73 | 40.4 | 0.14 | 0.83 |
Ho | ppm | 6.05 | 0.6 | 3.93 | 0.41 | 0.45 | 2.85 | 4.33 | 0.25 | 0.24 | 0.25 | 0.77 | 0.08 | 1.76 | 0.9 | 1.65 | 0.65 | 5.38 | 0.02 | 0.15 |
La | ppm | 292 | 24.3 | 207 | 6.9 | 9 | 147 | 211 | 3.2 | 2.8 | 2.9 | 11.1 | 2.3 | 26.7 | 23.7 | 129.5 | 11.8 | 260 | <0.5 | 2.9 |
Lu | ppm | 1.8 | 0.3 | 1.18 | 0.13 | 0.22 | 0.67 | 1.31 | 0.07 | 0.11 | 0.08 | 0.23 | 0.04 | 0.69 | 0.33 | 0.44 | 0.29 | 1.39 | 0.02 | 0.08 |
Nd | ppm | 312 | 21.7 | 220 | 10.1 | 7.5 | 95.8 | 111 | 7.4 | 2.2 | 2.9 | 17.9 | 1.6 | 36.1 | 24.6 | 92.1 | 12.9 | 154.5 | 0.3 | 3.5 |
Pr | ppm | 67 | 5.54 | 48.6 | 1.82 | 1.88 | 20 | 26.7 | 1.49 | 0.46 | 0.52 | 3.59 | 0.33 | 7.48 | 5.47 | 19.25 | 2.49 | 36.2 | 0.04 | 0.67 |
Sm | ppm | 50.2 | 3.84 | 35.6 | 2.21 | 1.44 | 15.1 | 19.2 | 2.17 | 0.68 | 0.67 | 4.15 | 0.31 | 8.05 | 4.92 | 11.5 | 2.36 | 27.4 | <0.03 | 0.62 |
Tb | ppm | 6 | 0.56 | 4.06 | 0.34 | 0.37 | 2.65 | 3.8 | 0.27 | 0.13 | 0.19 | 0.65 | 0.07 | 1.43 | 0.75 | 1.4 | 0.44 | 4.9 | 0.02 | 0.14 |
Tm | ppm | 2.1 | 0.27 | 1.34 | 0.17 | 0.24 | 0.9 | 1.54 | 0.09 | 0.06 | 0.08 | 0.25 | 0.03 | 0.71 | 0.32 | 0.5 | 0.27 | 1.74 | <0.01 | 0.06 |
Yb | ppm | 11.7 | 1.6 | 8.61 | 0.73 | 1.45 | 5.22 | 8.51 | 0.45 | 0.43 | 0.43 | 1.89 | 0.21 | 4.21 | 2.11 | 3.13 | 1.66 | 9.09 | 0.03 | 0.44 |
ΣREE | ppm | 926.4 | 88.61 | 1292 | 36.53 | 31 | 353.5 | 484.6 | 21.66 | 12.6 | 16.1 | 99.95 | 8 | 190.3 | 167.9 | 323.4 | 53.23 | 626.1 | 0.85 | 19.4 |
Lithological Unit | Description |
---|---|
Serpentinite | Serpentinised dunite source rock that maintains its broadly igneous though pseudomorphic texture and is geochemically described by MgO > ~35 wt%, SiO2 >~40 wt% and Al2O3 <~5 wt%. |
Saprock | Highly leached yellow to white adcumulate with MgO between 25 and 35 wt%, high SiO2 and low Al2O3. |
SAPSILFE | Silicified ferruginous saprolite (silicious Fe-saprolite c/f Figure 2, Figure 3 and Figure 4) and is characterised by high Fe2O3 > ~25 wt% and high silica SiO2 >~ 25 wt%. |
SAPMG | Predominantly green saprolitic unit with MgO >~13 wt% and Al2O3 in the range 3–20 wt%. |
SAPAL | White-green (occasionally pink) saprolitic unit with high Al2O3 >~20 wt% and low MgO <~5 wt%. |
SAPFE | Red brown ferruginous saprolite with high iron oxide Fe2O3 > ~40 wt% and low silica SiO2 <~ 25 wt%. |
COB | Undifferentiated cover comprising an iron oxide sedimented breccia of silicified laterite. |
Lithological Unit | n | SiO2 | Fe2O3 | MnO | Al2O3 | MgO | CaO | Cr2O3 | TiO2 | Ni | Co * |
---|---|---|---|---|---|---|---|---|---|---|---|
SAPFE | 4 | 20.00 | 47.25 | 0.54 | 4.87 | 10.19 | 0.04 | 3.43 | 0.10 | 2.13 | 666 |
SAPMG | 14 | 35.12 | 12.36 | 0.33 | 9.97 | 20.43 | 0.10 | 0.57 | 0.96 | 4.41 | 485 |
SAPAL | 3 | 44.40 | 6.07 | 0.98 | 24.93 | 3.68 | 0.09 | 0.06 | 0.30 | 1.80 | 1597 |
SAPSILFE | 4 | 46.75 | 34.15 | 0.31 | 3.31 | 3.60 | 0.04 | 2.19 | 0.07 | 0.73 | 320 |
Saprock | 2 | 38.10 | 14.98 | 0.16 | 1.76 | 31.10 | 0.03 | 1.24 | 0.03 | 0.78 | 191 |
Serpentinite | 3 | 39.30 | 10.73 | 0.22 | 2.24 | 34.77 | 0.05 | 1.68 | 0.03 | 0.34 | 123 |
F050 | 1 | 6.31 | 10.1 | 40.3 | 3.39 | 2.01 | 0.05 | 0.167 | 0.01 | 3.55 | 4.36 ¥ |
Green silica nodules | 5 | 90.16 | 1.308 | 0.018 | 0.082 | 2.738 | 0.02 | 0.012 | 0.035 | 1.6676 | 36 |
Mineral | n | Al2O3 | MgO | Fe2O3 | Cr2O3 | SiO2 | MnO | Ni | Co |
---|---|---|---|---|---|---|---|---|---|
Ferritchromite | 81 | 2.03 | 3.98 | 59.58 | 29.69 | na | 2.67 | 0.16 | 0.06 |
Serpentine | 106 | 0.41 | 38.22 | 2.42 | nd | 44.82 | nd | 0.38 | nd |
Hematite | 110 | nd | 1.04 | 97.85 | 0.98 | 0.92 | 0.36 | 0.30 | nd |
Magnetite | 48 | nd | na | 51.71 | nd | na | 0.10 | 8.93 | 1.18 |
Mn oxy-hydroxide | 87 | 0.88 | nd | 7.48 | nd | nd | 28.05 | 6.61 | 7.41 |
Mineral | Concentration (wt%) | |||
---|---|---|---|---|
n | Min | Max | Average | |
Mn oxy-hydroxide | 284 | 0.35 | 14.2 | 3.44 |
Manganoan goethite | 89 | 0.03 | 0.65 | 0.19 |
Magnetite | 52 | 0.41 | 1.89 | 1.14 |
Chlorite | 552 | 0.03 | 0.45 | 0.05 |
Manganoan ilmenite | 42 | 0.04 | 0.35 | 0.12 |
Aluminian chromite | 133 | 0.03 | 0.06 | 0.04 |
Ferritchromite | 63 | 0.03 | 0.16 | 0.06 |
Mineral | Concentration (wt%) | |||
---|---|---|---|---|
n | Min | Max | Average | |
Chlorite | 554 | 0.1 | 24.0 | 3.2 (med) |
Nickeloan talc | 101 | 5.8 | 15.3 | 13.5 |
Pimelite | 28 | 19.5 | 25.0 | 21.7 |
Serpentine | 154 | 0.04 | 3.52 | 0.40 (med) |
Manganoan ilmenite | 66 | 0.03 | 1.36 | 0.35 |
Ilmenite | 119 | 0.03 | 1.55 | 0.27 |
Aluminian chromite | 158 | 0.08 | 0.18 | 0.13 |
Ferritchromite | 81 | 0.06 | 1.25 | 0.16 |
Goethite | 116 | 0.03 | 9.0 | 1.32 |
Magnetite | 52 | 2.84 | 14.1 | 8.60 |
Mn oxy-hydroxide | 284 | 0.35 | 18.8 | 8.49 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dybowska, A.; Schofield, P.F.; Newsome, L.; Herrington, R.J.; Mosselmans, J.F.W.; Kaulich, B.; Kazemian, M.; Araki, T.; Skiggs, T.J.; Kruger, J.; et al. Evolution of the Piauí Laterite, Brazil: Mineralogical, Geochemical and Geomicrobiological Mechanisms for Cobalt and Nickel Enrichment. Minerals 2022, 12, 1298. https://doi.org/10.3390/min12101298
Dybowska A, Schofield PF, Newsome L, Herrington RJ, Mosselmans JFW, Kaulich B, Kazemian M, Araki T, Skiggs TJ, Kruger J, et al. Evolution of the Piauí Laterite, Brazil: Mineralogical, Geochemical and Geomicrobiological Mechanisms for Cobalt and Nickel Enrichment. Minerals. 2022; 12(10):1298. https://doi.org/10.3390/min12101298
Chicago/Turabian StyleDybowska, Agnieszka, Paul F. Schofield, Laura Newsome, Richard J. Herrington, Julian F. W. Mosselmans, Burkhard Kaulich, Majid Kazemian, Tohru Araki, Thomas J. Skiggs, Jens Kruger, and et al. 2022. "Evolution of the Piauí Laterite, Brazil: Mineralogical, Geochemical and Geomicrobiological Mechanisms for Cobalt and Nickel Enrichment" Minerals 12, no. 10: 1298. https://doi.org/10.3390/min12101298
APA StyleDybowska, A., Schofield, P. F., Newsome, L., Herrington, R. J., Mosselmans, J. F. W., Kaulich, B., Kazemian, M., Araki, T., Skiggs, T. J., Kruger, J., Oxley, A., Norman, R. L., & Lloyd, J. R. (2022). Evolution of the Piauí Laterite, Brazil: Mineralogical, Geochemical and Geomicrobiological Mechanisms for Cobalt and Nickel Enrichment. Minerals, 12(10), 1298. https://doi.org/10.3390/min12101298