Lipid Biomarker and Stable Isotopic Profiles through Late Carboniferous–Early Triassic of the Deepest Well MS-1 in the Junggar Basin, Northwest China
Abstract
:1. Introduction
2. Geological Setting
3. Sample and Experiment
3.1. Sample Collection
3.2. Experimental Analysis
4. Results and Discussion
4.1. TOC and Rock Pyrolysis Parameters
4.2. Molecular Geochemistry of Organic Matter
4.2.1. n-Alkanes, Pr/Ph, β-Carotene, and δ13C of Chloroform Asphalts
4.2.2. Terpenoids and Steroids
4.2.3. Organic Matter Maturity
5. Sedimentary Environment
5.1. Carboniferous
The Telegula Formation (C2t)
5.2. Permian
5.2.1. The Xiazijie Formation (P2x)
5.2.2. The Lower and Upper Urho Formation (P2w, P3w)
5.2.3. The Baikouquan Formation (T1b)
6. Global Tectonics and Environmental Change Drives
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shen, S.Z.; Shi, G.R. Late Paleozoic deep Gondwana and its peripheries: Stratigraphy, biological events, paleoclimate and paleogeography. Gondwana Res. 2013, 24, 1–4. [Google Scholar] [CrossRef]
- Feng, Y.; Song, H.J.; Bond, D.P.G. Size variations in foraminifers from the early Permian to the Late Triassic: Implications for the Guadalupian-Lopingian and the Permian-Triassic mass extinctions. Paleobiology 2020, 46, 511–532. [Google Scholar] [CrossRef]
- Wang, Y.J.; Jia, D.; Pan, J.G.; Wei, D.T.; Tang, Y.; Wang, G.D.; Wei, C.R.; Ma, D.L. Multiple-phase tectonic superposition and reworking in the Junggar Basin of northwestern China-Implications for deep-seated petroleum exploration. Aapg Bull. 2018, 102, 1489–1521. [Google Scholar] [CrossRef]
- Xiao, W.J.; Windley, B.F.; Allen, M.B.; Han, C.M. Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage. Gondwana Res. 2013, 23, 1316–1341. [Google Scholar] [CrossRef]
- Ju, W.; Hou, G.T.; Li, L.; Xiao, F.F. End Late Paleozoic tectonic stress field in the southern edge of Junggar Basin. Geosci. Front. 2012, 3, 707–715. [Google Scholar] [CrossRef] [Green Version]
- Hendrix, M.S.; Brassell, S.C.; Carroll, A.R.; Graham, S.A. Sedimentology, organic geochemistry, and petroleum potential of Jurassic coal measures: Tarim, Junggar, and Turpan basins, northwest China. Aapg Bull.-Am. Assoc. Pet. Geol. 1995, 79, 929–959. [Google Scholar]
- Xiao, M.; Wu, S.T.; Yuan, X.J.; Cao, Z.L.; Xie, Z.R. Diagenesis effects on the conglomerate reservoir quality of the Baikouquan Formation, Junggar Basin, China. J. Pet. Sci. Eng. 2020, 195, 17. [Google Scholar] [CrossRef]
- Han, Y.G.; Zhao, G.C. Final amalgamation of the Tianshan and Junggar orogenic collage in the southwestern Central Asian Orogenic Belt: Constraints on the closure of the Paleo-Asian Ocean. Earth-Sci. Rev. 2018, 186, 129–152. [Google Scholar] [CrossRef]
- Xiao, W.J.; Windley, B.F.; Han, C.M.; Liu, W.; Wan, B.; Zhang, J.; Ao, S.J.; Zhang, Z.Y.; Song, D.F. Late Paleozoic to early Triassic multiple roll-back and oroclinal bending of the Mongolia collage in Central Asia. Earth-Sci. Rev. 2018, 186, 94–128. [Google Scholar] [CrossRef]
- Han, B.F.; Ji, J.Q.; Song, B.; Chen, L.H.; Zhang, L. Late Paleozoic vertical growth of continental crust around the Junggar Basin, Xinjiang, China (Part I): Timing of post-collisional plutonism. Acta Petrol. Sin. 2006, 22, 1077–1086. [Google Scholar]
- Yu, K.H.; Cao, Y.C.; Qiu, L.W.; Sun, P.P.; Jia, X.Y.; Wan, M. Geochemical characteristics and origin of sodium carbonates in a closed alkaline basin: The Lower Permian Fengcheng Formation in the Mahu Sag, northwestern Junggar Basin, China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 511, 506–531. [Google Scholar] [CrossRef]
- Yang, W.; Feng, Q.A.; Liu, Y.Q.; Tabor, N.; Miggins, D.; Crowley, J.L.; Lin, J.Y.; Thomas, S. Depositional environments and cyclo- and chronostratigraphy of uppermost Carboniferous-Lower Triassic fluvial-lacustrine deposits, southern Bogda Mountains, NW China-A terrestrial paleoclimatic record of mid-latitude NE Pangea. Glob. Planet. Chang. 2010, 73, 15–113. [Google Scholar] [CrossRef]
- Metcalfe, I.; Foster, C.B.; Afonin, S.A.; Nicoll, R.S.; Mundil, R.; Wang, X.F.; Lucas, S.G. Stratigraphy, biostratigraphy and C-isotopes of the Permian-Triassic non-marine sequence at Dalongkou and Lucaogou, Xinjiang Province, China. J. Asian Earth Sci. 2009, 36, 503–520. [Google Scholar] [CrossRef]
- Gastaldo, R.A.; Neveling, J.; Clark, C.K.; Newbury, S.S. The terrestrial Permian-Triassic boundary event bed is a nonevent. Geology 2009, 37, 199–202. [Google Scholar] [CrossRef] [Green Version]
- Meng, Z.Y.; Liu, Y.Q.; Jiao, X.; Ma, L.T.; Zhou, D.W.; Li, H.; Cao, Q.; Zhao, M.R.; Yang, Y.Y. Petrological and organic geochemical characteristics of the Permian Lucaogou Formation in the Jimsar Sag, Junggar Basin, NW China: Implications on the relationship between hydrocarbon accumulation and volcanic-hydrothermal activities. J. Pet. Sci. Eng. 2022, 210, 17. [Google Scholar] [CrossRef]
- Hu, D.; Rao, S.; Wang, Z.T.; Hu, S.B. Thermal and maturation history for Carboniferous source rocks in the Junggar Basin, Northwest China: Implications for hydrocarbon exploration. Pet. Sci. 2020, 17, 36–50. [Google Scholar] [CrossRef] [Green Version]
- Feng, M.Y.; Liu, T.; Lin, T.; Liu, X.H.; Li, N.X.; Xi, A.H. Fracture Fillings and Implication of Fluid Activities in Volcanic Rocks: Dixi Area in Kelameili Gas Field, Junggar Basin, Northwestern China. Minerals 2019, 9, 154. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.B.; Tan, C.P.; Yu, X.H.; Qu, J.H.; Zhao, X.M.; Zhang, L. Sedimentary characteristics and controls of a retreating, coarse-grained fan-delta system in the Lower Triassic, Mahu Depression, northwestern China. Geol. J. 2019, 54, 1141–1159. [Google Scholar] [CrossRef]
- Zhang, M.M.; Liu, Z.J.; Qiu, H.J.; Xu, Y.B. Characteristics of organic matter of oil shale in the sequence stratigraphic framework at the northern foot of Bogda Mountain, China. Oil Shale 2016, 33, 31–44. [Google Scholar] [CrossRef] [Green Version]
- Jiao, Y.Q.; Yan, J.X.; Li, S.T.; Yang, R.Q.; Lang, F.J.; Yang, S.K. Architectural units and heterogeneity of channel reservoirs in the Karamay formation, outcrop area of Karamay oil field, Junggar basin, northwest China. Aapg Bull. 2005, 89, 529–545. [Google Scholar] [CrossRef]
- Wilhem, C.; Windley, B.F.; Stampfli, G.M. The Altaids of Central Asia: A tectonic and evolutionary innovative review. Earth-Sci. Rev. 2012, 113, 303–341. [Google Scholar] [CrossRef] [Green Version]
- Allen, M.B.; Windley, B.F.; Chi, Z. Palaeozoic collisional tectonics and magmatism of the Chinese Tien Shan, central Asia. Tectonophysics 1993, 220, 89–115. [Google Scholar] [CrossRef]
- Liu, X.J.; Xiao, W.J.; Xu, J.F.; Castillo, P.R.; Shi, Y. Geochemical signature and rock associations of ocean ridge-subduction: Evidence from the Karamaili Paleo-Asian ophiolite in east Junggar, NW China. Gondwana Res. 2017, 48, 34–49. [Google Scholar] [CrossRef]
- Bai, J.K.; Chen, J.L.; Yan, Z.; Tang, Z.; Xu, X.Y.; Li, J.L. The timing of opening and closure of the Mayile oceanic basin: Evidence from the angular unconformity between the Middle Devonian and its underlying geological body in the southern West Junggar. Acta Petrol. Sin. 2015, 31, 133–142. [Google Scholar]
- Sengor, A.M.C.; Natal’In, B.A.; Sunal, G.; van der Voo, R. A new look at the altaids: A superorogenic complex in northern and central asia as a factory of continental crust. part I: Geological data compilation (exclusive of palaeomagnetic observations). Austrian J. Earth Sci. 2014, 107, 169–232. [Google Scholar]
- Weng, K.; Xu, X.Y.; Ma, Z.P.; Chen, J.L.; Sun, J.M.; Zhang, X. The geochemistry and chronology characteristics and the geological significance of ultramafic rock in Mayile ophiolite, West Junggar, Xinjiang. Acta Petrol. Sin. 2016, 32, 1420–1436. [Google Scholar]
- Chen, S.; Guo, Z.J. Time constraints, tectonic setting of Dalabute ophiolitic complex and its significance for Late Paleozoic tectonic evolution in West Junggar. Acta Petrol. Sin. 2010, 26, 2336–2344. [Google Scholar]
- Xu, X.; Zhou, K.F.; Wang, Y. Study on extinction of the remnant oceanic basin and tectonic setting of West Junggar during Late Paleozoic. Acta Petrol. Sin. 2010, 26, 3206–3214. [Google Scholar]
- Zhang, M.; Wang, G.C.; Zhang, X.H.; Liao, Q.A.; Wang, W.; Guo, R.L.; Zhang, P. Reconstruction of the Silurian to Devonian stratigraphic succession along the northeastern margin of the Junggar block, Xinjiang, NW China, and its tectono-paleogeographic implications for the southwestern Central Asian Orogenic Belt. Sediment. Geol. 2021, 411, 23. [Google Scholar] [CrossRef]
- Novikov, I.S. Reconstructing the stages of orogeny around the Junggar basin from the lithostratigraphy of Late Paleozoic, Mesozoic, and Cenozoic sediments. Russ. Geol. Geophys. 2013, 54, 138–152. [Google Scholar] [CrossRef]
- He, D.F.; Li, D.; Fan, C.; Yang, X.F. Geochronology, geochemistry and tectonostratigraphy of Carboniferous strata of the deepest Well Moshen-1 in the Junggar Basin, northwest China: Insights into the continental growth of Central Asia. Gondwana Res. 2013, 24, 560–577. [Google Scholar] [CrossRef]
- Ji, Y.L.; Zhou, Y.; Kuang, J.; Wan, L.; Zhang, R.; Lu, C.H. The formation and evolution of Chepaizi-Mosuowan paleo-uplift and its control on the distributions of sedimentary facies in the Junggar Basin. Sci. China-Earth Sci. 2010, 53, 818–831. [Google Scholar] [CrossRef]
- Shi, Y.Q.; Ji, H.C.; Yu, J.W.; Xiang, P.F.; Yang, Z.B.; Liu, D.D. Provenance and sedimentary evolution from the Middle Permian to Early Triassic around the Bogda Mountain, NW China: A tectonic inversion responding to the consolidation of Pangea. Mar. Pet. Geol. 2020, 114, 104–169. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Qin, L.M.; Qiu, N.S.; Zhong, N.N.; Zhang, Z.Y.; Li, W. Combination and superimposition of source kitchens and their effects on hydrocarbon accumulation in the hinterland of the Junggar Basin, west China. Pet. Sci. 2010, 7, 59–72. [Google Scholar] [CrossRef] [Green Version]
- Qiu, N.S.; Ming, Z.; Wang, X.L.; Yang, H.B. Tectono-thermal evolution of the Junggar Basin, NW China: Constraints from R-o and apatite fission track modelling. Pet. Geosci. 2005, 11, 361–372. [Google Scholar]
- Peters, K.E. Guidelines for evaluating petroleum source rock using programmed pyrolysis. Aapg Bull.-Am. Assoc. Pet. Geol. 1986, 70, 318–329. [Google Scholar]
- Bray, E.; Evans, E. Distribution of n-paraffins as a clue to recognition of source beds. Geochim. Et Cosmochim. Acta 1961, 22, 2–15. [Google Scholar] [CrossRef]
- Cheng, B.; Xu, J.B.; Lu, Z.Q.; Li, Y.H.; Wang, W.C.; Yang, S.; Liu, H.; Wang, T.; Liao, Z.W. Hydrocarbon source for oil and gas indication associated with gas hydrate and its significance in the Qilian Mountain permafrost, Qinghai, Northwest China. Mar. Pet. Geol. 2018, 89, 202–215. [Google Scholar] [CrossRef]
- Herrera-Herrera, A.V.; Mallol, C. Quantification of lipid biomarkers in sedimentary contexts: Comparing different calibration methods. Org. Geochem. 2018, 125, 152–160. [Google Scholar] [CrossRef]
- Silliman, J.E.; Schelske, C.L. Saturated hydrocarbons in the sediments of Lake Apopka, Florida. Org. Geochem. 2003, 34, 253–260. [Google Scholar] [CrossRef]
- Holtvoeth, J.; Whiteside, J.H.; Engels, S.; Freitas, F.S.; Grice, K.; Greenwood, P.; Johnson, S.; Kendall, I.; Lengger, S.K.; Lucke, A.; et al. The paleolimnologist’s guide to compound-specific stable isotope analysis-An introduction to principles and applications of CSIA for Quaternary lake sediments. Quat. Sci. Rev. 2019, 207, 101–133. [Google Scholar] [CrossRef]
- Schinteie, R.; Brocks, J.J. Paleoecology of Neoproterozoic hypersaline environments: Biomarker evidence for haloarchaea, methanogens, and cyanobacteria. Geobiology 2017, 15, 641–663. [Google Scholar] [CrossRef]
- Tulipani, S.; Grice, K.; Greenwood, P.F.; Haines, P.W.; Sauer, P.E.; Schimmelmann, A.; Summons, R.E.; Foster, C.B.; Bottcher, M.E.; Playton, T.; et al. Changes of palaeoenvironmental conditions recorded in Late Devonian reef systems from the Canning Basin, Western Australia: A biomarker and stable isotope approach. Gondwana Res. 2015, 28, 1500–1515. [Google Scholar] [CrossRef] [Green Version]
- Greenwood, P.F.; Summons, R.E. GC-MS detection and significance of crocetane and pentamethylicosane in sediments and crude oils. Org. Geochem. 2003, 34, 1211–1222. [Google Scholar] [CrossRef]
- Farzadnia, S.; Nimmagadda, R.D.; McRae, C. A comparative structural study of nitrogen-rich fulvic acids from various Antarctic lakes. Environ. Chem. 2018, 14, 502–514. [Google Scholar] [CrossRef]
- Walters, C.C.; Moldowan, J.M. The Biomarker Guide: Biomarkers and Isostopes In the Environment and Human History; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Darnet, S.; Blary, A.; Chevalier, Q.; Schaller, H. Phytosterol Profiles, Genomes and Enzymes-An Overview. Front. Plant Sci. 2021, 12, 18. [Google Scholar] [CrossRef]
- Tomazic, M.L.; Poklepovich, T.J.; Nudel, C.B.; Nusblat, A.D. Incomplete sterols and hopanoids pathways in ciliates: Gene loss and acquisition during evolution as a source of biosynthetic genes. Mol. Phylogenetics Evol. 2014, 74, 122–134. [Google Scholar] [CrossRef]
- Fang, J.S.; Chan, O.; Joeckel, R.M.; Huang, Y.S.; Wang, Y.; Bazylinski, D.A.; Moorman, T.B.; Clement, B.J.A. Biomarker analysis of microbial diversity in sediments of a saline groundwater seep of Salt Basin, Nebraska. Org. Geochem. 2006, 37, 912–931. [Google Scholar] [CrossRef]
- Hakimi, M.H.; Abdullah, W.H. Geochemical characteristics of some crude oils from Alif Field in the Marib-Shabowah Basin, and source-related types. Mar. Pet. Geol. 2013, 45, 304–314. [Google Scholar] [CrossRef]
- Skret, U.; Fabianska, M.J. Geochemical characteristics of organic matter in the Lower Palaeozoic rocks of the Peribaltic Syneclise (Poland). Geochem. J. 2009, 43, 343–369. [Google Scholar] [CrossRef] [Green Version]
- Peters, K.E.; Moldowan, J.M. The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments; Prentice Hall: Hoboken, NJ, USA, 1993. [Google Scholar]
- Irwin, H.; Meyer, T. Lacustrine organic facies—A biomarker study using multivariate statistical-analysis. Org. Geochem. 1990, 16, 197–210. [Google Scholar] [CrossRef]
- Ma, S.H.; Zhang, S.C.; Su, J.; Wang, X.M.; He, K.; Fang, Y.; Mi, J.K. The Biomarkers in the Mesoproterozoic Organic-rich Rocks of North China Craton: Implication for the Precursor and Preservation of Organism in the Prokaryotic Realm. Acta Geol. Sin.-Engl. Ed. 2022, 96, 293–308. [Google Scholar] [CrossRef]
- Fabianska, M.J.; Cmiel, S.R.; Misz-Kennan, M. Biomarkers and aromatic hydrocarbons in bituminous coals of Upper Silesian Coal Basin: Example from 405 coal seam of the Zaleskie Beds (Poland). Int. J. Coal Geol. 2013, 107, 96–111. [Google Scholar] [CrossRef]
- Zhang, S.; Wu, T.; Zhang, S.; Cao, C.; Ma, W.; Shi, J.a.; Sun, G. Organofacies and paleoenvironment of lower Carboniferous mudstones (Dishuiquan Formation) in Eastern Junggar, NW China. Int. J. Coal Geol. 2015, 150–151, 7–18. [Google Scholar] [CrossRef]
- Li, D.; He, D.; Santosh, M.; Ma, D.; Tang, J. Tectonic framework of the northern Junggar Basin part I: The eastern Luliang Uplift and its link with the East Junggar terrane. Gondwana Res. 2015, 27, 1089–1109. [Google Scholar] [CrossRef]
- Li, D.; He, D.; Santosh, M.; Ma, D. Tectonic framework of the northern Junggar Basin Part II: The island arc basin system of the western Luliang Uplift and its link with the West Junggar terrane. Gondwana Res. 2015, 27, 1110–1130. [Google Scholar] [CrossRef]
- He, D.; Chen, X.; Kuang, J.; Zhou, L.; Tang, Y.; Liu, D. Development and Genetic Mechanism of Chepaizi-Mosuowan Uplift in Junggar Basin, China. Earth Sci. Front. 2008, 15, 42–55. [Google Scholar] [CrossRef]
- Pardo, J.D.; Small, B.J.; Milner, A.R.; Huttenlocker, A.K. Carboniferous–Permian climate change constrained early land vertebrate radiations. Nat. Ecol. Evol. 2019, 3, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.X.; Wen, H.J.; Zhu, C.W.; Fan, H.F.; Cloquet, C. Cadmium isotopic evidence for the evolution of marine primary productivity and the biological extinction event during the Permian-Triassic crisis from the Meishan section, South China. Chem. Geol. 2018, 481, 110–118. [Google Scholar] [CrossRef]
- Walliser, O.H. Global Events in the Devonian and Carboniferous. In Global Events and Event Stratigraphy in the Phanerozoic: Results of the International Interdisciplinary Cooperation in the IGCP-Project 216 “Global Biological Events in Earth History”; Walliser, O.H., Ed.; Springer: Berlin/Heidelberg, Germany, 1996; pp. 225–250. [Google Scholar]
- Song, H.J.; Tong, J.N.; Xiong, Y.L.; Sun, D.Y.; Tian, L.; Song, H.Y. The large increase of delta C-13(carb)-depth gradient and the end-Permian mass extinction. Sci. China-Earth Sci. 2012, 55, 1101–1109. [Google Scholar] [CrossRef]
- Bush, A.M.; Bambach, R.K. Paleoecologic Megatrends in Marine Metazoa. In Annual Review of Earth and Planetary Sciences; Jeanloz, R., Freeman, K.H., Eds.; Annual Review: San Mateo, CA, USA, 2011; Volume 39, pp. 241–269. [Google Scholar]
- Kaiho, K.; Chen, Z.Q.; Ohashi, T.; Arinobu, T.; Sawada, K.; Cramer, B.S. A negative carbon isotope anomaly associated with the earliest Lopingian (Late Permian) mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2005, 223, 172–180. [Google Scholar] [CrossRef]
- Kaiho, K.; Aftabuzzaman, M.; Jones, D.S.; Tian, L. Pulsed volcanic combustion events coincident with the end-Permian terrestrial disturbance and the following global crisis. Geology 2021, 49, 289–293. [Google Scholar] [CrossRef]
- Lo, C.H.; Chung, S.L.; Lee, T.Y.; Wu, G.Y. Age of the Emeishan flood magmatism and relations to Permian-Triassic boundary events. Earth Planet. Sci. Lett. 2002, 198, 449–458. [Google Scholar] [CrossRef]
- Abrajevitch, A.; Van der Voo, R.; Bazhenov, M.L.; Levashova, N.M.; McCausland, P.J.A. The role of the Kazakhstan orocline in the late Paleozoic amalgamation of Eurasia. Tectonophysics 2008, 455, 61–76. [Google Scholar] [CrossRef]
- Xiao, W.; Santosh, M. The western Central Asian Orogenic Belt: A window to accretionary orogenesis and continental growth. Gondwana Res. 2014, 25, 1429–1444. [Google Scholar] [CrossRef]
Strata | β-Carotene /ΣC12-35 | Cmax a | CPI1 b | CPI2 c | Alkterr d | LMW/HMW e | Pr/Ph | δ13C (PDB) f | |
---|---|---|---|---|---|---|---|---|---|
T1b | Min. | 0.04 | 17 | 1.05 | 1.14 | 0.01 | 1.39 | 0.67 | −30.81 |
Max. | 0.9 | 19 | 1.06 | 1.19 | 0.06 | 8.69 | 0.74 | −29.28 | |
Mean | 0.53 | 1.05 | 1.17 | 0.05 | 1.74 | 0.72 | −30.085 | ||
P3w | Min. | 0.03 | 17 | 1.03 | 1.11 | 0 | 0.37 | 0.56 | −32.17 |
Max. | 1.46 | 19 | 1.06 | 1.65 | 0.21 | 11.43 | 0.8 | −29.15 | |
Mean | 0.79 | 1.05 | 1.16 | 0.04 | 2.01 | 0.63 | −29.58 | ||
P2w | Min. | 0.28 | 17 | 1.02 | 0.98 | 0.01 | 1.15 | 0.49 | −30.14 |
Max. | 1.12 | 19 | 1.08 | 1.25 | 0.07 | 11.64 | 0.83 | −23.93 | |
Mean | 0.445 | 1.07 | 1.16 | 0.03 | 2.29 | 0.65 | −29.3 | ||
P2x | Min. | 1 | 17 | 1.01 | 0.82 | 0.04 | 1.29 | 0.57 | −29.76 |
Max. | 3.85 | 19 | 1.1 | 1.21 | 0.1 | 1.81 | 0.67 | −28.32 | |
Mean | 2.425 | 1.05 | 1.09 | 0.06 | 1.57 | 0.67 | −28.705 | ||
C2t | Min. | 0.56 | 17 | 0.95 | 1.04 | 0.02 | 0.4 | 0.29 | −29.52 |
Max. | 2.7 | 27 | 1.33 | 2 | 0.19 | 2.36 | 0.67 | −27 | |
Mean | 1.2 | 1.05 | 1.215 | 0.105 | 0.86 | 0.5 | −28.405 |
Strata | C31αβ-22S/ (S + R) | Gama a | C29/C30 | Ts/Tm | C29-S b | C29-α c | ααα20R | |||
---|---|---|---|---|---|---|---|---|---|---|
C27 | C28 | C29 | ||||||||
T1b | Min. | 0.57 | 0.21 | 0.42 | 0.22 | 0.43 | 0.47 | 11.37 | 19.33 | 43.04 |
Max. | 0.65 | 0.83 | 0.82 | 0.79 | 0.5 | 0.57 | 34.27 | 33.16 | 55.47 | |
Mean | 0.59 | 0.41 | 0.63 | 0.54 | 0.46 | 0.53 | 27.5 | 21.15 | 50.57 | |
P3w | Min. | 0.53 | 0.21 | 0.54 | 0.28 | 0.42 | 0.47 | 16.74 | 24.04 | 43.11 |
Max. | 0.6 | 0.67 | 0.89 | 0.69 | 0.49 | 0.53 | 27.4 | 32.35 | 55.28 | |
Mean | 0.58 | 0.56 | 0.59 | 0.49 | 0.46 | 0.48 | 21.76 | 28.49 | 50.14 | |
P2w | Min. | 0.51 | 0.42 | 0.48 | 0.35 | 0.42 | 0.44 | 22.47 | 23.25 | 40.79 |
Max. | 0.64 | 1.3 | 0.78 | 0.7 | 0.52 | 0.53 | 31.34 | 32.94 | 49.78 | |
Mean | 0.57 | 0.51 | 0.68 | 0.53 | 0.46 | 0.51 | 27.44 | 26.52 | 46.87 | |
P2x | Min. | 0.56 | 0.43 | 0.31 | 0.42 | 0.47 | 17.95 | 22.7 | 41.07 | 0.58 |
Max. | 0.61 | 0.76 | 0.89 | 0.49 | 0.51 | 34.92 | 30.91 | 52.75 | 0.64 | |
Mean | 0.6 | 0.59 | 0.81 | 0.45 | 0.5 | 26.6 | 24.16 | 47.16 | 0.59 | |
C2t | Min. | 0.38 | 0.28 | 0.34 | 0.27 | 0.19 | 0.23 | 18.25 | 17.76 | 37.14 |
Max. | 0.67 | 2.47 | 0.72 | 1.18 | 0.49 | 0.51 | 39.27 | 27.67 | 63.54 | |
Mean | 0.585 | 0.635 | 0.57 | 0.725 | 0.43 | 0.45 | 28.92 | 23.63 | 46.57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Wang, T.; Guo, H.; Zhang, S.; Chen, B. Lipid Biomarker and Stable Isotopic Profiles through Late Carboniferous–Early Triassic of the Deepest Well MS-1 in the Junggar Basin, Northwest China. Minerals 2022, 12, 1299. https://doi.org/10.3390/min12101299
Zhang S, Wang T, Guo H, Zhang S, Chen B. Lipid Biomarker and Stable Isotopic Profiles through Late Carboniferous–Early Triassic of the Deepest Well MS-1 in the Junggar Basin, Northwest China. Minerals. 2022; 12(10):1299. https://doi.org/10.3390/min12101299
Chicago/Turabian StyleZhang, Shuncun, Tao Wang, Hui Guo, Shengyin Zhang, and Bo Chen. 2022. "Lipid Biomarker and Stable Isotopic Profiles through Late Carboniferous–Early Triassic of the Deepest Well MS-1 in the Junggar Basin, Northwest China" Minerals 12, no. 10: 1299. https://doi.org/10.3390/min12101299
APA StyleZhang, S., Wang, T., Guo, H., Zhang, S., & Chen, B. (2022). Lipid Biomarker and Stable Isotopic Profiles through Late Carboniferous–Early Triassic of the Deepest Well MS-1 in the Junggar Basin, Northwest China. Minerals, 12(10), 1299. https://doi.org/10.3390/min12101299