Recovery of Lead (II) Ions from Aqueous Solutions Using G-26 and MTS9570 Resins with Sulfonic/Phosphonic Functional Groups
Abstract
:1. Introduction
2. Experimental Details
2.1. Materials
2.2. Apparatus
2.3. Experimental Procedure
2.3.1. Activation of Resins
2.3.2. Adsorption Tests
3. Results and Discussion
3.1. Exploration of Pb Recovery/Removal Using Resins
3.2. Effect of Adsorption Time
3.3. Effect of Adsorbent Dosage
3.4. Effect of pH
3.5. Effect of Temperature
3.6. Effect of Initial Metal Ion Concentration
3.7. Adsorption Isotherms
3.8. Adsorption Kinetics
3.9. Thermodynamic Evaluation of the Process
3.10. Desorption Studies
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Y.H. 100 years of Pb deposition and transport in soils in Champaign, Illinois, USA. Water Air Soil Pollut. 2003, 146, 197–210. [Google Scholar] [CrossRef]
- Selvi, A.; Rajasekar, A.; Theerthagiri, J.; Ananthaselvam, A.; Sathishkumar, K.; Madhavan, J.; Rahman, P. Integrated remediation processes toward heavy metal removal/recovery from various environments—A review. Front. Environ. Sci. 2019, 7, 66. [Google Scholar] [CrossRef] [Green Version]
- Ahuja, S.; Loganathan, B.G. (Eds.) Contaminants in Our Water: Identification and Remediation Methods; American Chemical Society: Washington, DC, USA, 2020. [Google Scholar]
- Qasem, N.A.A.; Mohammed, R.H.; Lawal, D.U. Removal of heavy metal ions from wastewater: A comprehensive and critical review. NPJ Clean Water 2021, 4, 36. [Google Scholar] [CrossRef]
- Rahman, M.L.; Sarjadi, M.S.; Guerin, S.; Sarkar, S.M. Poly (amidoxime) Resins for Efficient and Eco-friendly Metal Extraction. ACS Appl. Polym. Mater. 2022, 4, 2216–2232. [Google Scholar] [CrossRef]
- Sunder, G.S.S.; Rohanifar, A.; Alipourasiabi, N.; Lawrence, J.G.; Kirchhoff, J.R. Synthesis and Characterization of Poly(pyrrole-1-carboxylic acid) for Preconcentration and Determination of Rare Earth Elements and Heavy Metals in Water Matrices. ACS Appl. Mater. Interfaces 2021, 13, 34782–34792. [Google Scholar] [CrossRef]
- Chu, F.X.; Liu, C.; Wu, H.; Liu, X. Advances in Chelating Resins for Adsorption of Heavy Metal Ions. Ind. Eng. Chem. Res. 2022, 61, 11309–11328. [Google Scholar] [CrossRef]
- Chen, T.; Li, H.; Wang, H.; Zou, X.; Liu, H.; Chen, D.; Zhou, Y. Removal of Pb(II) from Aqueous Solutions by Periclase/Calcite Nanocomposites. Water. Air Soil Pollut. 2019, 230, 299–314. [Google Scholar] [CrossRef]
- Lalmi, A.; Bouhidel, K.-E.; Sahraoui, B.; Anfif, C.E.H. Removal of lead from polluted waters using ion exchange resin with Ca(NO3)2 for elution. Hydrometallurgy 2018, 178, 287–293. [Google Scholar] [CrossRef]
- Wang, N.; Bora, M.; Song, H.; Tao, K.; Wu, J.; Hu, L.; Liao, J.; Lin, S.; Triantafyllou, M.S.; Li, X. Hyaluronic Acid Methacrylate Hydrogel-Modified Electrochemical Device for Adsorptive Removal of Lead(II). Biosensors 2022, 12, 714. [Google Scholar] [CrossRef]
- Ren, H.; Li, B.; Neckenig, M.; Wu, D.; Li, Y.; Ma, Y.; Li, X.; Zhang, N. Efficient lead ion removal from water by a novel chitosan gel-based sorbent modified with glutamic acid ionic liquid. Carbohydr. Polym. 2019, 207, 737–746. [Google Scholar] [CrossRef]
- World Health Organization. Guidline for Drinking-Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Sunder, G.S.S.; Adhikari, S.; Rohanifar, A.; Poudel, A.; Kirchhoff, J.R. Evolution of environmentally friendly strategies for metal extraction. Separations 2020, 7, 4. [Google Scholar] [CrossRef] [Green Version]
- Elfeghe, S.; Sheng, Q.; Zhang, Y. Separation of Lead and Copper Ions in Acidic Media Using an Ion-Exchange Resin with a Thiourea Functional Group. ACS Omega 2022, 7, 13042–13049. [Google Scholar] [CrossRef] [PubMed]
- Acharya, J.; Sahu, J.N.; Mohanty, J.R.; Meikap, B.C. Removal of lead (II) from wastewater by activated carbon developedfrom tamarind wood by zinc chloride activation. Chem. Eng. J. 2009, 149, 249–262. [Google Scholar] [CrossRef]
- Abou-Shady, A.; Peng, C.; Bi, J.; Xu, H.; Almeria, O.J. Recovery of Pb (II) and removal of NO3− from aqueoussolutions using integrated electrodialysis electrolysis, and adsorption process. Desalination 2012, 286, 304–315. [Google Scholar] [CrossRef]
- Gherasim, C.V.; Krivcik, J.; Mikulasek, P. Investigation of batch electrodialysis process for removal of lead ions from aqueous solutions. Chem. Eng. J. 2014, 256, 324–334. [Google Scholar] [CrossRef]
- Bessel, C.A.; Laubernds, K.; Rodriguez, N.M.; Baker, R.T.K. Graphite nanofibers as an electrode for fuel cell applications. J. Phys. Chem. B 2001, 105, 1115–1118. [Google Scholar] [CrossRef]
- Rohanifar, A.; Alipourasiabi, N.; Shyam Sunder, G.S.; Lawrence, J.G.; Kirchhoff, J.R. Reversible chelating polymer for determination of heavy metals by dispersive micro solid-phase extraction with ICP-MS. Mikrochim. Acta 2020, 187, 339. [Google Scholar] [CrossRef] [PubMed]
- Maranón, E.; Fernández, Y.; Castrillón, L. Ion exchangetreatment of rinse water generated in the galvanizing process. Water Environ. Res. 2005, 77, 3054–3058. [Google Scholar] [CrossRef]
- Pehlivan, E.; Altun, T. The study of various parametersaffecting the ion exchange of Cu2+, Zn2+, Ni2+, Cd2+, and Pb2+ from aqueous solution on Dowex 50W synthetic resin. J. Hazard. Mater. B 2006, 134, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Cavaco, S.A.; Fernandes, S.; Quina, M.M.; Ferreira, L.M. Removal of chromium from electroplating industry effluentsby ion exchange resins. J. Hazard. Mater. 2007, 144, 634–638. [Google Scholar] [CrossRef]
- Silva, R.M.P.; Manso, J.P.H.; Rodrigues, J.R.C.; Lagoa, R.J.L. Acomparative study of alginate beads and an ion exchangeresin for the removal of heavy metals from a metal platingeffluent. J. Environ. Sci. Health A 2008, 43, 1311–1317. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Zeng, Z.; Xue, W.; Guo, Q. Lead removal from aqueous solutions by 732 cation-exchange resin. Can. J. Chem. Eng. 2016, 94, 142–150. [Google Scholar] [CrossRef]
- Guo, H.; Ren, Y.; Sun, X.; Xu, Y. Removal of Pb2+ from aqueous solutions by a high-efficiency resin. Appl. Surf. Sci. 2013, 283, 660–667. [Google Scholar] [CrossRef]
- Tabatabaei, S.H.; Asemanrafat, M.; Nousahdi, M. Removal of Lead from aqueous phase using Amberlite and natural Zeolite. E3S Web Conf. 2013, 1, 13010. [Google Scholar] [CrossRef] [Green Version]
- Vergili, I. Sorption of Pb (II) from battery industry wastewater using a weak acid cation exchange resin. Process Saf. Environ. Prot. 2017, 107, 498–507. [Google Scholar] [CrossRef]
- Xiong, C.; Yao, C. Adsorption behavior of gel-type weak acid resin (110-H) for Pb2+. Trans. Nonferr. Met. Soc. China 2008, 18, 1290–1294. [Google Scholar] [CrossRef]
- Thu, P.T.T.; Thanh, T.T.; Phi, H.N.; Kim, S.J.; Vo, V. Adsorption of lead from water by thiol-functionalized SBA-15 silicas. J. Mater. Sci. 2010, 45, 2952–2957. [Google Scholar] [CrossRef]
- Merganpour, A.M.; Nekuonam, G.; Tomaj, O.A.; Kor, Y.; Safari, H. Efficiency of lead removal from drinking water using cationic resin Purolite. Environ. Health Eng. Manag. J. 2015, 2, 41–45. [Google Scholar]
- Ren, X.M.; Shao, D.D.; Yang, S.T.; Hu, J.; Sheng, G.D.; Tan, X.L.; Wang, X.K. Comparative study of Pb(II) sorption on XC-72 carbon and multi-walled carbon nanotubes from aqueous solutions. Chem. Eng. J. 2011, 170, 170–177. [Google Scholar] [CrossRef]
- Elfeghe, S.; Anwar, S.; Zhang, Y. Adsorption and removal studies of cadmium ion onto sulfonic/phosphonic acid functionalization resins. Can. J. Chem. Eng. 2022, 100, 3006–3014. [Google Scholar] [CrossRef]
- Zhang, Y.; Elfeghe, S.; Tang, Z.D. Mechanism study of Cd(II) ion adsorption onto resins with sulfonic/phosphonic groups using electronic structure methods. J. Mol. Liq. 2022, 358, 119199. [Google Scholar] [CrossRef]
- Al-Anber, M.; Al-Anber, Z.A. Utilization of natural zeolite as ion-exchange and sorbent material in the removal of iron. Desalination 2007, 225, 70–81. [Google Scholar] [CrossRef]
- Langmuir, I. The Constitution and Fundamental Properties of Solids and Liquids. Part I Solids J. Am. Chem. Soc. 1916, 38, 2221–2295. [Google Scholar] [CrossRef] [Green Version]
- Freundlich, H.M.F. Uber die Adsorption in Losungen. Z. Phys. Chem. 1906, 57, 385–470. [Google Scholar] [CrossRef]
- Temkin, M.; Pyzhev, V. Kinetics of Ammonia Synthesis on Promoted Iron Catalysts. Acta Physicochim. URSS 1940, 12, 327–356. [Google Scholar]
- Da’na, E.; Sayari, A. Adsorption of heavy metals on amine-functionalized SBA-15 prepared by co-condensation: Applications to real water samples. Desalination 2012, 285, 62–67. [Google Scholar] [CrossRef]
- Luo, X.; Zeng, J.; Liu, S.; Zhang, L. An effective and recyclable adsorbent for the removal of heavy metal ions from aqueous system: Magnetic chitosan/cellulose microspheres. Bioresour. Technol. 2015, 194, 403–406. [Google Scholar] [CrossRef]
- Hoque, M.I.U.; Chowdhury, D.A.; Holze, R.; Chowdhury, A.N.; Azam, M.S. Modification of Amberlite XAD-4 resin with 1,8-diaminonaphthalene for solid phase extraction of copper, cadmium and lead, and its application to determination of these metals in dairy cow’s milk. J. Environ. Chem. Eng. 2015, 3, 831–842. [Google Scholar] [CrossRef]
- Moradi, O.; Aghaie, M.; Zare, K.; Monajjemi, M.; Aghaie, H. The study of adsorption characteristics Cu2+ and Pb2+ ions onto PHEMA and P(MMA-HEMA) surfaces from aqueous single solution. J. Hazard. Mater. 2009, 170, 673–679. [Google Scholar] [CrossRef]
- Chen, A.H.; Liu, S.C.; Chen, C.Y. Comparative adsorption of Cu(II), Zn(II), and Pb(II) ions in aqueous solution on the crosslinked chitosan with epichlorohydrin. J. Hazard. Mater. 2008, 154, 184–191. [Google Scholar] [CrossRef]
- Abo-Farha, S.A.; Abdel-Aal, A.Y.; Ashour, I.A.; Garamon, S.E. Removal of some heavy metal cations by synthetic resin purolite C100. J. Hazard. Mater. 2009, 169, 190–194. [Google Scholar] [CrossRef]
- Kumar, M.; Rathore, D.P.S.; Singh, A.K. Metal ion enrichment with Amberlite XAD-2 functionalized with Tiron: Analytical applications. Analyst 2000, 125, 1221–1226. [Google Scholar] [CrossRef]
- Jachua, J.; Hubicki, Z. Sorption of heavy metal complexes with MGDA on the macroporous anion exchanger Purolite A830. CHEMIK 2013, 67, 693–700. [Google Scholar]
- Futalan, C.M.; Kan, C.-C.; Dalida, M.L.; Hsien, K.-J.; Pascua, C.; Wan, M.-W. Comparative and competitive adsorption of copper, lead, and nickel using chitosan immobilized on bentonite. Carbohydr. Polym. 2011, 83, 528–536. [Google Scholar] [CrossRef]
- Sharifipour, F.; Hojati, S.; Landi, A.; Cano, A.F. Kinetics and Thermodynamics of Lead Adsorption from Aqueous Solutions Onto Iranian Sepiolite and Zeolite. Int. J. Environ. Res. 2015, 9, 1001–1010. [Google Scholar]
- Lagergren, S. Zur theorie der sogenannten adsorption geloster stoffe. K. Sven. Vetensk. Handl. 1898, 24, 1–39. [Google Scholar]
- Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Ahmadi, M.; Teymouri, P.; Setodeh, A. Adsorption of Pb (II) from aqueous solution onto lewatit for 36 nano resin: Equilibrium and kinetic studies. Environ. Eng. Manag. J. 2011, 10, 1579–1587. [Google Scholar] [CrossRef]
- An, F.Q.; Wu, R.Y.; Li, M.; Hu, T.P.; Gao, J.F.; Yuan, Z.G. Adsorption of heavy metal ions by iminodiacetic acid functionalized D301 resin: Kinetics, isotherms and thermodynamic. React. Funct. Polym. 2017, 118, 42–50. [Google Scholar] [CrossRef]
- Burham, N. Separation and preconcentration system for lead and cadmium determination in natural samples using 2-aminoacetylthiophenol modified polyurethane foam. Desalination 2009, 249, 1199–1205. [Google Scholar] [CrossRef]
- Volesky, B.; Weber, J.; Park, J.M. Continuous-flow metal biosorption in a regenerable Sargassum column. Water Res. 2003, 37, 297–306. [Google Scholar] [CrossRef]
- Teixeira, V.G.; Coutinho, F.M.B.; Petrocínioa, F.R.M.; Gomesa, A.S. Determination of accessible chloromethyl groups in chloromethylated styrene-divinylbenzene copolymers. J. Braz. Chem. Soc. 2005, 16, 951–956. [Google Scholar] [CrossRef]
Characteristics | G-26 | MTS9570 |
---|---|---|
Matrix | Styrene-DVB | Polystyrene-DVB |
Ionic form as shipped | H+ form | H+ form |
Functional group | Sulfonic | Phosphonic and sulfonic |
Appearance | Uniform particle size | Spherical beads |
Structure | gel | Macroporous |
Capacity | 2.0 eq/L | 18 g/L eq/L |
Bed size | 0.65 mm ± 0.05 | 0.315–0.850 mm |
Uniformity coefficient | 1.1 | 1.4 |
Water retention | 45%%–52% | 55%–70% |
Specific gravity | 1.22 g/mL | 1.12 g/mL |
G-26 | MTS9570 | |
---|---|---|
Langmuir isotherm (mg/g) b (L/mg) | 45.45 0.082 0.9973 | 38.46 0.221 0.9906 |
Freundlich isotherm (mg/g) n | 19.16 5.740 0.9896 | 20.52 7.450 0.9960 |
Temkin isotherm B | 294.9 8.40 0.9681 | 669.6 3.70 0.9557 |
Adsorbent | Sorption Capacity for Cu (II) (mg/g) | Conditions | References |
---|---|---|---|
SBA-15 | 41.50 | pH = 2.5–4, 30 °C | [29] |
MWCNT | 17.54 | pH = 6.5, 20 °C | [31] |
APTS-SBA-15-AB | 43.50 | pH = 6.0, 60 °C | [38] |
MCCM | 45.50 | pH = 6.0, 30 °C | [39] |
1,8-DAN/XAD-4 | 29.01 | pH = 6.0–7.0, 20 °C | [40] |
Copolymer 2- hydroxyethyl methacrylate | 31.50 | pH = 6.0–7.0, 20 °C | [41] |
Crosslinked chitosan with epichlorohydrin | 34.13 | pH = 7.0, NA | [42] |
Purolite C100 | 9.64 | pH = NA, 25 °C | [43] |
Amberlite XAD-2 functionalized with Tiron | 12.60 | pH = 4.0–5.5, 25 °C | [44] |
Purolite A830 | 30.61 | pH = 7.0–9.0, 50 °C | [45] |
Bentonite | 28.00 | pH = 6.0–9.0, 25 °C | [46] |
Zeolite | 24.40 | pH = 9.0, 20 °C | [47] |
G-26 | 45.45 | pH = 3.5, 20 °C | This work |
MTS9570 | 38.46 | pH = 3.5, 20 °C | This work |
G-26 | MTS9570 | |
---|---|---|
Equations | ||
Pseudo-first-order | ||
qe, exp (mg/g) | 41.80 | 42.00 |
qe, cal (mg/g) | 3.49 | 2.513 |
k1 (m−1) | −0.00017 | −0.00020 |
R2 | 0.7243 | 0.9090 |
Pseudo-second-order | ||
qe, cal (mg/g) | 42.50 | 42.10 |
k2 (g/mg min) | 0.00896 | 0.0362 |
R2 | 0.9994 | 0.9999 |
Resin | ΔG (kJ/mol) | ||||||
---|---|---|---|---|---|---|---|
293 K | 303 K | 313 K | 353 K | ΔH (kJ/mol) | ΔS (kJ/mol) | R2 | |
G−26 | −38.34 | −40.96 | −43.58 | −46.20 | 42.30 | 131.30 | 0.9642 |
MTS9570 | −27.93 | −29.73 | −31.60 | −33.50 | 32.07 | 95.44 | 0.9266 |
Resin | Pb(II) Removal % | Pb(II) Recovery % | ||||
---|---|---|---|---|---|---|
Adsorption Cycle | Elution Cycle | |||||
First Adsorption | Second Adsorption | Third Adsorption | First Elution | Second Elution | Third Elution | |
G-26 | 100 | 100 | 100 | 100 | 100 | 100 |
MTS9570 | 100 | 97 | 96 | 90 | 86 | 76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elfeghe, S.; Sheng, Q.; Mamudu, A.; James, L.A.; Zhang, Y. Recovery of Lead (II) Ions from Aqueous Solutions Using G-26 and MTS9570 Resins with Sulfonic/Phosphonic Functional Groups. Minerals 2022, 12, 1312. https://doi.org/10.3390/min12101312
Elfeghe S, Sheng Q, Mamudu A, James LA, Zhang Y. Recovery of Lead (II) Ions from Aqueous Solutions Using G-26 and MTS9570 Resins with Sulfonic/Phosphonic Functional Groups. Minerals. 2022; 12(10):1312. https://doi.org/10.3390/min12101312
Chicago/Turabian StyleElfeghe, Salem, Qiuyue Sheng, Abbas Mamudu, Lesley Anne James, and Yahui Zhang. 2022. "Recovery of Lead (II) Ions from Aqueous Solutions Using G-26 and MTS9570 Resins with Sulfonic/Phosphonic Functional Groups" Minerals 12, no. 10: 1312. https://doi.org/10.3390/min12101312
APA StyleElfeghe, S., Sheng, Q., Mamudu, A., James, L. A., & Zhang, Y. (2022). Recovery of Lead (II) Ions from Aqueous Solutions Using G-26 and MTS9570 Resins with Sulfonic/Phosphonic Functional Groups. Minerals, 12(10), 1312. https://doi.org/10.3390/min12101312