Diagenesis and Reservoir Evolution Model of the Ediacaran Dengying Formation in the Sichuan Basin: Evidence from Laser Ablation U-Pb Dating and In Situ Isotope Analysis
Abstract
:1. Introduction
2. Geological Setting
3. Material and Methods
3.1. Field Survey
3.2. Sample Selection
3.3. Experimental Analysis
- (1)
- CL examination was initially performed to distinguish different phases of diagenetic products. The instruments used were a polarizing microscope (DM2500P, Leica, Germany) and CL spectroscope (CL8200MK5, CITL, UK).
- (2)
- Elemental mapping of trace elements and REEs was performed with a Thermo Fisher triple quadrupole inductively coupled plasma mass spectrometer (iCAP TQ, Thermo Fisher Scientific, Germany), combined with an Applied Spectroscopy laser denudation system (RESOlution LR S155, Applied Spectra Inc., USA). A square beam spot with a side length of 50 μm was used for denudation. The laser energy was 3 J/cm2, the denudation frequency was 20 Hz, and the beam movement rate was 0.05 mm/s. First, 100 μm thin sections were polished with 2000, 3000, and 4000 mesh sandpaper to remove other mineral residues embedded on the sample surface. Second, the samples were repeatedly sonicated and cleaned with cleaning solution and Mill-Q water. Clean samples were then placed in a fume hood overnight or on a 50 °C hot plate to dry. Finally, the test area was selected for laser ablation. International standard samples NIST614, NIST612 and NIST610 were used for the test and calibration standard samples. Iolite software was used for data processing. The denudation interval of background, standard sample and sample was determined according to the laser log file. Semi-quantitative method was used for data processing. After checking the data results, the Sellspace Image method is used to scan the map. The detection limit is 1 ppb and the error on the analysis is 10%.
- (3)
- Laser ablation U-Pb dating. ICap RQ inductively coupled plasma mass spectrometer (Thermo Fisher Scientific, Germany) and RESOlution laser denudation system (Applied Spectra Inc., Fremont, CA, USA) were used for U-Pb isotopic age determination of different samples by LASF-ICP-MS. Ahx-1 (age 209.8 ± 1.3 mA) from the Aksu area of the Tarim Basin and WC-1 (age 254 ± 6.4 Ma) from Calcite vein of Walnut Valley, USA were selected as standard samples for calibration. The beam spot diameter was 100 μm and the denudation frequency was 10 Hz. After loading into the sample target, the sample was cleaned to eliminate any common Pb contamination that might be present. The sampling method was single point laser denudation, and 70 points were sampled for each fabric. For data processing, Iolite 3.6 was used to process the original data online or offline, and the corresponding isotope ratios obtained were fitted to isochron age mapping on Isoplot 3.0 software.
- (4)
- Laser ablation strontium isotope. The instruments used were a RESOlution LR 193 nm laser denudation system (Applied Spectra Inc., USA) and a Neptune Plus multi-receiver mass spectrometer (Thermo Fisher Scientific, Germany). The laser adopts 3 J/cm2 energy density and a 285 µm beam spot to improve the sensitivity. The sample is denudated by line scanning with a denudation rate of 10 µm/s, helium flow rate of 350 ml/min and nitrogen flow rate of 1 ml/min. The carrier gas flow rate of the multi-receiver mass spectrometer was 1 L/min. To eliminate the interference of divalent rare earth element ions on strontium isotopes, the Faraday cup received signals at mass number positions of 83.5 and 85.5. Data acquisition adopts the process of first receiving the background signal for 30 s and then receiving the sample signal for 300 s. NIST614, NanoSr (0.70756 ± 0.00003 (2S) [52]) and XK1-9 (0.70890 ± 0.00002 (2S), dolomite, and internal laboratory standard samples were tested every five samples during the test process to monitor data quality. Iolite 3.65 was used for data processing [53]. The strontium isotopic composition of the sample was obtained by subtracting the background signal value and interference signal and correcting the instrument signal drift.
- (5)
- Laser ablation δ13C and δ18O. Laser in situ carbon and oxygen isotope analysis was performed on a LA-IRMS instrument (Thermo Fisher Scientific, Germany). The laser equipment (Sichuan Xiwu Laser Technology co., LTD., Chengdu, China) was composed of Nd:YAG (Yttrium aluminum garnet) near-infrared laser, cooling system, microscopic imaging system, gas transmission, and the separation system. The Nd:YAG laser output a wavelength of 1064 nm near-infrared coherent laser beam. The beam spot size was less than 20 µm. A krypton lamp was used as the pump energy for the Nd:YAG laser, with an operating current of 7–20 A, and output energy of 7–40 W. The sample penetration depth for this method was 30–50 µm. In the process of laser denudation, helium was used as carrier gas, and CO2 gas was produced by the interaction of laser and carbonate. After impurity gas separation and purification, pure CO2 gas was obtained, which was tested and analyzed by isotope mass spectrometer. The laser beam spot and current of this analysis are 20 µm and 14–20 A, respectively, and the laser adopts continuous (CW) output mode. The standard sample used in the analysis data correction is the national standard GBW04405 and the laboratory standard sample 811. Data processing is completed by Thermo Fisher software ISODAT3.0.
4. Results
4.1. Petrological Characteristics
4.2. Results for Geochronology and Geochemistry
4.2.1. Laser Ablation U-Pb Dating
4.2.2. Laser Ablation Carbon and Oxygen Isotopes
4.2.3. Laser Ablation Strontium Isotope Ratios
4.2.4. Elemental Mapping of Trace Elements and Rare Earth Elements
5. Discussion
5.1. Evaluation of Diagenetic Modification
5.2. Determining the Diagenetic Processes and Environments
5.2.1. Matrix Dolomitization
5.2.2. The Origin of Botryoidal Dolomite
5.2.3. Filling of Crystalline Dolomite Cements
5.3. Comparison of the Diagenesis and Reservoir-Forming Process between Eastern Sichuan and Central Sichuan
5.4. Porosity Evolution and Guidance on Exploration
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bosence, D.; Gibbons, K.; Le Heron, D.P.; Morgan, W.A.; Pritchard, T.; Vining, B.A. Microbial carbonates in space and time: Introduction. Geol. Soc. 2015, 418, 1–15. [Google Scholar] [CrossRef]
- Mancini, E.A.; Benson, D.J.; Hart, B.S.; Balch, R.S. Reef reservoirs associated with paleotopographic basement structures. AAPG Bull. 2000, 84, 1699–1717. [Google Scholar]
- Mancini, E.A.; Llinas, J.C.; Parcell, W.C.; Aurell, M.; Badenas, B.; Leinfelder, R.R.; Benson, D.J. Upper Jurassic thrombolite reservoir play, northeastern Gulf of Mexico. AAPG Bull. 2004, 88, 1573–1602. [Google Scholar] [CrossRef]
- Wright, P.V.; Racey, A. Pre-salt microbial carbonate reservoirs of the Santos Basin, offshore Brazil. In Proceedings of the AAPG Annual Convention and Exhibition, Denver, CO, USA, 7–10 June 2009; pp. 7–10. [Google Scholar]
- Grotzinger, J.P.; Amthor, J.E. Facies and reservoir architecture of isolated microbial carbonate platforms, terminal Proterozoic-early Cambrian Ara Group, South Oman Salt Basin. In Proceedings of the AAPG Annual Convention and Exhibition, Houston, TX, USA, 1–13 March 2002; pp. 10–13. [Google Scholar]
- Schröder, S.; Grotzinger, J.P.; Amthor, J.E.; Matter, A. Carbonate deposition and hydrocarbon reservoir development at the Precambrian–Cambrian boundary: The Ara Group in South Oman. Sediment. Geol. 2005, 180, 1–28. [Google Scholar] [CrossRef]
- Kenter, J.A.; Harris, P.M.M.; Porta, G.D.; Fischer, D.; Weber, A.J. Microbial and cement boundstone-dominated flanks (and reservoirs) of an isolated carbonate platform. In Proceedings of the AAPG Annual Convention, Dallas, TX, USA, 18–21 April 2004. [Google Scholar]
- Wei, G.Q.; Yang, W.; Liu, M.C.; Xie, W.R.; Jin, H.; Wu, S.J.; Su, N.; Shen, J.H.; Hao, C.G. Distribution rules, main controlling factors and exploration directions of giant gas fields in the Sichuan Basin. Nat. Gas Ind. 2019, 39, 1–12. [Google Scholar] [CrossRef]
- Li, J.Z.; Gu, Z.D.; Lu, W.H.; Jiang, H.; Zhai, X.F.; Liu, G.X.; Zhao, R.R. Main factors controlling the formation of giant marine carbonate gas fields in the Sichuan Basin and exploration ideas. Nat. Gas Ind. 2021, 41, 13–26. [Google Scholar]
- Chen, Y.N.; Shen, A.J.; Pan, L.Y.; Zhang, J.; Wang, X.F. Features, origin and distribution of microbial dolomite reservoirs: A case study of 4th Member of Sinian Dengying Formation in Sichuan Basin, SWChina. Pet. Explor. Dev. 2017, 44, 704–715. [Google Scholar] [CrossRef]
- Feng, M.Y.; Wu, P.C.; Qiang, Z.T.; Liu, X.H.; Duan, Y.; Xia, M.L. Hydrothermal dolomite reservoir in the Precambrian Dengying Formation of central Sichuan Basin, southwestern China. Mar. Pet. Geol. 2017, 82, 206–219. [Google Scholar] [CrossRef]
- Hu, A.P.; Sheng, A.J.; Yang, H.X.; Zhang, J.; Wang, X.; Yang, L.; Meng, S.X. Dolomite genesis and reservoir-cap rock assemblage in carbonate-evaporite paragenesis system. Pet. Explor. Dev. 2019, 46, 916–928. [Google Scholar] [CrossRef]
- Chen, Z.Q. Gas Exploration in Sinian Dengying Formation, Sichuan Basin. China Pet. Explor. 2010, 15, 1–14. [Google Scholar]
- Shi, Z.J.; Liang, P.; Wang, Y.; Hu, X.Q.; Tian, Y.M.; Wang, C.C. Geochemical characteristics and genesis of grapestone in Sinian Dengying Formation in south-eastern Sichuan Basin. Acta Petrol. Sin. 2011, 27, 2263–2271. [Google Scholar]
- Fang, S.X.; Hou, F.H.; Dong, Z.X. Non-stromatoltite ecologic system cyanobacteria dolostone in Dengying Formation of Upper-Sinian. Acta Petrol. Sin. 2003, 21, 96–105. [Google Scholar]
- Wang, W.Z.; Yang, Y.M.; Wen, L.; Luo, B.; Luo, W.J.; Xia, M.L.; Sun, S.N. A study of sedimentary characteristics of microbial carbonate: A case study of the Sinian Dengying Formation in Gaomo area, Sichuan Basin. Geol. China 2016, 43, 306–318. [Google Scholar]
- Song, J.M.; Liu, S.G.; Sun, W.; Wu, W.H.; Wang, G.Z.; Peng, H.L.; Tian, Y.H.; Zhong, Y. Control of Xingkai taphrogenesis on Dengying Formation high quality reservoirs in Upper Sinian of Sichuan Basin, China. J. Chengdu Univ. Technol. 2013, 40, 658–670. [Google Scholar]
- Feng, M.Y.; Qiang, Z.T.; Shen, P.; Zhang, J.; Tao, Y.Z.; Xia, M.L. Evidence for hydrothermal dolomite of Sinian Dengying Formation in Gaoshiti-Moxi area, Sichuan Basin. Acta Petrol. Sin. 2016, 37, 587–598. [Google Scholar]
- Su, Z.T.; She, W.; Liao, H.H.; Hu, S.L.; Liu, G.Q.; Ma, H. Research progress and development trend of the genesis of dolomite reservoirs. Nat. Gas Geosci. 2022, 33, 1175–1188. [Google Scholar] [CrossRef]
- Ulrich, T.; Kamber, B.S.; Jugo, P.J.; Tinkham, D.K. Imaging element-distribution patterns in minerals by laser ablation—Inductively coupled plasma—Mass spectro-metry (LA-ICP-MS). Can. Mineral. 2009, 47, 1001–1012. [Google Scholar] [CrossRef]
- Webb, G.E.; Kamber, B.S. Trace element geochemistry as a tool for interpreting microbialites. In Earliest Life on Earth: Habitats, Environments and Methods of Detection; Springer: Berlin/Heidelberg, Germany, 2011; pp. 127–170. [Google Scholar]
- Hu, A.P.; Li, X.Z.; Jiang, Y.M.; Hu, Y.Y.; Zhang, J. Development and application of microarea geochemistry analysis technology for carbonate reservoirs. Nat. Gas Geosci. 2014, 25, 116–123. [Google Scholar]
- Wang, F.Y.; Ge, C.; Ning, S.Y.; Nie, L.Q.; Zhong, G.X.; Noel, C.W. A new approach to LA-ICP-MS mapping and application in geology. Acta Petrol. Sin. 2017, 33, 3422–3436. [Google Scholar]
- Shen, A.J.; Hu, A.P.; Chen, T.; Liang, F.; Pan, W.Q.; Feng, Y.X.; Zhao, J.X. Laser ablation in situ U-Pb dating and its application to diagenesis-porosity evolution of carbonate reservoirs. Pet. Explor. Dev. 2019, 46, 1062–1074. [Google Scholar] [CrossRef]
- Yang, H.X.; Hu, A.P.; Zheng, J.F.; Liang, F.; Luo, X.Y.; Feng, Y.X.; Sheng, A.J. Application of mapping and dating techniques in the study of ancient carbonate reservoirs: A case study of Sinian Qigebrak Formation in northwestern Tarim Basin, NW China. Pet. Explor. Dev. 2020, 47, 935–946. [Google Scholar] [CrossRef]
- Hu, A.P.; Shen, A.J.; Wang, Y.S.; Pan, L.Y.; Liang, F.; Luo, X.Y.; She, M.; Chen, W.; Qing, Y.J.; Wang, H. The progress and application of experimental analysis technology for marine carbonate reservoir. Mar. Orig. Pet. Geol. 2020, 25, 1–11. [Google Scholar]
- Pan, L.Y.; Shen, A.J.; Zhao, J.X.; Hu, A.P.; Hao, Y.; Liang, F.; Feng, Y.X.; Wang, X.F.; Jiang, L. LA-ICP-MS U-Pb geochronology and clumped isotope constraints on the formation and evolution of an ancient dolomite reservoir: The Middle Permian of northwest Sichuan Basin (SW China). Sediment. Geol. 2020, 407, 105728. [Google Scholar] [CrossRef]
- Pan, L.Y.; Hu, A.P.; Liang, F.; Jiang, L.; Hao, Y.; Feng, Y.X.; Shen, A.J.; Zhao, J.X. Diagenetic conditions and geodynamic setting of the middle Permian hydrothermal dolomites from southwest Sichuan Basin, SW China: Insights from in situ U–Pb carbonate geochronology and isotope geochemistry. Mar. Pet. Geol. 2021, 129, 105080. [Google Scholar] [CrossRef]
- Qiao, Z.F.; Zhang, S.N.; Sheng, A.J.; Hu, A.P.; Liang, F.; Luo, X.Y.; She, M.; Lv, X.J. Laser ablated U-Pb dating-based determination of burial dolomitization process: A case study of Lower Ordovician Penglaiba Formation of Yonganba Outcrop in Tarim Basin. Acta Petrol. Sin. 2020, 36, 3493–3509. [Google Scholar]
- Qiao, Z.F.; Shao, G.M.; Luo, X.Y.; Cao, P.; Sun, X.W.; Sheng, A.J. Genetic classification and large-scale reservoir development law of burial dolomite: Cognition based on LA-ICP-MS trace elemental mapping and U-Pb dating. Nat. Gas Ind. 2021, 41, 46–56. [Google Scholar]
- Liu, H.; Feng, Z.H.; Shao, H.M.; Zhang, J.L.; Zhang, Z.W.; Zhang, Y.J.; Lu, X.; Zhang, G.Y. Application of U-Pb dating technique in the study of hydrothermal activities of dolomite reservoir: A case study on 3rd Member of Yingshan Formation in Gucheng area, Tarim Basin, NW China. Acta Petrol. Sin. 2022, 38, 765–776. [Google Scholar]
- Zhou, J.G.; Yu, Z.; Wu, D.X.; Ren, J.F.; Zhang, D.F.; Wang, S.Y.; Yin, C.; Liu, Y.X. Restoration of formation processes of dolomite reservoirs based on laser U-Pb dating: A case study of Ordovician Majiagou Formation, Ordos Basin, NW China. Pet. Explor. Dev. 2022, 49, 1–11. [Google Scholar] [CrossRef]
- Li, Q.; Parrish, R.R.; Horstwood, M.S.A.; Mcarther, J.M. U-Pb dating of cements in Mesozoic ammonites. Chem. Geol. 2014, 376, 76–83. [Google Scholar] [CrossRef] [Green Version]
- Godeau, N.; Deschamps, P.; Guihou, A.; Leonide, P.; Tendil, A.; Gerdes, A.; Girard, J.P. U-Pb dating of calcite cement and diagenetic history in microporous carbonate reservoirs: Case of the Urgonian Limestone, France. Geology 2018, 46, 247–250. [Google Scholar] [CrossRef] [Green Version]
- MacDonald, J.M.; Faithfull, J.W.; Roberts, N.M.W.; Davies, A.J.; Holdsworth, C.M.; Newton, M.; John, C.M. Clumped-isotope palaeothermometry and LA-ICP-MS U–Pb dating of lava-pile hydrothermal calcite veins. Contrib. Mineral. Petrol. 2019, 174, 63. [Google Scholar] [CrossRef] [Green Version]
- Hagen-Peter, G.; Wang, Y.; Hints, O.; Prave, A.R.; Lepland, A. Late diagenetic evolution of Ordovician limestones in the Baltoscandian basin revealed through trace-element mapping and in situ U–Pb dating of calcite. Chem. Geol. 2021, 585, 120563. [Google Scholar] [CrossRef]
- He, D.F.; Li, D.S.; Zhang, G.W.; Zhao, L.Z.; Fan, C.; Lu, R.Q.; Wen, Z. Formation and evolution of multi-cycle superposed Sichuan Basin, China. Chin. J. Geol. 2011, 46, 589–606. [Google Scholar]
- Wang, Z.C.; Jiang, H.; Chen, Z.Y.; Liu, J.J.; Ma, K.; Li, W.Z.; Xie, W.R.; Jiang, Q.C.; Zhai, X.F.; Shi, S.Y.; et al. Tectonic paleogeography of Late Sinian and its significances for petroleum exploration in the middle-upper Yangtze region, South China. Pet. Explor. Dev. 2020, 47, 884–897. [Google Scholar] [CrossRef]
- Yang, R. Pore Structure and Tracer-Containing Fluid Migration in Connected Pores of Wufeng and Longmaxi Shales from Western Hubei and Eastern Chongqing Regions. Ph.D. Thesis, China University of Geosciences, Wuhan, China, 2018. [Google Scholar]
- Yang, Z.Y.; Sun, Z.M.; Yang, T.S.; Pei, J.L. A long connection (750–380 Ma) between South China and Australia: Paleomagnetic constraints. Earth Planet. Sci. Lett. 2004, 220, 423–434. [Google Scholar] [CrossRef]
- Li, Y.Q.; He, D.F.; Wen, Z. Palaeogeography and tectonic-depositional environment evolution of the Late Sinian in Sichuan Basin and adjacent areas. J. Palaeogeogr. 2013, 15, 231–245. [Google Scholar]
- Yang, Y.; Huang, X.P.; Zhang, J.; Yang, G.; Song, J.R.; Song, L.K.; Hong, H.T.; Tan, X.C.; Wen, L. Features and geologic significances of the top Sinian karst landform before the Cambrian deposition in the Sichuan Basin. Nat. Gas Ind. 2014, 34, 38–43. [Google Scholar]
- Liu, H.; Luo, S.C.; Tan, X.C.; Li, L.; Lian, C.B.; Zeng, W.; Luo, B.; Shan, S.J. Restoration of paleokarst geomorphology of Sinian Dengying Formation in Sichuan Basin and its significance, SW China. Pet. Explor. Dev. 2015, 42, 311–322. [Google Scholar] [CrossRef]
- Xu, Y.G. Reasons for Formation of Typical Palaeo-Reservoirs of Paleozoic in Southern China and Revelation to Exploration. Ph.D. Thesis, Chengdu University of Technology, Chengdu, China, 2010. [Google Scholar]
- Li, L.; Wang, T.S.; Wang, Z.C.; Jiang, H.; Lu, W.H.; Huang, T.P. The Characteristics and Implications of Late Gas Accumulation in the Sinian Dengying Formation of Sichuan Basin. Nat. Gas Ind. 2014, 25, 1378–1386. [Google Scholar]
- Riding, R. Microbial carbonates: The geological record of calcified bacterial–algal mats and biofilms. Sedimentology 2000, 47, 179–214. [Google Scholar] [CrossRef]
- Dunham, R.J. Classification of Carbonates Rocks According to Deposicional texture. Mem. Am. Assoc. Petrol. Geol. 1962, 1, 108–121. [Google Scholar]
- Gregg, J.M.; Sibley, D.F. Epigenetic dolomitization and the origin of xenotopic dolomite texture. J. Sediment. Res. Sect. A 1984, 54, 908–931. [Google Scholar]
- Tucker, M.E.; Wright, V.P. Carbonate Sedimentology; Wiley: Oxford, UK, 1990; 482p. [Google Scholar]
- Choquette, P.W.; Pray, L.C. Geologic nomenclature and classification of porosity in sedimentary carbonates. AAPG Bull. 1970, 54, 207–250. [Google Scholar]
- Lønøy, A. Making sense of carbonate pore systems. AAPG Bull. 2006, 90, 1381–1405. [Google Scholar] [CrossRef]
- Weber, M.; Lugli, F.; Hattendorf, B.; Scholz, D.; Mertz-Kraus, R.; Guinoiseau, D.; Jochum, K.P. NanoSr-A New Carbonate Microanalytical Reference Material for In Situ Strontium Isotope Analysis. Geostand. Geoanal. Res. 2020, 44, 69–83. [Google Scholar] [CrossRef]
- Paton, C.; Woodhead, J.D.; Hellstrom, J.C.; Hergt, J.M.; Greig, A.; Maas, R. Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction, Geochem. Geophys. Geosyst. 2010, 11, Q0AA06. [Google Scholar] [CrossRef]
- Wang, J.; He, Z.; Zhu, D.; Liu, Q.; Ding, Q.; Li, S.; Zhang, D. Petrological and geochemical characteristics of the botryoidal dolomite of Dengying Formation in the Yangtze Craton, South China: Constraints on terminal Ediacaran “dolomite seas”. Sediment. Geol. 2020, 406, 105722. [Google Scholar] [CrossRef]
- Ludwig, K.R. A Geochronological Toolkit for Microsoft Excel; Berkeley Geochronology Center: Berkeley, CA, USA, 2003; pp. 1–70. [Google Scholar]
- Paton, C.; Hellstrom, J.; Paul, B.; Woodhead, J.; Hergt, J. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 2011, 26, 2508–2518. [Google Scholar] [CrossRef]
- Halverson, G.P.; Dudas, F.; Maloof, A.C.; Bowring, S.A. Evolution of the 87Sr/86Sr composition of Neoproterozoic seawater. Palaeoclimatology 2007, 256, 103–129. [Google Scholar] [CrossRef]
- Kaurova, O.K.; Ovchinnikova, G.V.; Gorokhov, I.M. U-Th-Pb systematics of Precambrian carbonate rocks: Dating of the formation and transformation of carbonate sediments. Stratigr. Geol. Correl. 2010, 18, 252–268. [Google Scholar] [CrossRef]
- Mazzullo, S.J. Geochemical and neomorphic alteration of dolomite: A review. Carbonates Evaporites 1992, 7, 21–37. [Google Scholar] [CrossRef]
- Hu, Y.; Cai, C.; Pederson, C.L.; Liu, D.; Jiang, L.; He, X.; Shi, S.Y.; Immenhauser, A. Dolomitization history and porosity evolution of a giant, deeply buried Ediacaran gas field (Sichuan Basin, China). Precambrian Res. 2020, 338, 105595. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, G.; Zhang, P.; He, Y.; Wei, Z.; Wang, G.; Zhang, T.; He, W.; Ma, H.; Zhu, C.; et al. Strontium isotope and element constraints on the paleoenvironment of the latest Ediacaran in the Sichuan Basin, southeastern Tibetan Plateau. Front. Earth Sci. 2022, 10, 865709. [Google Scholar] [CrossRef]
- Melezhik, V.A.; Pokrovsky, B.G.; Fallick, A.E.; Kuznetsov, A.B.; Bujakaite, M.I. Constraints on 87Sr/86Sr of Late Ediacaran seawater: Insight from Siberian high-Sr limestones. J. Geol. Soc. 2009, 166, 183–191. [Google Scholar] [CrossRef]
- Li, D.; Ling, H.F.; Shields-Zhou, G.A.; Chen, X.; Cremonese, L.; Och, L.; Thirlwall, M.; Manning, C.J. Carbon and strontium isotope evolution of seawater across the Ediacaran–Cambrian transition: Evidence from the Xiaotan section, NE Yunnan, south China. Precambrian Res. 2013, 225, 128–147. [Google Scholar] [CrossRef]
- Zhang, Y.G.; Yang, T.; Hohl, S.V.; Zhu, B.; He, T.C.; Pan, W.Q.; Chen, Y.Q.; Yao, X.Z.; Jiang, S.Y. Seawater carbon and strontium isotope variations through the late Ediacaran to late Cambrian in the Tarim Basin. Precambrian Res. 2020, 345, 105769. [Google Scholar] [CrossRef]
- Qing, H.; Mountjoy, E.W. Formation of coarsely crystalline, hydrothermal dolomite reservoirs in the Presqu’ile barrier, Western Canada Sedimentary Basin. AAPG Bull. 1994, 78, 55–77. [Google Scholar]
- Qing, H.; Mountjoy, E.W. Large-scale fluid flow in the Middle Devonian Presqu’ile barrier, Western Canada Sedimentary Basin. Geol. 1992, 20, 903–906. [Google Scholar]
- Jin, M.D.; Tan, X.C.; Li, B.S.; Zhu, X.; Zeng, W.; Lian, C.B. Genesis of dolomite in the Sinian Dengying formation in the Sichuan Basin. Acta Petrol. Sin. 2019, 37, 443–454. [Google Scholar]
- Lian, C.; Ren, G.; Qu, F.; Tan, X.; Li, L.; Zeng, W.; Hu, G.; Liu, H. Review and prospect on the botryoidal structures from the Sinian Dengying Formation, Sichuan Basin, China. Petroleum 2017, 3, 190–196. [Google Scholar] [CrossRef]
- Hu, Y.; Cai, C.; Liu, D.; Pederson, C.L.; Jiang, L.; Shen, A.; Immenhauser, A. Formation, diagenesis and palaeoenvironmental significance of upper Ediacaran fibrous dolomite cements. Sedimentology 2020, 67, 1161–1187. [Google Scholar] [CrossRef]
- Qian, Y.X.; Feng, J.F.; He, Z.L.; Zhang, K.Y.; Jin, T.; Dong, S.F.; Zhang, Y.D. Applications of petrography and isotope analysis of micro-drill samples to the study of genesis of grape-like dolomite of the Dengying Formation in the Sichuan Basin. Oil Gas Geol. 2017, 38, 665–676. [Google Scholar]
- Jiang, L.; Shen, A.J.; Wang, Z.C.; Hu, A.P.; Wang, Y.S.; Luo, X.Y.; Liang, F.; Azmy, K.; Pan, L.Y. U–Pb geochronology and clumped isotope thermometry study of Neoproterozoic dolomites from China. Sedimentology 2022. [Google Scholar] [CrossRef]
- Meng, F.; Ni, P.; Schiffbauer, J.D.; Yuan, X.; Zhou, C.; Wang, Y.; Xia, M. Ediacaran seawater temperature: Evidence from inclusions of Sinian halite. Precambrian Res. 2011, 184, 63–69. [Google Scholar] [CrossRef]
- Li, Z.X.; Evans, D.A.; Halverson, G.P. Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland. Sediment. Geol. 2013, 294, 219–232. [Google Scholar] [CrossRef]
- Moore, C.H. Carbonate Reservoirs: Porosity, Evolution and Diagenesis in a Sequence Stratigraphic Framework; Elsevier: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Northrop, D.A.; Clayton, R.N. Oxygen-isotope fractionations in systems containing dolomite. J. Geol. 1966, 74, 174–196. [Google Scholar] [CrossRef]
- Friedman, I.; O’Neil, J.R. Compilation of stable isotope fractionation factors of geochemical interest. Geol. Surv. Prof. Pap. Am. 1977, 440, 1–12. [Google Scholar]
- Canfield, D.E.; Poulton, S.W.; Knoll, A.H.; Narbonne, G.M.; Ross, G.; Goldberg, T.; Strauss, H. Ferruginous conditions dominated later Neoproterozoic deep-water chemistry. Science 2008, 321, 949–952. [Google Scholar] [CrossRef] [Green Version]
- Hood, A.S.; Wallace, M.W. Extreme ocean anoxia during the Late Cryogenian recorded in reefal carbonates of Southern Australia. Precambrian Res. 2015, 261, 96–111. [Google Scholar] [CrossRef]
- Moffett, J.W. A Radiotracer Study of Cerium and Manganese Uptake onto Suspended Particles in Chesapeake Bay. Geochim. Cosmochim. Acta 1994, 58, 695–703. [Google Scholar] [CrossRef]
- Shi, Z.J.; Wang, Y.; Tian, Y.M.; Wang, C.C. Cementation and diagenetic fluid of algal dolomites in the Sinian Dengying formation in Southeastern Sichuan Basin. Sci. China Earth Sci. 2013, 43, 317–328. [Google Scholar] [CrossRef]
- Dong, Y.P.; Santosh, M. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China. Gondwana Res. 2016, 29, 1–40. [Google Scholar] [CrossRef]
- Grotzinger, J.; Al-Rawahi, Z. Depositional facies and platform architecture of microbialite-dominated carbonate reservoirs, Ediacaran–Cambrian Ara Group, Sultanate of OmanMicrobialite Reservoirs in Oman. AAPG Bull. 2014, 98, 1453–1494. [Google Scholar] [CrossRef]
- Guo, X.S.; Hu, D.F.; Huang, R.C.; Duan, J.B.; Jiang, Z.L.; Zhu, X. Feature of paleo-oil pools in the Sinian Dengying Formation, northeastern Sichuan Basin, and its significance to exploration. Oil Gas Geol. 2020, 41, 673–683. [Google Scholar]
- Su, A.; Chen, H.; Feng, Y.X.; Zhao, J.X.; Wang, Z.; Hu, M.; Jiang, H.; Nguyen, A.D. In situ U-Pb dating and geochemical characterization of multi-stage dolomite cementation in the Ediacaran Dengying Formation, Central Sichuan Basin, China: Constraints on diagenetic, hydrothermal and paleo-oil filling events. Precambrian Res. 2022, 368, 106481. [Google Scholar] [CrossRef]
- Wei, G.Q.; Wang, Z.H.; Li, J.; Yang, W.; Xie, Z.Y. Characteristics of source rocks, resource potential and exploration direction of Sinian and Cambrian in Sichuan Basin. Nat. Gas Geosci. 2017, 2, 289–302. [Google Scholar] [CrossRef]
- Gu, Z.D.; Yin, J.F.; Jiang, H.; Li, Q.F.; Zhai, X.F.; Huang, P.H.; Peng, P.; Yang, F.; Zhang, H. Discovery of Xuanhan-kaijiang paleouplift and its significance in the Sichuan Basin, SW China. Pet. Explor. Dev. 2016, 43, 893–904. [Google Scholar] [CrossRef]
Regions | Fabrics | Formation/ Profile | Sample No. | U-Pb Dating (Ma) | C & O Isotope Ratio/‰(VPDB) | 87Sr/86Sr | CL Color Observed | ||
---|---|---|---|---|---|---|---|---|---|
δ13C | δ18O | Values | Mean | ||||||
Eastern Sichuan | host rock of thrombolite | Z2dn2/Hanfengya profile | HF-Z2dn2-1 | 580 ± 9.8 | 3.45 | −4.525 | 0.70960, 0.70934, 0.70909, 0.70947, 0.7092, 0.70943, 0.70932 | 0.709350 | Dull-dark orange |
Fibrous dolomite cement | Z2dn2/Hanfengya profile | HF-Z2dn2-1 | 579 ± 11 | 3.115 | −3.668 | 0.70941, 0.70932, 0.7095, 0.70932, 0.70958 | 0.709426 | Dark orange | |
Bladed dolomite cement | Z2dn2/Hanfengya profile | HF-Z2dn2-1 | 479 ± 10 | 3.619 | −6.046 | 0.7082, 0.70866, 0.70898, 0.70865 | 0.708623 | Dark orange | |
Brown-dark dolomite cement | Z2dn2/Hanfengya profile | HF-Z2dn2-1 | 0.7093, 0.70928, 0.70920, 0.70973 | 0.709378 | Dull | ||||
450 ± 11, 449 ± 13 | 2.38 | −6.618 | 0.70811, 0.70865, 0.70898, 0.70872, 0.70876 | 0.708644 | Dark orange-orange red | ||||
Fine crystalline dolomite cement | Z2dn2/Hanfengya profile | HF-Z2dn2-1 | / | 3.484 | −5.453 | 0.70782, 0.7087, 0.70821, 0.7087, 0.70904 | 0.708494 | Medium orange red | |
Medium-coarse crystalline dolomite cement | Z2dn2/Hanfengya profile | HF-Z2dn2-1 | 373 ± 79 | 2.681 | −6.93 | 0.70892, 0.70954, 0.7097, 0.70974 | 0.709475 | Bright orange red | |
Fibrous dolomite cement | Z2dn4/Bajiaoxi profile | BJ-Z2dn4-4 | 521 ± 21 | 2.644 | −4.452 | 0.7092 | Dull | ||
Central Sichuan | host rock | Z2dn2/Xianfeng profile | XF-Z2dn2-S4 | 584 ± 32 | 1–3 | −4 to −1 | 0.708718 | Non-luminescent | |
Isopachous dolomite cement | Z2dn2/Xianfeng profile | XF-Z2dn2-S5 | 546 ± 7.6 | 1–3 | −6 to −4 | 0.708732 | Non-luminescent | ||
Rayed dolomite cement | Z2dn2/Xianfeng profile | XF-Z2dn2-S4 | 516 ± 10 | 2–4 | −8 to −6 | 0.709351 | Dark orange dim | ||
Bladed dolomite cement | Z2dn2/Well Moxi-22 | MX22-Z2d2-2 | 499 ± 25 | 0–2 | −8 to −4 | / | Dim |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, Z.; Dong, J.; Yu, Z.; Li, W.; Wang, X.; Jiang, L.; Qing, H. Diagenesis and Reservoir Evolution Model of the Ediacaran Dengying Formation in the Sichuan Basin: Evidence from Laser Ablation U-Pb Dating and In Situ Isotope Analysis. Minerals 2022, 12, 1372. https://doi.org/10.3390/min12111372
Qiao Z, Dong J, Yu Z, Li W, Wang X, Jiang L, Qing H. Diagenesis and Reservoir Evolution Model of the Ediacaran Dengying Formation in the Sichuan Basin: Evidence from Laser Ablation U-Pb Dating and In Situ Isotope Analysis. Minerals. 2022; 12(11):1372. https://doi.org/10.3390/min12111372
Chicago/Turabian StyleQiao, Zhanfeng, Jianhua Dong, Zhou Yu, Wenzheng Li, Xiaofang Wang, Lei Jiang, and Hairuo Qing. 2022. "Diagenesis and Reservoir Evolution Model of the Ediacaran Dengying Formation in the Sichuan Basin: Evidence from Laser Ablation U-Pb Dating and In Situ Isotope Analysis" Minerals 12, no. 11: 1372. https://doi.org/10.3390/min12111372
APA StyleQiao, Z., Dong, J., Yu, Z., Li, W., Wang, X., Jiang, L., & Qing, H. (2022). Diagenesis and Reservoir Evolution Model of the Ediacaran Dengying Formation in the Sichuan Basin: Evidence from Laser Ablation U-Pb Dating and In Situ Isotope Analysis. Minerals, 12(11), 1372. https://doi.org/10.3390/min12111372